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Observing localization and delocalization of the flat-band states in an acoustic cubic lattice
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Over the past decades, wave localization and a wide variety of related phenomena have come to the forefront of
research. Here, we theoretically and experimentally investigate the localization and delocalization of the flat-band
states in an acoustic cubic lattice. Under evanescent couplings, the band structure of the designed cubic lattice
has two dispersive bands and two degenerate flat bands. According to the analyses, we find that the constructions
of flat-band states only depend on the excitation pressures and the coupling coefficients, which are frequency
independent. With the flat-band state excitation, the acoustic wave can be either localized or delocalized in the
lattice, which is determined by the excitation frequency. When the excitation frequency is close to the flat-band
frequency of the lattice, the flat-band state can spread into the whole cubic lattice due to the resonance energy
transfer among primitive cells. On the other hand, when the excitation frequency deviates from the flat-band
frequency, the flat-band state can be localized in any primitive cell of the designed lattice. This work lays the
groundwork for exploring the high-dimensional bound states in acoustic systems and has potential impacts on
the applications of acoustic sensing and sound energy harvesting.
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I. INTRODUCTION

Wave localization is a ubiquitous phenomenon in nature.
Examples include the matter waves in atoms, light confined
in droplets, and sound trapped in architectures. In periodic
materials, we can easily judge whether the waves are localized
or extended from the band structure. If the carrying frequency
locates in the gap of the band structure, the waves are localized
as bound states with no radiation to the outside environment.
However, if the carrying frequency locates inside the continu-
ous band region, the waves render as the extended states that
propagate inside the periodic structure. In the study of dif-
ferent scattering materials where the waves propagate, there
are several ways for realizing the wave localizations, includ-
ing the Anderson localization in a disordered medium [1–7],
defect states in flawed artificial crystals [8–11], topologi-
cally protected states in topological insulators [12–19], bound
states in the continuum (BIC) [20–27], and others [28–30].
The Anderson localization stems from the wave interference
among multiple scattering paths and is closely related to the
disorder of scatterers. In the limit of strong scattering, waves
can be completely localized inside the disordered material.
Different from the Anderson localization, the defect states
exist due to the presence of defects in imperfect artificial
crystals. Typically, the defect states are located in the band
gaps and localized at the defects inside the artificial crystals.
Besides these, the topologically protected localized states,
such as the zero-dimensional corner states in high-ordered
topological insulators and two-dimensional (2D) drumhead
states in Weyl semimetals, are also generated in nontrivial
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band gaps. They are featured with robustness against the
disorder in topological insulators and are finely localized at
topologically protected positions. Recently, research on the
topological skin effect has gained much attention [17–19],
for which all the eigenmodes show strong field localizations
on the edges/surfaces. It also needs to be mentioned that the
BIC can realize perfect wave localization. The concept of
BIC is contrary to conventional wisdom, since the localized
modes coexist with the extended states in the continuous
band of the system, rendering a perfect localization with zero
radiation.

In this work, we theoretically and experimentally investi-
gate the localization and delocalization of the flat-band bound
states in a three-dimensional (3D) acoustic cubic lattice. Start-
ing from the tight-binding approximation, we calculate the
band structure of the designed cubic lattice with four sites
per one unit cell, which consists of two dispersive bands and
two degenerate flat bands. The flat-band energy is related to
the on-site potentials. For a realizable acoustic cubic lattice
comprising spherical cavities, as shown in Fig. 1(a), the flat-
band frequency is inversely proportional to the cavity size.
We first give the method of how to construct the flat-band
states. From theoretical analyses, we prove that the flat-band
states only depend on the excitation pressures and the cou-
pling coefficients, which are frequency independent. Next, we
study the localization and delocalization of flat-band states
in the designed cubic acoustic lattice. On the flat-band state
excitation, where the excitation frequency deviates from the
flat-band frequency of the lattice, the sound wave can be
perfectly localized in any primitive cell of the cubic lattice.
However, when the excitation frequency hits the flat-band
frequency, the flat-band state becomes a diffusive one, which
can spread into the whole lattice due to the resonance energy
transfer among primitive cells. It should be emphasized that
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FIG. 1. (a) A schematic of the designed cubic lattice, where A,
B, C, and D denote four types of sites that constitute four cubic
sublattices. L, M, and N are the numbers of unit cells along x, y, and
z directions, respectively. (b) A schematic of one unit cell, where the
coupling coefficients between adjacent sites of A-B, A-C, and A-D
are γx , γy, and γz, respectively.

