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Reversible motions and disordered structure of soft particles in amorphous solids
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In amorphous solids, soft vibrational modes derived from normal mode analysis can be utilized to identify the
soft particles that are prone to irreversible rearrangements. However, the normal mode analysis approach cannot
explain why the spatial distributions of clustered soft particles do not change over time. We define a softness
parameter based on the vibrational density of states calculated directly from molecular dynamics simulations
with both the harmonic vibrations and anharmonic relaxations being properly captured at finite temperatures.
This parameter spontaneously correlates with the real space atomic motions and the dynamics heterogeneity.
Using the softness parameter, we show that the softest particles are confined within rigid cages. These particles
keep rearranging reversibly without long-range diffusion. The moderately soft particles rearrange irreversibly,
and the hard particles mainly participate in vibrations without rearrangement. We also show that the soft particles
form locally disordered structures, while the hard particles present strong ordering. These findings confirm the
defective nature of soft particles, and provide insights on the nature of softness as the ability to rearrange, but
not necessarily irreversibly.
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I. INTRODUCTION

Defective sites in crystalline solids can be defined in terms
of the deviations from the ideal long-range periodicity of a
given lattice. One important property of the defects is that they
can serve as precursors of structural rearrangement. Since the
disordered structure in amorphous solids hinders the identifi-
cation of structural defects, it is not clear whether structural
defects in amorphous systems can even be defined [1,2]. The
ambiguity of the nature of defects makes the quantification of
defect-related properties in amorphous solids extremely hard.
For example, the prediction of atomic rearrangement remains
one of the central challenges in glass science. Numerous ef-
forts have been devoted to studying the physics of structural
defects in amorphous solids on a general basis, some of which
are from atomic a topology perspective [1,3–5], while others
focus on the potential energy landscape (PEL) aspect [6–10].
In recent years, several approaches based on machine-learning
algorithms have been developed to address this longstanding
challenge that have provided new insights into the relationship
between structure and dynamics in glasses [11–13].

Among the various indicators, the particles participating
in the quasilocalized low-frequency normal modes [14–17],
usually termed as soft particles, are strong candidates for flow
defects [18] and exhibit a high propensity for motion [19]
in glassy systems. The soft particles are plastically unstable,
which means they can have large nonaffine displacements
when subjected to athermal quasistatic shear deformation
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[17]. The atomic softness can be estimated by summing up
the participation fractions of the lowest vibrational modes,
which characterizes the tendency to rearrange and the flatness
of energy basins [19–21]. Despite these understandings, there
are still several questions left unanswered for soft particles.
A recent study shows that the particles with high atomic soft-
ness evaluated using very soft modes are plastically unstable,
while the particles with high softness obtained from less soft
modes are prone to irreversible rearrangement instead [22].
The different behaviors of soft and very soft particles cause
confusion on the nature of atomic softness, as well as the
properties of the potential defects. Another question is related
to the dynamics of the soft particles. While it was shown
that the soft particles rearrange irreversibly under strain or
thermal activation, little change is observed for the clustering
of soft particles (soft region) [21,23]. It is thus necessary to ex-
plore the relationship between atomic softness and real space
atomic motions. A more fundamental question is about the
structural signature of the soft particles. Recent works found
that the local structures of soft particles can be characterized
by geometrically unfavored motifs [5] and are surrounded
by solidlike regions [24]. Unfortunately, a more explicit de-
scription on their local structures is still absent [2,11,25].
While the soft spots have local environments very different
from the dominant short-range order (SRO) [5,15,26], do they
possess other types of orders or are they totally disordered?
Answers to these questions are crucial for unveiling the phys-
ical nature of atomic softness and defects in amorphous solids,
which may further clarify the structure-dynamics relationship
in amorphous solids.

A commonly adopted approach to determine the soft vi-
brational modes is to diagonalize the dynamic matrix (DM)
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derived from the inherent structures of glass samples after en-
ergy minimization at 0 K. With the harmonic approximation,
the normal mode analysis is supposed to provide the infor-
mation about the profiles of the bottom of potential energy
basins, and the soft modes represent directions to escape from
the basins with least effort [25]. However, the cage-breaking
relaxations, both strain and temperature triggered, are barrier-
crossing events with strong anharmonicity [1,7,27,28]. A
new softness parameter with the anharmonic properties being
properly included is thus desirable to establish the correlation
between atomic softness and real space motions.

