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Anharmonic motion and aspherical nuclear probability density functions in cesium halides
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The cesium halides (CsX) are ionic high-symmetry compounds, which at first would seem like well-understood
systems. However, recent studies have shown that using the simple Perdew-Burke-Ernzerhof (PBE) functional
in density-functional theory (DFT) calculations, CsX materials do not adopt their namesake structure. Further-
more, peculiar low thermal conductivities have been observed experimentally in both CsCl and CsI at room
temperature, and the origin has been linked to low-temperature anharmonicity derived from different types
of experiments. In the case of CsCl the anharmonicity was observed from x-ray diffraction as an octahedral
nuclear probability density function (nPDF), which, in contrast to expectations, becomes spherical at elevated
temperature. Here, we study the nPDF of CsBr and CsI from single-crystal x-ray diffraction to compare with the
findings of CsCl. It is shown that the aspherical features become less pronounced when substituting for a heavier
halide. From periodic DFT calculations on CsCl, CsBr, and CsI probing the potential-energy surfaces this can
be explained by progressively more similar masses upon substitution linked with Pauli repulsion. The apparent
disappearance of the anharmonic features in CsCl with increasing temperatures can be understood as relatively
larger population of acoustic phonons compared to the optical phonons following the Bose-Einstein distribution
function. Finally, it is shown that theory can reproduce the correct equilibrium structures as well as phonon
dispersions comparable to experimental values when adding a functional form of van der Waals interactions to a
PBE DFT calculation.
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I. INTRODUCTION

The cesium halides (CsX), with the exception of CsF,
crystallize in the simple highly symmetric “cesium chloride”
crystal structure. The chemical interactions are expected to
be highly ionic as the structure is formed between a cation
with very low electronegativity, and anions with very high
electronegativity. The archetypical cesium chloride structure
is typically observed for large cations that are similar in size
to the anion. This near-perfect, rigid high-symmetry crystal
structure is expected to have limited phonon scattering, and
correspondingly CsX materials should have a high thermal
conductivity, κ . Curiously, very low thermal conductivities
of 1.0 and 1.1 W m−1 K−1 have been observed in CsCl and
CsI at room temperature, whereas high κ’s were observed
at low temperature [1,2]. Low thermal conductivity is often
linked to anharmonic vibrations or structural defects [3], but
neither of these are expected to be significant in the cesium
halides. Surprisingly, significant fourth-order anharmonicity
was observed at 20 K in CsCl from analysis of x-ray diffrac-
tion data using the Gram-Charlier expansion of the harmonic
Debye-Waller factor [1,4]. This refined nuclear probability
density function (nPDF) at 20 K had an octahedral shape with
lobes pointing towards each face center, but with increasing
temperatures the nPDF became progressively more spheri-
cal. This apparent disappearance of anharmonicity at elevated
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temperature is counterintuitive to the common assumption
of anharmonicity originating from the progressively larger
displacement in a nonparabolic potential and correspondingly
larger emphasis on the high-order terms of the potential-
energy surface at elevated temperatures.

In the case of CsI, the origin of the low room temperature
κ was studied by inelastic neutron scattering and theoretical
phonon calculations using density-functional theory (DFT)
[2,5,6]. It was found that the trend in κ with temperature could
be accounted for with anharmonic low-temperature acoustic
phonon modes undergoing three-phonon Umklapp scattering
[7,8] of the type (a, a, a) absorption and (a, a, o) emission (a:
acoustic, o: optical). The mechanism was generalized to the
remaining CsX structures, excluding CsF which adopts the
rocksalt structure at thermodynamic equilibrium.

The two mentioned studies of anharmonicity in cesium
halides utilized different methods (x-ray diffraction versus
inelastic neutron scattering/DFT) and they studied different
systems (CsCl versus CsI). The question arises whether the
different methods are probing the same physical phenomenon.
The DFT calculations on CsI predict the correct trend in κ

when including the three-phonon mode scattering mechanism.
On the other hand the x-ray diffraction experiment on CsCl
indirectly suggests an increase in κ with increasing T at vari-
ance with the observed thermal conductivity [1]. However,
it must be stressed that the modeling of the Debye-Waller
factor only probes the presence of anharmonic motion, and it
is not a measure of κ . It is clearly of interest to investigate
whether CsBr and CsI show the same octahedrally shaped
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nPDF as CsCl. It is worth mentioning that anharmonicity is
often described qualitatively, but new approaches to quantify
anharmonicity are being developed [9].