the localization of flat-band bound states herein stems from
the zero-value group velocities [31–35]. Last but not least, we
provide the simulations and experimental demonstrations of
the dispersive bulk states, flat-band bound states, and flat-band
diffusive states in the designed cubic acoustic lattice. Further-
more, we show the localization of various composite flat-band
bound states by superposing the elementary flat-band states in
multiple primitive cells.

This work is formalized as follows. In Sec. II, we estab-
lish the tight-binding model of the designed cubic lattice.

Based on the tight-binding model, we give the method to
construct flat-band states in this cubic lattice. Then, we fo-
cus on the localization and delocalization of the flat-band
states that depend on whether the excitation frequency is
equal to the flat-band frequency of the lattice. In Sec. III,
we give the simulations and experimental demonstrations
of the dispersive bulk states, flat-band bound states, flat-
band diffusive states, and different composite flat-band bound
states in the cubic lattice. In Sec. IV, some conclusions are
given.

II. MODEL AND DISCUSSIONS

Figure 1(a) shows a schematic of the designed cubic lattice,
where the different colored spheres labeled by the letters A, B,
C, and D denote four different types of sites. The variables L,
M, and N denote the numbers of unit cells in the x, y, and z
directions, respectively. Since there are four sites per one unit
cell, the cubic lattice can be divided into four cubic sublattices
as labeled by different colored spheres. Figure 1(b) shows the
schematic of one unit cell, where the symbols γx, γy, and γz

denote the coupling coefficients between the adjacent sites of
A-B, A-C, and A-D, respectively.

Without losing the generality, we assume that the lattice
constant of the designed cubic lattice is unitary, viz., a = 1.
In the Wannier-state representation and with the assumption
of evanescent couplings, the bulk Hamiltonian of the tight-
binding cubic lattice can be expressed as [36,37]

H =
∑
l,m,n

∑
α

[εα|(l, m, n), α〉〈(l, m, n), α|]+
∑
l,m,n

{γx[|(l, m, n), B〉〈(l, m, n), A| + |(l + 1, m, n), A〉〈(l, m, n), B|]

+ γy[|(l, m, n), C〉〈(l, m, n), A| + |(l, m + 1, n), A〉〈(l, m, n), C|]+ γz[|(l, m, n), D〉〈(l, m, n), A|
+ |(l, m, n + 1), A〉〈(l, m, n), D|] + H.c.}, (1)

where H.c. stands for the Hermitian conjugate, εα denotes the on-site potential, and |(l, m, n), α〉 denotes the Wannier state
of the designed cubic lattice that localizes at the site α in the unit cell (l , m, n), with α ∈ {A, B, C, D}, l ∈ {1, 2, . . . , L},
m ∈ {1, 2, . . . , M}, and n ∈ {1, 2, . . . , N}. If the on-site potentials εA = εB = εC = εD = ε0, and the wave number k =√

k2
x + k2

y + k2
z in the Bloch representation, the bulk momentum-space Hamiltonian of the system can be expressed as

H (k) =

⎛
⎜⎜⎜⎝

ε0 γx(1 + e−ikx ) γy(1 + e−iky ) γz(1 + e−ikz )

γx(1 + eikx ) ε0 0 0

γy(1 + eiky ) 0 ε0 0

γz(1 + eikz ) 0 0 ε0

⎞
⎟⎟⎟⎠. (2)