In this paper, we show that, with both the harmonic
vibrations (in-cage motions) and anharmonic relaxations
(cage-breaking hops) being properly captured at the same
time, the soft particles can be identified based on the vi-
brational density of states (VDOS) directly obtained from
molecular dynamics (MD) simulations (MD-VDOS). A new
softness parameter is also proposed, which can be explicitly
related to the particle motions, akin to other order parameters
that incorporate dynamical information [18,29]. By scrutiniz-
ing the trajectories of atoms with different softness, we find
that the softest particles keep rearranging reversibly, while
the particles undergoing nonreversible rearrangements do so
at a lower rate than the softest particles and are thus moder-
ately soft. Furthermore, particles mainly undergoing harmonic
motions are the hardest, and therefore barely contribute to
the low-frequency intensity in MD-VDOS. Structural analy-
sis shows that soft particles have essentially disordered local
environments, while hard particles have well-developed order.
These findings confirm the defective nature of soft particles,
and provide insights into the nature of softness as the ability
to rearrange, but not necessarily irreversibly.

II. METHODS

We choose a well-studied binary glass-forming Lennard-
Jones system, the Kob-Andersen (KA) model [30], as a
representative of amorphous solids. This system has the com-
position of A80B20, where A and B correspond to the larger and
smaller particles, respectively, interacting with each other via
the Lennard-Jones potential with the following parameters:
εAA = 1.0, εBB = 0.5, εAB = 1.5, σAA = 1.0, σBB = 0.88, and
σAB = 0.8, the same as in the original paper and our previous
work [31]. A smooth cutoff scheme is adopted, in which both
energy and force go continuously to zero at the cutoff distance
of 2.5σAA [32]. To explore the effects of system size, three
system sizes with the number of atoms N being 500, 4000, and
8000 are considered. Periodic boundary conditions are applied
in all directions. The MD simulations are carried out using the
LAMMPS package [33], with the isothermal-isobaric ensemble
(N-P-T) through the Nosé-Hoover thermostat. The box sizes
are allowed to relax during the simulations so that the pres-
sure is kept zero. The systems are first equilibrated at a high
temperature well above the glass transition temperature (Tg),
then cooled down to the desired temperature using a constant
cooling rate of 1 × 10−5. The time step is set to 2 × 10−3τ ,
where τ is the Lennard-Jones time unit. The frequency is in
units of 2π/τ . In the remainder of the description of the work,
all the quantities are reported in reduced Lennard-Jones units
for clarity.

FIG. 1. (a) The comparison between DM-VDOS and MD-VDOS
for systems with different sizes at T = 0.11. (b) The MD-VDOS
for KA glasses at different temperatures, with the DM-VDOS as a
reference. The DM-VDOSs are shown with dashed lines, while the
MD-VDOSs are indicated by solid lines. As the DM-VDOS does
not change much in the glass state, we only present the DM-VDOS
at T = 0.11. Two eye-guiding lines with different slopes are included.
The VDOSs are scaled so that their maxima equal to unity. The DM-
VDOSs at different temperatures are calculated using the inherent
structures of the glass at the corresponding temperatures.

To capture the anharmonic relaxations at finite temper-
atures, the MD-VDOS is obtained by taking the Fourier
transform of velocity autocorrelation functions [16,34–36],
instead of the more commonly adopted dynamic matrix
method (DM-VDOS) within the harmonic approximation. By
making use of the per-atom nature of the velocity autocor-
relation functions, the MD-VDOS method has been adopted
in previous studies to identify the particles with high boson
peak (BP) intensities [37–41]. The velocity autocorrelation
function of each particle is calculated by

Ci(t ) =
∑

t0
vi(t + t0) · vi(t0)∑
t0

vi(t0) · vi(t0)
,

where vi(t ) is the atomic velocity at time t and t0 is the initial
time moment. Then, the per-atom VDOS can be computed by
the time Fourier transform:

Di(ω) =
∫ +∞

−∞
Ci(t )e jωt dt = 2

∫ +∞

0
Ci(t )cos(ωt )dt .

The sum of per-atom VDOS then yields the total VDOS.
As the velocity autocorrelation function is essentially based
on a convolution operation, we can further reduce the compu-
tational load by applying the convolutional theorem:

Di(ω) =
∑

α=x, y, z

F
(
vα

i ∗ vα
i

) =
∑

α=x, y, z

F
(
vα

i

)
F

(
vα

i

)
,

where F and ∗ denote the Fourier transform and convolution
operations, respectively. By calculating the proportion of in-
dividual particles’ VDOS to the overall MD-VDOS, we can
easily identify the particles with the largest contributions to
the low-frequency intensity. More details about how the MD-
VDOS is obtained can be found in the Supplemental Material
[42].

III. RESULTS AND DISCUSSIONS

In Fig. 1(a), we compare the MD-VDOS and the DM-
VDOS for KA glasses with different system sizes. One can see
from Fig. 1 that for all sizes considered, the MD-VDOS and
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DM-VODS coincide with each other in the high-frequency
region. However, in the low-frequency side, noticeable dis-
crepancies emerge. Recent works show that the D(ω) ∼ ω4

law at low-frequency regime persists even at finite tempera-
tures if the SRO cages are well preserved [43,44]. Thus, the
deviation from ω4 law in the MD-VDOS may originate from
the cage-breaking motions. Overall, the MD-VDOS show
richer low-frequency components compared to that of DM-
VDOS, and the deviation starts from the BP frequency, as
indicated by the arrow. The peaks of Goldstone modes can
be clearly seen in the MD-VDOS for N = 4000 and 8000
systems, which also appear in DM-VDOS for N = 8000. We
show in the Supplemental Material that these phonons barely
affect the identification of soft particles [42]. As the frequency
decreases, the MD-VDOS for different system sizes coincide
again. The DM-VDOS of systems with different sizes are
essentially identical in the high-frequency region, while the
low-frequency components decrease with the system size,
which agrees with previous reports [16,45,46].

In Fig. 1(b), we show the VDOS at several temperatures for
the N = 8000 system. As revealed by our previous study, the
Tg of the KA system at this cooling rate is around 0.32 [31].
Since the DM-VDOS is derived from the inherent structures,
which barely change for T < Tg [47,48], only the DM-
VDOS at T = 0.11 is presented. Again, the DM-VDOS and
MD-VDOS match well in the high-frequency region for all
temperatures. As the temperature decreases, the MD-VDOSs
shift toward higher frequencies. Performing the evaluation at
lower temperature also results in a diminished low-frequency
(ω < ωBP) component in the MD-VDOS, and a smaller
difference with the DM-VDOS. The dependence of the low-
frequency intensities on the sampling time and temperature
of low-frequency intensity suggests that they may originate
from the relaxations. We find that the low-frequency end of
the MD-VDOS at T = 0.29 approaches ω1, implying that the
D(λ = ω2) is nearly constant for λ close to or even smaller
than zero. The effect of unstable modes is thus evaluated in the
Supplemental Material [42]. As expected, the unstable modes
emerge for T = 0.20 and above. Our results suggest that the
high-frequency vibrations in KA glass are mainly harmonic,
while the low-frequency modes are dominated by the anhar-
monic effect governing the relaxations [1,27,28,49,50].