It has previously been noted by Zhang et al. [10] that
the common DFT functional Perdew-Burke-Ernzerhof (PBE)
[11,12], and even the solid-state optimized PBEsol [13],
wrongly predicts CsCl to adopt the rocksalt structure unless
dispersion effects are included. In other words, CsCl studied
with PBE does not adopt its namesake structure type with-
out dispersion corrections. The strength of van der Waals
interactions scales with the number of electrons and cesium
with 55 electrons and a large static polarizability could ex-
hibit significant van der Waals interactions compared to the
remaining alkali halides. Even so, the ionic interactions would
be expected to be dominant when the electronegativity dif-
ference is as large as 2.2 on the Pauling scale and van der
Waals interactions would be a relatively small but signifi-
cant contribution arising from instantaneous temporary Cs-Cs
dipole formation interactions. Ionic interactions generally fa-
vor dense structures and in this case the van der Waals
interactions’ relatively small contribution seem to stabilize
the CsCl structure compared to NaCl. Zhang et al. obtained
the correct cesium chloride structure when adding Grimme’s
D2 parametric dispersion [14] correction to PBE calculations
on CsCl, CsBr, and CsI. However, the D2 correction is not a
functional of the electron density, but rather an energetic addi-
tion to the total energy based on the atomic arrangement, and
it acts as a penalty function for “wrong” geometries. It will
therefore only affect the electron density indirectly in struc-
ture optimization. This can be important when considering
phonon calculations as these are derived from the change in
energy when perturbing the structure from equilibrium. This
change in energy is not necessarily captured from a penalty
function description, and it might be necessary to use more ad-
vanced van der Waals descriptions such as the nonlocal rVV10
functional [15,16] add-on to common functionals, which act
directly on the electron density. Other studies have shown that
these kinds of nonlocal functionals improve the accuracy of
computations made on ionic solids such as the rocksalt alkali
halides [17–19].

Since CsCl has revealed peculiar features in the nPDF,
which differ from expectations from the study of low-
temperature anharmonicity in CsI, we have chosen to pursue
single-crystal synchrotron x-ray diffraction experiments on
CsBr and CsI in order to model the thermal motion and com-
pare with CsCl. In addition, calculated phonon dispersions can
help elucidate whether the anharmonicities observed from x-
ray diffraction and inelastic neutron scattering are connected.
Finally, to probe the importance of van der Waals interactions
for these kinds of systems, we have tested equilibrium struc-
ture predictions as well as phonon dispersions for a selection
of functionals.

II. EXPERIMENT

A. Single-crystal x-ray diffraction

X-ray diffraction data were collected on spherical ap-
proximately 15-μm-radii single crystals of CsBr and CsI
at BL02B1 beamline at SPring8. Diffraction data were

measured using an image plate detector, an x-ray wavelength
of 0.2478 Å (50 keV), and a temperature of 20 K. Separate
frames of 15.5◦ �ω and 360 s exposure time were recorded
for a full 75.5◦ ω scan with 0.5◦ overlap between subsequent
frames. The present experimental conditions yield the follow-
ing benefits: (1) The high x-ray intensity of the synchrotron
beam allows measurements on minute crystals, thereby re-
ducing systematic errors related to absorption and extinction.
(2) The short x-ray wavelength of the synchrotron beam leads
to high resolution in reciprocal space, which in turn facilitates
modeling of anharmonic features [4].

The data were indexed, integrated, scaled, and empiri-
cally corrected for absorption [20] using the Rigaku Rapid
IP-QuarterChi software. In the indexing process, peaks were
rejected if I < 10σ (I ). The integrated intensities were merged
using SORTAV [21] and the resulting estimated standard devia-
tions (esd’s) were used as standard uncertainties in structural
refinements using the independent atom model (IAM). The
structures were solved using the Patterson method in SHELXS

and refined using SHELXL [22]. A correction for anomalous
dispersion at the experimental wavelength was taken from
FPRIME [23]. The atomic positions were fixed at the 1a and
1b Wyckoff positions of space group Pm3̄m. An overview of
structural and statistical parameters from the refinements is
given in Table I.

The h + k + l odd reflections corresponding to body-
centered systematic absences (Im3̄m symmetry) present a
particular challenge for cesium halides, and especially for CsI.
Cs+ and I– are isoelectronic, and therefore the destructive
interferences observed in these reflections are almost com-
plete. Close inspection of the frames shows weak low-order
reflection (see Fig. 1), but at high angle the odd reflections
become essentially indistinguishable from the background.
Practically, these peaks are close to the noise level, which
means that roughly 50% of reflections are “missing” relative
to the expected diffraction pattern of the known symmetry
Pm3̄m. In the case of CsBr, the odd peaks are clearly visible
and inclusion of the peaks in the refinements was straight-
forward. Inclusion of the odd reflections in the integration of
the CsI frames contaminated the extracted value of the even
reflections, resulting in poor statistical parameters for the final
models. However, completely ignoring the odd reflections
led to physically doubtful atomic displacement parameters
(ADPs). The solution was to merge a body-centered integrated
structure factor list with the odd reflections of a primitive
integrated structure factor list by scaling the mean of the
even reflections in between the lists; the details of this is
included in the Supplemental Material (S1 and S3) [24]. The
absence of reflections in compounds of isoelectronic ions is
by no means a new observation, but dates back to the early
days of x-ray crystallography where KCl showed a diffraction
pattern as if both constituent atoms appeared with monovalent
charges [25].