In Appendix A, we give the derivation of the bulk momentum-space Hamiltonian H (k). By solving the eigenvalue problem
with the Hamiltonian in Eq. (2), the quasienergy band structure or dispersion spectrum of the designed cubic lattice at any wave
number k (with the bands indexed by 1 to 4) can be obtained as

E1(k) = ε0 − ε, E2(k) = E3(k) = ε0, E4(k) = ε0 + ε, (3)

where ε =
√

2γ 2
x (1 + cos kx ) + 2γ 2

y (1 + cos ky) + 2γ 2
z (1 + cos kz ). The corresponding band vectors with the wave number k

are

|u1(k)〉 = 1√
2

(
−1,

γx(1 + eikx )

ε
,
γy(1 + eiky )

ε
,
γz(1 + eikz )

ε

)
, |u2(k)〉 =

(
0, 1, 0,−γx (1 + e−ikx )

γz(1 + e−ikz )

)
,

|u3(k)〉 =
(

0, 0, 1,−γy(1 + e−iky )

γz(1 + e−ikz )

)
, |u4(k)〉 = 1√

2

(
1,

γx(1 + eikx )

ε
,
γy(1 + eiky )

ε
,
γz(1 + eikz )

ε

)
. (4)
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FIG. 2. (a)–(c) Dispersion relations of the quasienergy bands E1, E2,3, and E4, respectively, where the wave number is in the first Brillouin
zone {kx, ky, kz} = 0 → 2π . (d) Dispersion relations of the quasienergy bands E1, E2,3, and E4 with the wave vector k = (kx, ky, kz ) changing
from (0, 0, 0) to (2π, 2π, 2π ).

Equation (3) shows that the designed cubic lattice has two
dispersive bands (E1, E4) and two flat bands (E2, E3). The two
dispersive bands have the mirror symmetry with respect to the
baseline of energy ε0. Figures 2(a)–2(c) show the dispersion
relations of E1, E2,3, and E4 for the wave-number components
in the 3D Brillouin zone ranging {kx, ky, kz} = 0 → 2π . In
the numerical calculations, the designed cubic lattice is set to
be isotropic with the intersite coupling coefficients γx = γy =
γz = 1 and the on-site potential ε0 = 0. Figure 2(d) shows the
quasienergy bands of E1, E2,3, and E4, where the wave vector
k = (kx, ky, kz ) spans in the Brillouin zone from (0, 0, 0) to
(2π, 2π, 2π ). From Fig. 2(d), one can observe that the bands
E2,3 are perfectly flat. At the point of (π, π, π ), all the bands
degenerate to generate a Weyl point.

In the following, we show how to construct the flat-band
states in the designed cubic lattice. As a concrete example,
we choose one primitive cell from the cubic lattice as shown
in Fig. 3(a), where there are eight sites A at the corners of
the primitive cell and four sites B, four sites C, and four sites
D on the edges. The unit cell with the sites A1, B1, C1, and
D1 is indexed by (l0, m0, n0). In the chosen primitive cell, we
assume that all the same sites have the same excitation sound
pressures and are denoted by pA, pB, pC, and pD, respectively.
Under this excitation condition, the initial excitation state can
be expressed as

|ψ0〉 = 1√
N

∑
k

e−iϕ[pA(1 + e−ikx + e−ikx−iky + e−iky + e−ikz

+ e−ikx−ikz + e−ikx−iky−ikz + e−iky−ikz )|k〉 ⊗ |A〉
+ pB(1 + e−ikz + e−iky−ikz + e−iky )|k〉 ⊗ |B〉

+ pC(1 + e−ikx + e−ikx−ikz + e−ikz )|k〉 ⊗ |C〉
+ pD(1 + e−ikx + e−ikx−iky + e−iky )|k〉 ⊗ |D〉], (5)

where the phase ϕ = l0kx + m0ky + n0kz. The details about
the derivation process of the initial excitation state |ψ0〉
in Eq. (5) are shown in Appendix B. At any given wave
number k, by projecting Eq. (5) into the band-vector basis
{u1(k), u2(k), u3(k), u4(k)}, the initial excitation state |ψ0〉
can be expressed as |ψ0〉 = ∑

n cnun(k), where cn represents
the occupation probability of the band vector un(k). Accord-
ing to Eqs. (4) and (5) and the condition of pA = 0, the
occupation probabilities of the dispersive band vectors u1(k)
and u4(k) are

c1,4 = (1+e−ikx )(1 + e−iky )(1 + e−ikz )√
2ε

(pBγx + pCγy+pDγz ).