We now illustrate how to define the softness parameter
based on the MD-VDOS. The softness parameter is defined
by measuring the contribution of the ith particle’s VDOS to
the global VDOS in the low-frequency range:

S(i) =
∑
ω<ωc

Di(ω)∑
i Di(ω)

,

where the Di(ω) is the VDOS of the ith particle, and the
summation goes up to some cutoff frequency (ωc). A rule
of thumb in the normal modes analysis approach for identi-
fying the soft particles is to sum the participation fractions
of the 0.5%–1% eigenmodes with the lowest frequencies
[19,21,25]. We follow the same methodology to get the soft-
ness parameter S. By varying the upper and lower bounds of
cutoff frequencies, S can be used to project the VDOS within
other frequency regions to individual particles. In Fig. 2(a),
we present the total VDOS (upper panel) and the individual

FIG. 2. (a) The total VDOS (upper) and the VDOS for the par-
ticle with largest (lower, red) and smallest (lower, blue) contribution
to the low-frequency intensities in MD-VDOS. The dashed line
indicates the boson peak frequency. (b) The Pearson correlation
coefficient

∑
(Ai−Ā)(Bi−B̄)√∑

(Ai−Ā)2
√∑

(Bi−B̄)2
(A and B are different observables)

with local Debye-Waller factor for S obtained using different ωc.
(c) The spatial distribution of S calculated from different frequency
regions. S is scaled using the system average before performing the
color coding; a slab with thickness of 2 is adopted. (c) is visualized
using the OVITO package.

VDOS of the softest and hardest particle identified using S
(lower panel). The two particle-level VDOSs show an obvious
difference in the low-frequency region, indicating the ability
of S to identify the soft particles. In Fig. 2(b), we illustrate the
Pearson correlation coefficient between S and the local Debye-
Waller factor (LDWF), a parameter that has been proven to
be highly correlated with the dynamic heterogeneity, the soft
modes, plastic instability, and activation energy [25,29,51].
The LDWF of each atom is defined as αi = 〈[ri(t ) − ri(0)]2〉,
where ri is the position of particle i sampled every 1τ until
the maxima simulation time, and 〈· · · 〉 denotes averaging over
the collected atomic positions. Different ωc are chosen to test
the robustness of S. The hereby obtained softness parameter
is highly correlated with the LDWF, and the correlation rarely
changes with ωc. It is also interesting to note that the highest
correlation appears at the lowest ωc, at which the reduced
VDOS diverges [see the inset of Fig. 2(b)], implying the im-
portance of anharmonic relaxations [27,41]. Here we choose
a temperature as low as 1/3 Tg to monitor the relationship
between S and LDWF in Fig. 2(b), and the simulation time is
well below the relaxation time (see Fig. S2 in the Supplemen-
tal Material [42]). The good correlation between S and LDWF
demonstrates the S’s ability to describe pure vibrations. As we
increase the temperature or simulation time, the LDWF can no
longer be calculated due to the emergence of more complex
dynamics such as rearrangement. In that case, S is still capable
of distinguishing different dynamics, as will be illustrated lat-
ter. In Fig. 2(c), we present each particle’s contribution to the
soft-region (Ssoft, 0 < ω < 0.6) and the peak-region intensities
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FIG. 3. (a) The MSD of the particles with the largest Ssoft (red),
the largest displacement (green), and the largest Speak (cyan). (b) The
corresponding VDOS for the three groups of atoms in (a). (c) The
normalized displacement, d/dNN (upper), and the inherent energy,
Einherent (lower), as a function of time for two particles with the largest
softness (red) and displacement (green), respectively. To collect the
particle’s energies in their inherent states, 100 configurations are
sampled every 9.6τ during the MD simulations and then minimized
to their inherent states using a combination of FIRE and conjugate
gradient method implemented in LAMMPS [33]. (d) The probability
of having a displacement larger than the nearest neighbor distance at
the end of each isoconfigurational run for each particle. The dashed
line indicates the cutoff softness for reversible rearrangements.

(Speak, 11 < ω < 12), respectively, at T = 0.26. Ssoft and Speak

are scaled using the system averages before implementing the
color coding in the figures. Different color scales are adopted
so that the spatial heterogeneities of both frequency regions
can be better recognized. The particles with significant contri-
butions to the soft-region vibrations exhibit strong clustering
spatial distribution, while the spatial heterogeneity of the par-
ticles contributing the peak-region intensities is clearly much
weaker even with a narrower color scale. These results are in
accordance with the spatial distribution from the normal mode
analyses [19,26,49], which, together with the good correlation
between LDWF and S, suggest that Ssoft is equivalent to the
softness parameter based on the normal mode analyses [1,14–
16,26,52]. Furthermore, the real space motions of the particles
contributing to the low-frequency components in MD-VDOS
can be tracked easily, which makes it possible to explore
the direct connection between softness and the dynamics of
particles. We use the softness parameter calculated using ωc