Furthermore, for CsI two of the low-order reflections
((1̄10), (101̄)) were overexposed and also removed; see
Supplemental Material (S1). In the case of electron density
modeling this could be detrimental as the information of the
diffuse valence electron distribution is located in the low-order
reflections [26]. However, for analysis of the thermal motion,
which manifests itself as damping of the high-order reflections
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TABLE I. Experimental conditions and corrections, unit cell pa-
rameters, and statistical and refined parameters in a joint multipolar
and Gram-Charlier anharmonic refinement. X denotes the corre-
sponding halide.

CsBr CsI

T (K) 20 20
rsphere (μm) ∼15 ∼15
λ (Å) 0.247 8 0.247 8
sin θ/λ (Å−1) 1.666 7 1.666 7
Tmax/Tmin 1.412 2 1.642 3
Cs: f ′/ f ′′ a −0.267 65/2.031 01 −0.267 65/2.031 01
X: f ′/ f ′′ a −0.158 84/0.372 18 −0.103 74/1.780 41
μ (mm−1)a 4.369 5.778
Nmeasured 3975 2100
Nunique 352 208
Completeness 1.000 0.501b

Average redundancy 11.3 10.1
Rmerge (%) 3.65 6.12

Space group Pm3̄m Pm3̄mc

a (Å) 4.2501(5) 4.5153(5)
V (Å) 76.772(15) 92.055(18)
Z 1 1

min(sin θ/λ) (Å−1) 0.000 0 0.180 0
max(sin θ/λ) (Å−1) 1.666 7 1.666 7
N (I > 3σ ) 351 217d

Nref/Nvar 43.9 31.00
R(F ) (%) 1.53 2.45
R(F 2)(%) 2.16 4.22
GoFw 1.20 1.50
�ρmin −1.39 −2.25
�ρmax 2.12 2.28
Extinction N/a N/a
Max extinction (%) N/a N/a
Uiso(Cs) (Å2) 0.004 43(7) 0.006 0(2)
Uiso(X) (Å2) 0.004 49(4) 0.005 7(1)
δ1111(Cs) · 104 0.000 37(7) 0.001 5(3)
δ1122(Cs) · 104 0.000 11(3) 0.000 5(1)
d00(Cs) (#e) 0.020(9) 0.020 8
d40(Cs) (#e) 0.006(17) 0.03(2)
d44+(Cs) (#e) 0.005(13) 0.02(1)
d00(X) (#e) 0.147(9) 0.145 6
d40(X) (#e) 0.000 2(28) 0.000 3(55)
d44+(X) (#e) 0.000 1(20) 0.000 2(41)

aCalculated with FPRIME [23].
bCorresponds to a completeness of 1.000 when merging in the space
group Im3̄m.
cSymmetry used after integration. Im3̄m was only used to integrate
reflections initially.
dTen reflections are added from the Pm3̄m integration and the over-
exposed low-order reflection is removed.

[4], the removal of two low-order reflections has negligible
influence on the refinements.

B. Multipolar electronic and anharmonic motion modeling

The structural parameters from the IAM refinement were
imported into XD2016 [27]. Scattering factors were taken

FIG. 1. Intensity count in pixels across maxima of reflections
belonging to the family {210} in CsCl, CsBr, and CsI. In the case
of CsCl, we are using the same data as Sist et al. [1] in order to plot
the relative peak intensity. The average of the first and last pixel is
equalized between the datasets, bringing them on a common scale.
The plot clearly shows a decrease in peak intensity from substituting
for a heavier halide and the peak becomes close to indistinguishable
from the background in the CsI dataset. The inset shows the peak in
the CsI dataset on a different scale—there is a peak but it is close to
the background.

from the Volkov-Macchi databank included in XD based on
relativistic PBE calculations, and anomalous dispersion was
corrected with FPRIME. The esd’s were used as weights, and
all refinements were made against F 2.

The modeling of anharmonic motion is most often and
successfully modeled in the statistical Gram-Charlier (GC)
formalism [4,28,29]. Here, the trivariant normal distribu-
tion [in this case the anisotropic probability density function
P0(u)] is differential series expanded to give a sum of Hermite
polynomials, Hj...n(u), and quasimoments, c j...n,

P(u) =
[

1 + 1

3!
γ jkl Hjkl (u) + 1

4!
δ jklmHjklm(u) + . . .

]
P0(u).

(1)

The associated Debye-Waller factor is given by the analytic
expression via Fourier transformation:

T (H) =
[

1 − 4

3
π3iγ jklh jhkhl + 2

3
π4δ jklmh jhkhlhm + . . .