(6)

From Eq. (6), we can clearly see that the occupation prob-
abilities c1,4 are determined by the excitation sound pressures
pB, pC, and pD and the intersite coupling coefficients γx, γy,
and γz. For example, when the excitation sound pressures
satisfy the relation of pDγz = −(pBγx + pCγy), we can ob-
tain the occupation probabilities c1,4 = 0. Thus, under this
excitation condition, the initial excitation state |ψ0〉 only oc-
cupies the flat-band states of the designed cubic lattice and
can be written as |ψ0〉 = c2u2(k) + c3u3(k). Since the group
velocities of flat bands E2 and E3 equal to zero, the initial
excitation state |ψ0〉 is thus a flat-band bound state that is
localized in the excited primitive cell, except for the special
case of resonance energy transfer, which will be discussed
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FIG. 3. (a) A schematic of one primitive cell with site indices. (b) The changing relation of the energy ratio Eunit/Esys versus the excitation
pressure pD and the coupling coefficient γz, where Eunit denotes the energy localized in the excited primitive cell and Esys denotes the energy
in the whole system. (c) The relation of the energy ratio Eunit/Esys to the excitation pressure pD, where the black line, the magenta line, and
the blue line correspond to the cases of γz = 2.8, 3.0, and 3.2 mm, respectively. (d)–(f) Simulation results of the flat-band bound states at the
different excitation frequencies of 150, 250, and 350 Hz.

later. As we know, for a periodic lattice system with N unit
cells, there exist N wave numbers in the first Brillouin zone.
Thus, for the designed cubic lattice with N unit cells, it
should be 2N flat-band states due to the fact that there are
two flat-band states for a given wave number k. Figure 3(b)
shows the relation of the energy ratio Eunit/Esys versus the
excitation pressure pD and the intersite coupling coefficient
γz, where Eunit denotes the acoustic energy localized in the
excited primitive cell and Esys denotes the total energy in the
system. In the designed cubic lattice, the intersite coupling
coefficient γα can be tuned by changing the radius rα of the
coupling tube with a fixed length, where α = x, y, z. Because
the radius of the coupling tube is directly related to the inter-
site coupling coefficient, here we use the radius rα to represent
the coupling coefficient γα for simplicity in the following.
In the full-wave simulation, the cubic lattice consists of 10
× 10 × 10 unit cells. All the spherical cavities are identical
with the radius r = 25 mm. All the coupling tubes have the
same length of l = 60 mm. The intersite coupling coefficients
are γx = γy = 3 mm and γz ∈ [2.7, 3.3] mm. In the excited
primitive cell, the excitation sound pressures are set to be
pB = pC = 1/2 and pD ∈ [−2, 0] (in an arbitrary unit). The
excitation frequency f = 150 Hz. From Fig. 3(b), we find
that the energy ratio Eunit/Esys reaches unity at a singularity
point. Figure 3(c) quantitatively shows the changes of energy
ratio Eunit/Esys with respect to the excitation pressure pD. The
results show that the singularity point occurs in the isotropic
cubic lattice, where the coupling coefficients γx = γy = γz

and the excitation pressure pD = −1, in agreement with the
theoretical analysis. Additionally, it indicates the existence
of flat-band bound states. From Eq. (6), we can know that
the generations of flat-band states are only related to the
excitation sound pressures and coupling coefficients, which
are frequency independent. In Figs. 3(d)–3(f), we verify the
perfect localizations of flat-band states at different frequencies
of 150, 250, and 350 Hz. In numerical simulations, the cubic
lattice consists of 4 × 4 × 4 unit cells. All the spherical
cavities are identical with the radius r = 25 mm. All the cou-
pling channels have the same radius of rx = ry = rz = 3 mm
and the length of l = 60 mm. The excitation pressures are set
to be pA = 0, pB = pC = 1/2, and pD = −1 in the chosen
primitive cell, which satisfies the condition of flat-band state
excitation.