= 0.6 in the remaining part of this work.
Next, we compare the mean square displacement (MSD)

and average VDOS of particles from different groups, i.e.,
the top 0.5% particles with largest displacement (diffusive),
and the same number of particles with largest Ssoft and Speak,
in Fig. 3. Increasing the number of particles does not qual-
itatively alter our results (see Fig. S5 in the Supplemental
Material [42]). To remove the noise, we compute the MSD
by averaging over atomic displacements as well as the initial

positions:

MSD(t ) = 1

N
〈[ri(t + t0) − ri(t0)]2〉t0 ,

where ri is the position of particle i, N is the number of
particles, and t and t0 range from zero to half of the maxima
MD simulation time. We can see from Fig. 3(a) that the
peak particles are mainly participating in harmonic vibrations
around their original positions, as illustrated by the flat MSD
with small amplitude. On the other hand, the MSD amplitude
of the diffusive particles at t = 480τ is close to 1, which is
larger than the nearest neighbor distance (dNN = 0.9) in KA
glass [31], implying that the diffusive particles rearrange irre-
versibly during the MD simulation. In contrast to the other two
groups of particles, the MSD of the softest particles saturates
at a plateau very soon, which suggests that the dynamics of
the softest partcicles is more complex than pure vibration
or diffusion. A previous study suggested that the vibrational
eigenfrequency can abruptly drop toward zero in the limit
of atomic rearrangement [15]. We also observe a strong de-
pendence of the low-frequency intensity in MD-VDOS on
sampling time and temperature, suggesting that our softness
parameter may be closely related to relaxation dynamics [42].
In Fig. 3(b), we show that the different relaxation behaviors
of the particles can distinguish them in the low-frequency
region in the MD-VDOS. One can see from Fig. 3(b) that the
softest (peak) particles show very rich (poor) low-frequency
intensities in their MD-VDOS. The peak particles can thus
be regarded as hard particles, while the diffusive particles
undergoing irreversible rearrangements exhibit intermediate
softness compared to the other two groups.

Knowledge on the displacement of individual particles is
needed to fully understand the relationship between atomic
dynamics and softness and the physical meaning of our
softness parameter, which is also helpful to understand the
persistence of the soft region over time [21,23]. In the upper
part of Fig. 3(c), we compare the displacement of the softest
particle and the most diffusive particle as a function of time,
and their energies in the corresponding inherent states are
displayed at the bottom of Fig. 3(c). Here 100 configura-
tions are sampled at a time interval of 9.6τ during the MD
simulations, then optimized to their inherent states through
energy minimization [53] using a combination of fast inertial
relaxation engine (FIRE) and conjugate gradient (CG) algo-
rithm implemented in LAMMPS [33]. We can see in Fig. 3(c)
that the particle’s inherent energy without the thermal noise
can serve as an indicator of basin hopping or rearrangement.
The displacements are in units of dNN = 0.9, which is the
nearest distance between the B particle and the A particle
[31], and is large enough to break the nearest neighbor cage
[54–56]. An apparent character of the motion of the softest
particle is the surprisingly large displacement amplitude, of-
ten close to or even larger than dNN. However, breaking the
nearest neighbor cage does not necessarily lead to irreversible
rearrangement. The softest particle is obviously hopping re-
versibly among several distinct positions without long-range
diffusion, resulting in its unique MSD in Fig. 3(a). The re-
versible hopping with large displacement amplitude suggests
that the very soft particles undergo relaxations with mixed
vibrations and rearrangements within a rigid cage larger than
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the SRO. Similar reversible motions have been observed in
other systems and are related to the secondary relaxation and
boson peak [41,57,58]. In contrast, the particle with the largest
displacement reaches a relatively stable position after several
smaller stepwise jumps, indicating an irreversible rearrange-
ment. By associating the softness with an individual particle’s
trajectory, one can see that S correctly identifies particles
with distinctly different dynamics, i.e., diffusive, vibratory,
and mixed rearranging-vibratory motions. Thus, compared
to LDWF that focuses on short-time vibrations, S can better
reflect the dynamics heterogeneities over longer timescales.