]

× T0(H), (2)

where h j is the jth Miller index of the reciprocal lattice vector
H. The resulting structure factor incorporating anharmonic
motion is then given by

F (H) =
∑

j

f j exp (2π iH · r j )Tj (H). (3)

The scattering factor f j can be chosen as the free spheri-
cal atomic scattering factors. A better description accounting
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for valence density deformation would be aspherical scat-
tering factors following, e.g., the Hansen-Coppens multipole
formalism [30].

It is worth mentioning that the Gram-Charlier formalism
in itself does not carry any a priori known temperature de-
pendence [28,31]. A temperature dependence can be found
for the Gram-Charlier parameters under the assumptions of
the classical limit (high-temperature) and independent oscil-
lators (Einstein oscillator) by equating parameters of like H
dependence between the mathematical Gram-Charlier expan-
sion to the one-particle potential model [4,28]. However, the
following experiment is performed at 20 K, which can hardly
be called high temperature and it neglects that the atomic
oscillators are coupled.

The possible presence of thermal diffuse scattering (TDS),
which peaks underneath the Bragg peaks, will increase the ob-
served dampening in reciprocal space, consequently increas-
ing the refined ADPs [29,32]. Furthermore, the anisotropy in
the TDS around a Bragg peak has been shown elsewhere in
a powder diffraction experiment to affect the refined parame-
ters, e.g., site occupancies [33]. Neither of these effects are
assumed to be detrimental for the Gram-Charlier analysis.
Individual peaks are integrated, circumventing to an extent
the effect of an anisotropic distribution of TDS around the
peaks when performing azimuthal integration in powder ex-
periments, and the TDS is assumed isotropically distributed
for symmetry-equivalent reflections only affecting the spheri-
cal ADP by increasing the dampening in reciprocal space.

Because of the cubic m3̄m symmetry of the occupied
Wyckoff positions, only a few degrees of freedom are
available. The positions are fixed, and the Gram-Charlier pa-
rameters up to, and including, fourth order have the following
constraints: U 11 = U 22 = U 33, δ1111 = δ2222 = δ3333, δ1122 =
δ2233 = δ1133, while all other GC parameters are zero. Here,
U jk is the anisotropic ADPs and δ jklm are the fourth-order
quasimoments. Furthermore, the cubic site symmetry mixes
the spherical harmonics used to model the valence electrons
and therefore it is necessary to employ density normalized
Kubic harmonic functions [25,34,35]. For the given site sym-
metries up to, and including, hexadecapoles, only K0 and K4

are available, the former being a monopole and the latter is
expressed in terms of the density normalized spherical har-
monics, dlmp:

K4 = 0.782 45d40 + 0.579 39d44+. (4)

A multitude of models has been tested and they are pre-
sented in the Supplemental Material (S2 and S3) [24] while
the final models are listed in Table I. The overall refinement
strategy of the final models has been to perform high-order
(only include sin θ/λ > 0.800 Å−1) thermal motion refine-
ment using the GC formalism. This is followed by locking
the thermal parameters and refining the Kubic harmonics
in the multipole electron density model and then finally a
total refinement—both against the entire resolution range.
Thermal motion and aspherical density parameters are corre-
lated and this strategy decouples them by basing the thermal
parameters on a section of reciprocal space where valence
electron features do not contribute—a consequence of the
properties of Fourier transformation. Extinction [36,37] was
tested on these models, however proved to be insignificant,

nonconvergent, or worsening the fit. Finally, to compare with
the model refined by Sist et al. [1], an anharmonic-only model
has been refined for both systems with an upper limit on
resolution of 1.250 Å−1 (S5) [24].

C. Theoretical calculations

The crystal structure of the CsX in Pm3̄m has been op-
timized using the projector augmented-wave (PAW) method
[38] as implemented in QUANTUM ESPRESSO within DFT.
PBE+rVV10 [15,16] has been used as the exchange-
correlation functional. Pseudopotentials [39] for PAW cal-
culations including scalar relativistic effect were used. The
cation pseudopotentials included semicore states, i.e., the
neutral atom valence state of the cation and anion were
(n−1)s2(n−1)p6ns1 and ns2np5, respectively. A plane-wave
energy cutoff of 100 Ry and density energy cutoff of 800 Ry
was used in all cases. Reciprocal space was sampled using
a k grid of size 12 × 12 × 12 for CsF and 8 × 8 × 8 for
the remaining CsX. CsF is included artificially in the cesium
chloride structure for comparison.

Phonon dispersions have been calculated within linear
response/density-functional perturbation theory on 6 × 6 × 6
(CsF) and 4 × 4 × 4 (remaining CsX) k grids. Born effective
charges were calculated to account for the change of dipole
moment for optical modes and consequently the splitting of
transverse and longitudinal optical branches. A simple acous-
tic sum rule [40] is applied to the dynamical matrix to ensure
that the �-point acoustic modes corresponds to translation of
the crystal.