Under the same flat-band state excitation and by changing
the excitation frequency, we find that the flat-band state is not
always localized in the chosen primitive cell. In Fig. 4, we
show the delocalization of flat-band states. Figure 4(a) shows
the changing relation of the energy ratio Eunit/Esys versus
the sphere radius and excitation frequency. From Fig. 4(a),
we can clearly see that the energy ratio Eunit/Esys → 0 at
some specific excitation frequencies, which indicates the
flat-band states are delocalized and spread into the whole
cubic lattice. Besides that, we find that the delocalization
frequency is inversely proportional to the sphere radius. A
quantitative analysis of the energy ratio versus the excitation
frequency is shown in Fig. 4(b), where the magenta line,
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FIG. 4. (a) The energy ratio Eunit/Esys versus the sphere radius and the excitation frequency, where the cubic lattice is isotropic and
the initial excitation state is a flat-band state. (b) A quantitative analysis of the energy ratio versus the excitation frequency, where the
magenta line, the black line, and the blue line correspond to r = 24, 25, and 26 mm, respectively. (c) The band structure of the designed cubic
lattice along � → X → M → R → � in the first Brillouin zone. In the simulation, the cubic lattice is isotropic with the sphere radius being
r = 24, 25, and 26 mm, respectively.

the black line, and the blue line correspond to the cases of
r = 24, 25, and 26 mm, respectively. The singularity points of
Eunit/Esys → 0 locate at around 184, 195, and 207 Hz for the
three cases, with the full width at half maximum (FWHM)
of dips being below 0.5 Hz, which correspond to the flat-band
frequencies of designed cubic lattices in Fig. 4(c). In the band-
structure calculations of Fig. 4(c), the wave number k only
takes the values along � → X → M → R → � in the first
Brillouin zone. By comparing Fig. 4(c) with Fig. 2(d), the on-
site potential of the cubic lattice is closely related to the sphere
radius, where the finite size induces a band gap in Fig. 4(c).
Thus, from Figs. 3 and 4, we find that, when the excitation
frequency deviates from the flat-band frequency of the cubic
lattice, the flat-band states are well localized in the chosen
primitive cell. As shown in Figs. 3(d)–3(f), at the frequen-
cies of 150, 250, and 350 Hz, the excited modes separately
locate in the lower bulk band, the band gap, and the upper
bulk band of the cubic lattice [the black line in Fig. 4(c)].
When the excitation frequency hits the flat-band frequency
of the cubic lattice, the flat-band states are changed to be
extensively spreading or diffusing in the cubic lattice due to
the resonance energy transfer among primitive cells [38–40].
Featured with the ultrasensitivity to the wave frequency, the
localization and delocalization of flat-band states are ex-
pected to have important applications in acoustic sensing and
switching.

III. SIMULATION AND EXPERIMENTAL RESULTS

In this section, we show the simulation and experimental
results of the sound wave propagation in the cubic lattices,
where the spherical cavity radius r = 25 mm, the coupling
tube radii γx = γy = γz = 3 mm, and the tube length l =
60 mm. In Fig. 5(a), we show the dispersive propagation of
bulk mode, where the excitation is imposed in the center prim-
itive cell with the excitation pressures pA = 0, pB = pC =
1/2, and pD = 1, and the excitation frequency f = 150 Hz.
In this case, the acoustic wave is not localized, because the
occupation probabilities of dispersive band vectors u1(k) and
u4(k) are nonzero [c1,4 �= 0 in Eq. (6)]. Similarly, according to