It can be seen in Fig. 3(c) that particle rearrangements
are accompanied by a sudden change of the inherent en-
ergy. Therefore, we can define the number of basin-hopping
events a particle experiences as nhop ∼ ∑tmax

t=0 |	Einherent|,
where 	Einherent is the difference between a particle’s energy
in the inherent states at adjacent time moments. The summa-
tion over many time moments makes nhop focus more on the
overall rearranging rate, instead of one single jump. If there
is no basin hopping during the MD simulation, nhop is equal
to zero and the corresponding 	Einherent would be close to
zero all the time. If the particle rearranges frequently, then
the accumulated |	Einherent| would be large. For the top 0.5%
softest particles, the average nhop is around 11, while for the
top 0.5% most diffusive particles, this value is around 7 and
the system average is about 1.6. The origin of the rich low-
frequency intensity in the MD-VDOS can thus be considered
to arise from the barrier-crossing relaxations. In this regard,
one can say that an atom becomes softer when it experiences
more basin-hopping events. Our softness parameter thus mea-
sures the ability to rearrange, just like the softness defined
from the normal mode analyses [19–21]. However, unlike the
previous studies focusing on the bottom of each energy basin
only, the MD-VDOS approach profiles both the current and
neighboring energy basins in the PEL, and the shapes of the
neighboring basins determine whether one particle can keep
rearranging or not when it jumps.

Since one particle trajectory only provides one sampling
of the propensity for motion [59], we also perform the isocon-
figurational ensemble simulations to establish the correlation
between S and rearrangements. The time interval for each
isoconfiguration run is chosen to be the time interval adopted
in MD simulations, t = 960τ . After performing 100 isocon-
figurational runs, we calculate the probability of having a
displacement larger than dNN at t = 960τ for each particle,
as illustrated in Fig. 3(d). The particles with high tendency to
jump out of the cage usually have moderate S, while proba-
bilities of breaking the nearest neighbor cages for the softest
particles (S>20) and hardest particles are small, in qualitative
agreement with Fig. 3(a). Combining Fig. 2(c) and Fig. 3, one
can conclude that the softest particles are hopping reversibly
within a large space formed by the hard particles, which ex-
plains why the soft regions can survive many rearrangements
[21,23]. More importantly, we show that the soft particles may
not exhibit a high propensity for irreversible motion.

A fundamental question left unanswered concerns the
structural signature of the soft particles: are they totally dis-
ordered, or do they share some order different from the
dominant SRO? Firstly, we check whether the soft particles
are loosely packed or not by calculating their atomic stresses,

FIG. 4. The atomic stresses as a function of softness. The atomic
stresses are calculated by averaging the configurations sampled
within 2τ in time intervals of 0.02τ . The dashed line indicates the
cutoff softness for reversible rearrangements.

as illustrated in Fig. 4. The atomic stresses are obtained by
averaging the diagonal elements of the stress tensor. Overall,
the softness does not correlate well with the atomic stress.
Nevertheless, it can be seen that the softest particles are indeed
in slightly stretched states, in agreement with previous reports
[1,10,12,15,39].