Single-point calculations moving along the optical longi-
tudinal �-point phonon mode (the stiffest phonon mode) have
been calculated using the mass-adjusted eigenvectors of the
mode along the 〈100〉, 〈110〉, and 〈111〉 directions to probe the
potential-energy surface of this vibration. At 20 K the thermal
energy is 1.7 meV, so any mode with this energy will on
average contribute with ∼0.5 bosons, while quickly dropping
off at higher energy following the Bose-Einstein distribution.
Therefore, high-energy phonons contribute to the vibrational
free energy only with their zero-point motion. Consequently,
it is only a restricted range of the phonon dispersion, which
contributes significantly different from zero-point vibration
at low temperature to the overall movement of the atoms.
Assuming all modes above the thermal energy are equally
populated, the stiffest phonon mode potential will give a
picture of the potential that mostly restricts the vibration of
the system and consequently aspherical features in the nPDF.
Note that this potential is not the most significant to determine
the overall nPDF; the contribution to the atomic displace-
ment is inversely proportional to the vibrational frequency
and thus low-energy phonons are overall more significant
when ignoring mode population. However, the �-point and
Brillouin-zone boundary optical phonons will show similar
features but to different extent. Focusing on optical phonons,
in the �-point mode both atoms vibrate out of phase with
each other, while at the Brillouin-zone boundary the heav-
iest atom is stationary and the lightest atom vibrates. This
necessitates a smaller decrease in atomic distances for a given
halide displacement and hence a softer potential. The optical
phonon at the � point will then show the largest deviation
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from sphericity if the asphericity is associated with Pauli re-
pulsion between the ions. Multiple modes will show the same
asphericity but to a lesser extent until disappearing for signif-
icantly small decreases in interatomic distances. We therefore
choose to focus on the �-point optical phonon mode.

In the case of CsCl and CsI, the structures additionally
have been optimized in both the cesium chloride and the rock
salt structure using the local density approximation (LDA)
[41], PBE, and PBE+rVV10, and specifically for CsCl also
PBE+D2. From the equilibrium cesium chloride structures
the phonon dispersions were calculated to see to which extent
the functionals predict the phonon dispersion obtained from
inelastic neutron scattering [2,42].

III. RESULTS

A. Nuclear probability density function

The final models on CsBr and CsI are given in Table I and
a series of models are included in the Supplemental Material.
Fractal dimension plots and residual density maps are also
included in S2-4 in particular S2.4, S3.6, and S4 for the
final models. Overall, residual density analysis as formulated
by Meindl and Henn [43] clearly shows that Gram-Charlier
parameters are necessary in both compounds to describe oth-
erwise systematic residuals. This is independent of whether
Kubic harmonic electron density functions are refined or not.
Notice that because of the poorly described odd reflections
in CsI, the monopole electron density parameters have not
been refinable to meaningful values. Furthermore, the Gram-
Charlier parameters in a purely anharmonic thermal motion
refinement at full resolution and high order, and a coupled
anharmonic and aspherical refinement at full resolution yield
similar parameters. Especially, the models at full resolution do
not show deviations in the Gram-Charlier parameters consis-
tent with the small valence electron population compared with
the core electron population. Finally, the fractal dimension
plots from only modeling thermal motion at a restricted reso-
lution of 1.25 Å−1 also indicate the necessity of fourth-order
Gram-Charlier parameters as the statistical significance of the
GC parameters decreases making one of them insignificant
(S5) [24].

In the article by Sist et al. [1] an anharmonic significance
factor was defined. This related the size of the anharmonic
parameter δ1111 to the size of the harmonic parameter Uiso =
U 11, and it is observed that the significance factor decreases
with increasing temperature. From their supporting informa-
tion it seems that the decrease in anharmonicity is in large part
due to an increase in second-order parameters. Consequently,
there is an increasing spherical contribution to the nPDF as
the temperature is increased. But, assuming the second-order
contribution to the nPDF at 20 K is sufficiently small to show
aspherical features and similar in CsBr and CsI, the aspheric-
ity of the nPDF is related to the unitless factor:

α = δ1111/δ1122. (5)

Bear in mind that the turning point from octahedral to cube
is not necessarily at α = 1. The possible aspherical features
can then be drowned out by the second-order contribution.
In the order CsCl, CsBr, and CsI, the value of α decreases
(4.64 → 3.36 → 3.00). This decrease in α is mirrored in the

FIG. 2. nPDF of Cs in the anharmonic models of CsCl, CsBr, and
CsI at 20 K. The CsCl nPDF is generated from the model parameters
of Sist et al. [1] The CsBr and CsI nPDFs are generated from the full-
resolution model. The probability is plotted on a natural logarithmic
color scale. Contour lines are superimposed on the image as white
lines. x and y are the distance from the equilibrium position of Cs
along the directions 〈100〉 in units of angstrom.

nPDF as seen in Fig. 2 where only CsCl shows asphericity
on a natural log scale while the remaining compounds are
spherical. Fairly large fourth-order GC parameters for CsI are
refined and they are likewise mirrored in the nPDF showing
quite flat nPDF around the outermost contour levels. These
might be linked to flat potentials allowing the ion to rattle
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within the system or it is an artifact of uncertainty in the
dataset.

B. Geometry optimization and phonon dispersions

The energy per formula unit at optimized geometry is
included in Supplemental Material (S6) for CsCl and CsI
using different functionals in the rocksalt and cesium chloride
structure. In both cases, PBE predicts the rocksalt structure,
while the remaining functionals correctly predict the cesium
chloride structure. From the observations of Zhang et al.
[10], the failure of predicting the correct equilibrium struc-
ture appears to be generalizable to other generalized gradient
approximation (GGA) functionals, including PBEsol. Com-
paring with the experimental unit-cell parameter, a, at 20 K
shows that LDA underestimates a, PBE overestimates a, and
PBE+rVV10 and PBE-D2 outperform both LDA and PBE
and equally deviate from the experimental value. This is
the trend observed, e.g., for noble gas adsorption to metal
surfaces [44] and graphene interlayer interactions [45], both
mainly governed by van der Waals interactions, where LDA
overbinds and PBE does not bind at all. From the equilibrium
structure calculations, it appears that van der Waals interac-
tions are important for both CsCl and CsI.

In Fig. 3 theoretical phonon dispersion curves are shown
together with experimental inelastic neutron scattering values
measured by Ahmad et al. [42] and Wei et al. [2]. For CsCl,
PBE-D2 completely fails at predicting the absolute phonon
branches, even though it gives a unit-cell estimate of equal
quality to PBE+rVV10. The LDA, PBE, and PBE+rVV10
calculations show similar features in the phonon dispersions,
but the absolute values of the LDA branches do not correspond
well with the experimental values. PBE compares better with
experiment, and PBE+rVV10 is clearly the best calculation
of the phonon dispersion. The LDA branches shows discrep-
ancies with the experimental values no matter whether finite
displacement from phonopy or linear response in QUANTUM

ESPRESSO is used. When using VASP with the same compu-
tational parameters as in the study by Wei et al. [2] their
reported phonon branches are correctly reproduced and fit
the experimental values. Even though the pseudopotentials
are generated by the same method in VASP and QUANTUM

ESPRESSO the final calculations appear to differ. The present
conclusion is that calculations in QUANTUM ESPRESSO give a
better agreement with phonon observations with more com-
plex functionals.

Interestingly, the phonon dispersions clearly show that the
dispersion correction by Grimme works well at predicting
structure, but it is poor at calculating phonons. In essence,
Grimme’s correction acts as a penalty function for wrong
atomic configurations. The penalty for a wrong configuration
does not accurately represent the potential that the atoms are
moving in. However, when introducing van der Waals interac-
tions through rVV10, it is possible to obtain a good agreement
with inelastic neutron scattering results and predict the correct
structure. rVV10 is in fact the only of the tested functionals
which predicts the correct structure, and simultaneously is
in agreement with the experimental unit cells and phonon
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FIG. 3. Phonon dispersions for CsCl and CsI. The data points are
determined from inelastic neutron scattering by Ahmad et al (CsCl)
and Wei et al (CsI) [2,42]. The dispersions are calculated using the
optimized structure from PBE+rVV10. In the case of CsI LDA, the
LDA optimized structure was also tested, but it had no effect on the
final dispersion curves.
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dispersions. Overall, van der Waals interactions indeed seem
to be important for the CsX as stated by Zhang et al. [10], but
it is important to include a functional description of van der
Waals interactions and not just a parametric correction.

C. Potential of longitudinal optical phonon mode

The longitudinal optical mode extracted from QUAN-
TUM ESPRESSO corresponds to a wave vector, q, for which
q ‖ 〈100〉 and |q| → 0. Taking the appropriate linear combi-
nation to align it along 〈100〉, 〈110〉, and 〈111〉, it is possible to
probe the potential that Cs vibrates in by performing stepwise
single-point calculations moving both atoms along the phonon
mode eigenvectors. The potentials are shown in terms of Cs
displacement in Fig. 4 together with the potentials and relative
potentials in a reduced mass coordinate system. Notice that
the potential of the longitudinal optical and acoustic phonon
branch at the Brillouin-zone boundary will be similar to the
ones shown in Fig. 4, but with less steep potentials since the
distance between the atoms are decreased less for these vibra-
tions compared with the optical longitudinal branch at �. This
directly implies less difference between the three directions
for the progressively softer vibrational modes in the systems
and thus progressively less aspherical vibrational motion as q
approaches the Brillouin-zone boundary in the optical branch.