To obtain a more quantitative description on the structure
of the soft particles, we employ the cluster alignment method
to characterize the atomic structures [60–63]. In our previ-
ous work, we show that the SRO can be identified based
on pairwise cluster alignment and clique analysis [31]. The
pairwise alignment method measures the similarities between
each cluster and all the other clusters; the smaller the align-
ment score, the higher the similarity. The resulting similarity
matrix can then be used to identify the cliques (groups of
clusters sharing similar atomic packing motifs) by applying
the clique analysis [60,61]. The sizes and number of cliques
that are identified reflect the degree of ordering. We choose
the top 5% B particles with the largest Ssoft and Speak to
perform the pairwise cluster alignment, as both the SRO and
medium-range order (MRO) in KA glass are B-centered clus-
ters. The similarity matrices of the two groups of B particles
after clique analysis are shown in Fig. 5(a). The distribution
of pairwise alignment scores is also shown in Fig. S6 in the
Supplemental Material [42]. It can be seen that the cluster
distortion of the soft particles is much larger than that of the
hard particles. To save some computational cost, we adopt a
more rigorous cutoff score (0.10) during the clique analysis.
As suggested by the small number of cliques and tiny sizes,
the local environments of the soft particles do not resemble
each other. In contrast, a number of cliques with significantly
larger sizes can be identified among the hard-particle-centered
clusters even with a very rigorous cutoff score, implying
their strong ordering. By monitoring the geometric structures
of clusters within cliques for both soft and hard particles,
we find that the packing motif shared by the clusters is the
same as the dominant SRO in the KA model [31]. We then
align the clusters with the dominant SRO and MRO in KA
glass, whose structures are shown in the insets of Fig. 5(b).
Roughly 16% of the soft particles have well-developed SRO,
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FIG. 5. (a) The similarity matrices of 5% B particles contributing
the most to the soft-region intensities of the MD-VDOS (left) and
peak-region intensities (right) after clique analysis. Each pixel is an
alignment score between the ith and jth cluster. (b) The distribution
of alignment scores for soft (red) and peak (blue) particles against
SRO (left) and MRO (right). The dashed line indicates the cutoff
score, below which two clusters are considered as identical. The clus-
ters are extracted from the inherent structures of T = 0.26 glasses. For
the MRO cluster, the cutoff score is slightly increased. The structures
of the SRO and MRO templates are presented in the insets.

while the corresponding proportion for hard particles is about
60%. Besides the SRO, 4% (25%) of the soft (hard) particles
also develop the MRO. These findings suggest that the soft
particles essentially have liquidlike local structures, where
some SRO can be developed, but barely any MRO. As for the
hard particles, most of them have well-defined SRO, some of
which even develop the MRO. In this sense, the soft particles
are indeed defects in glasses [1,11,15,37,39]. Compared to
previous studies, our work makes a stride further by showing
that the local structures of the soft particles are essentially
disordered [5,24]. We show in the Supplemental Material
[42] that the soft particles indeed contribute to the unstable
modes, hence further verifying their defective nature [10].
The disordered nature of soft particles can also be seen from
Figs. 3(c) and 3(d). The softest particles frequently break the
nearest neighbor cages, indicating their local structures cannot
be simply attributed to certain SRO. The disordered local
packing of very soft particles cannot completely fill the soft

region without residual strain (see Fig. 4), which would drive
the softest particles to hop reversibly.

The physical nature of the soft particles observed in the KA
model glass system are also explored for two real amorphous
systems [64]: a strong glass-forming system (Cu64Zr36) [65]
and a marginal glass-forming system (Ni64Zr36) [66]. We per-
form similar analyses for the two systems. The soft particles
are observed to actively undergo reversible motions with the
amplitudes much larger than the averages in the corresponding
systems, as shown in Fig. S7 in the Supplemental Material
[42], suggesting that these findings can generally be applied
to other amorphous solids.

IV. SUMMARY

In summary, a new atomic softness parameter combining
both in-cage vibration and nearest neighbor cage-breaking
relaxation is proposed, which can probe the dynamics het-
erogeneities over a longer timescale than that of LDWF. The
soft particles identified using our softness parameter are con-
sistent with those from the normal mode analyses. The clear
connection between the atomic softness and the real space
motions reveals the physical meaning of atomic softness: the
ability to rearrange, but not necessarily irreversibly. The soft-
est particles are confined within a rigid wall formed by hard
particles, which exhibit strong harmonic vibrations without
rearrangement. Therefore, the relaxations of soft particles do
not change the distribution of soft regions. We further show
that the local environments of soft particles are essentially
disordered. The stretched and disordered nature of the very
soft particles keep them hopping reversibly, without breaking
the larger cage formed by the hard particles.
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