The difference between 〈111〉 and 〈100〉 for a given Cs
displacement increases with larger displacements in all cases
implying that vibrations along 〈111〉 are more restricted com-
pared with 〈100〉 in agreement with the larger electron density
overlap between anion and cation from the 〈111〉 vibration
compared with 〈100〉. However, for a given Cs displacement
the difference between 〈111〉 and 〈100〉 decreases going from
CsF to CsI. This agrees very well with the calculated nPDF
where it is octahedral for CsCl, but becomes spherical for
CsBr and CsI.

Changing from dCs with an implied halide displacement
to a reduced mass coordinate

√
μdCs shows the same trend

for a given displacement with the lighter cesium halides hav-
ing a more restrictive potential along 〈111〉 relative to 〈100〉
compared to the heavier ones. This can be seen from the
bottom row in Fig. 4, where the potentials are plotted against
the squared reduced mass coordinate and the relative differ-
ence of 〈111〉 and 〈100〉 are plotted against the reduced mass
coordinate.

The differences between the systems are essentially the
mass and the polarizability of the halide, both increasing when
going down group 17 in the Periodic Table. The polarizability
could be linked to the observed potential as an increased polar-
izability would give a softening of the vibration as the electron
cloud can more easily rearrange itself around the nuclei. This
would favor a less steep increase in potential energy for the
vibration of CsI along 〈111〉 compared with CsCl.

Simultaneously, the progressively heavier halides lead to a
smaller displacement of X for a given displacement of Cs as
the mass becomes comparable to Cs. This results in a smaller
overlap between the electron density of the atoms, so Pauli
repulsion is not introduced before the atoms are displaced
significantly more than observed experimentally at low tem-
perature. This would decrease the relative importance of the

quartic term to the potential and would result in a spherical
nPDF.

It is puzzling why anharmonicity is not observed for the
experimental nPDF of Cl in CsCl even though it should have
larger displacements. This might be linked to the relatively
smaller scattering factor of Cl compared to Cs, which makes
the scattering from Cs drown out anharmonic contributions
from Cl. With the lower scattering factor, the accompanied
x-ray diffraction contribution might not be large enough to be
visible in the diffraction peaks intensity for the experimental
setup.

D. Asphericity and anharmonicity

The longitudinal optical phonon at � fits with the ob-
served nPDF of CsCl, CsBr, and CsI, where the aspherical
nPDF disappears for the heavier cesium halides. However,
this mode and the similar optical modes at lower energy will
not be significantly excited at 20 K. This follows directly
from the Bose-Einstein distribution. The optical phonons can
nevertheless still explain the observed nPDF and be unified
with the measured thermal conductivity. From a diffraction
experiment, the harmonic atomic displacement

U jk = 〈u jk〉 (6)

can be expressed in terms of the phonon dispersion as

U(κ ) = 1

Nmκ

∑
iq

Ei(q)

ω2
i (q)

e(κ| jq)e∗T
(κ| jq), (7)

with κ denoting an atom in the unit cell, i the phonon branch,
q the wave vector, e the polarization vector, N the number of
unit cells, and mκ the mass of the κth atom [29]. The energy,
Ei, of a quantum harmonic oscillator entering the expression
is

E = h̄ω
(

1
2 + nBE

)
, (8)

with nBE being the Bose-Einstein distribution. Within this
simple picture, the high-energy phonons will essentially only
contribute with their zero-point vibration with a scaling of
ω−1. Simultaneously, the phonons with energy up to the ther-
mal energy at 20 K essentially correspond to long-wavelength
acoustic modes that do not change appreciably the distance
between first neighboring atoms. Following from this, most
modes contributing to the matrix U are approximately pop-
ulated by 0 phonons, and the shape of the nPDF is then
governed by an ω−1

i -weighted sum of zero-point vibrating
phonon modes.

The low-energy phonon modes will approximately yield a
spherical nPDF while the high-energy phonon modes yield
an octahedrally shaped nPDF. The aspherical appearance of
the nPDF in CsCl and the disappearance of the asphericity
can then be explained by relative populations: At low tem-
perature, essentially only zero-point vibration is present, and
the combined nPDF is a weighted average of the vibrational
modes giving an aspherical nPDF. At higher temperatures, the
low-energy phonon modes will be populated relatively more
than the high-energy phonon modes and consequently the
spherical features of the nPDF will be more prominent until
the aspherical features are drowned out at sufficiently high
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FIG. 4. Confining potential of longitudinal optical phonon at �. The x axis maps the displacement of Cs dCs, but due to the mass difference

of cation and anion a given dCs is accompanied by a displacement of X by −
√

mCs
mX

dCs. The lower row shows the potentials plotted against the

square reduced mass coordinate to show deviations from harmonicity, and the relative difference between 〈100〉 and 〈111〉 vs the reduced mass
coordinate. Notice that in all cases the steepness of the curves increases as 〈111〉 > 〈110〉 > 〈100〉.
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temperatures. This is not observed for CsBr and CsI because
at low temperature the nPDF is already spherical.

That the asphericity, and thus the perceived anhar-
monicity from the optical phonons in CsCl, disappear at
elevated temperatures seems, at first, in disagreement with the
measured thermal conductivity. However, a decrease in ther-
mal conductivity from phonon-phonon scattering requires nBE

to be significantly different from 0 and therefore, at low
temperature, where anharmonicity is observed in the nPDF,
there are only few phonons available to be scattered. At
elevated temperature, the asphericity disappears because of
the relatively more populated spherical anharmonic acoustic
phonons, but now the populations are large enough to accom-
modate the scattering mechanisms as presented by Wei et al.
Consequently, the thermal conductivity decreases even though
the nPDF becomes spherical.

The observations that only CsCl has an aspherical nPDF
at low temperature [1], which in the current study is inter-
preted in terms of optical phonons, and that CsCl and CsI
have low thermal conductivities associated with anharmonic
acoustic phonons [2], are not mutually exclusive. Firstly,
both compounds exhibit significant Gram-Charlier parameters
and, consequently, both compounds possess low-temperature
anharmonicity. Secondly, a proper linear combination of
Gram-Charlier parameters can approximate a spherical nPDF
and simply visualizing the nPDF alone would lead to the
wrong conclusion of absence of anharmonicity as exemplified
by CsBr and CsI in the current study. Thirdly, according to
the present study, the acoustic phonons would not yield an
aspherical nPDF. That is, the anharmonicities observed in the
nPDF and the inelastic neutron scattering are different where
the latter is associated with thermal conductivity.

IV. CONCLUSION

From x-ray diffraction, it has been possible to show that
CsBr and CsI do not exhibit the same octahedrally shaped
nPDF as observed for CsCl. This is in agreement with the lon-
gitudinal optical potentials, which become progressively more
spherical when substituting for a heavier halide. The trend can
be explained from relatively stronger potentials in the 〈111〉
direction compared with the 〈100〉 direction arising from
Pauli repulsion linked with the relatively large contribution
of zero-point vibration at low temperature. The disappearance
of aspherical nPDF for CsCl at elevated temperature can be
understood by zero-point vibrations from the optical phonons
being drowned out by the relatively more populated acoustic
phonons, which have a spherical nPDF.

The present study does not disagree with the microscopic
mechanism proposed by Wei et al. for the decrease in thermal
conductivity of the cesium halides systems with increasing

temperature. Rather, it indicates that the anharmonicity ob-
served via the nPDF in CsCl is not linked to the thermal
conductivity. Instead, it is linked to the anharmonic optical
phonons, which are not populated at low temperature and
therefore cannot contribute to thermal conductivity. At high
temperature acoustic phonons can combine to yield an optical
phonon and decrease the thermal conductivity; however, when
the acoustic phonons are sufficiently populated for this mech-
anism to be active, the optical phonons are already drowned
out by the acoustic phonons in the nPDF of CsCl.

It has been shown that a good agreement on phonon disper-
sions can be achieved between experimental inelastic neutron
scattering data and theoretical calculations with both PBE
and PBE+rVV10, where the latter in general gives the best
agreement. In addition, PBE+rVV10 also predicts the correct
structure unlike the PBE functional, which predicts CsX to
adopt the rocksalt structure. The simpler approach of adding
Grimme’s D2 correction to PBE predicts the correct structure,
but it significantly overestimates the phonon frequencies. This
indicates that van der Waals interactions are important for the
CsX systems. Furthermore, it might be relevant to consider
van der Waals interactions when performing computations on,
e.g., the optoelectronic cesium lead halide perovskites [46].

The significance of anharmonicity does not disappear when
substituting for a heavier atom in the CsX family of com-
pounds; however, the difference in energy for the 〈100〉, 〈110〉,
and 〈111〉 directions decreases with the heavier halide making
the directions indistinguishable from an x-ray diffraction point
of view. Consequently, Cs in CsCl has an octahedrally shaped
nPDF at low temperature, while in CsBr and CsI the nPDFs do
not visibly deviate from a spherical form. However, because of
the coupled motion between cation and anion, Cl is expected
to show an aspherical nPDF in contrast to experimental obser-
vation. That Cl does not experimentally show an aspherical
nPDF is likely linked to the small scattering factor of Cl
compared to Cs making the contrast between the atoms large.
Meanwhile, the nPDF of neither Br nor I is expected to deviate
from sphericity as observed.
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