Eq. (6), we can construct a flat-band state on condition that the
excitation sound pressures are pA = 0, pB = pC = −1/2, and
pD = 1. Since the excitation frequency (150 Hz) is not equal
to the flat-band frequency (≈195 Hz) of the designed cubic
lattice, the flat-band state is a bound state that is completely
localized in the center primitive cell, as shown in Fig. 5(b).
It is worth noting that the flat-band bound state can be not
only localized in the center primitive cell but also in any
primitive cell of the cubic lattice. In Appendix C, we show
the other types of flat-band bound states, which include 11
elementary flat-band bound states in one primitive cell and
some composite flat-band bound states. When we set the
excitation frequency (195 Hz) to be close to the flat-band
frequency (≈195 Hz) of the designed cubic lattice, resonance
energy transfer of the flat-band state will occur among multi-
ple primitive cells. In this case, the flat-band state is actually
a diffusive one. In Fig. 5(c), we show the delocalization of
the flat-band state, where the acoustic energy is spreading into
the whole cubic lattice. In addition, according to the theorem
of superposition, we can construct a composite flat-band state
by superposing two or more elementary flat-band states. It is
the same for the case of elementary flat-band states, where we
can analyze the localization and delocalization of the com-
posite flat-band states by changing the excitation frequency.
Figures 5(d) and 5(e) show the localization of the composite
flat-band state. In Fig. 5(d), we give the schematic of two
adjacent primitive cells, where each site is marked by a site in-
dex. Figure 5(e) shows that a composite flat-band bound state
comprises two out-of-phase modes in Fig. 5(b), where the
acoustic wave is effectively localized in the excited primitive
cells. In full-wave simulations, the excitation sound pressures
are set to be pA = 0 for sites A, pB1 = pB2 = pB3 = pB4 =
1/2 and pB5 = pB6 = pB7 = pB8 = −1/2 for sites B, pC1 =
pC2 = 1/2, pC3 = pC4 = 0, and pC5 = pC6 = −1/2 for sites
C, and pD1 = pD2 = −1, pD3 = pD4 = 0, and pD5 = pD6 = 1
for sites D. The excitation frequency f = 150 Hz, which is
different from the resonance frequency of the designed cubic
lattice.

We further experimentally demonstrated the localization
and delocalization of the flat-band states. The fabricated
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FIG. 5. The simulation results of the normalized sound pressure distributions for (a) the dispersive bulk state, (b) the flat-band bound state,
and (c) the flat-band diffusion state. (d) A schematic of two adjacent primitive cells, where each site has a marked site index. (e) Normalized
sound pressure distribution of the composite flat-band bound state, which is the superposition of two out-of-phase flat-band modes in (b).

sample of the designed cubic lattice is shown in Fig. 6(a),
which has 4 × 5 × 4 unit cells. The hollow aluminum alloy
spheres were processed by the numerically controlled ma-
chine tools (accuracy ∼0.05 mm). The inner diameter of the
spherical cavity is 50 mm. The inner diameter and length of
coupling tubes are 6 and 60 mm, respectively. The sample
was anchored on the optical platform holder. In Fig. 6(b),
we demonstrate the propagation of dispersive bulk mode in
experiments, where we use the same excitation condition as
the one in Fig. 5(a). In experiments, 12 speakers were placed
in the selected spherical cavities and driven by the multi-
functional signal generator (Tektronix AFG3022C) in phase.
Besides that, we also used the power amplifiers (AOSIBAO
A8 HIFI) to control the excitation sound pressures of the
12 speakers. Sound intensities in the spherical cavities were
measured by inserting a microphone (1/8-in. Brüel & Kjær
4138-A-015) into the perforated holes. All the data were
recorded by the Brüel & Kjær 3160-A-042 4-channel ana-
lyzer. The sampling time of data was set to be 1 s in the
measurement. The frequency response was obtained with the
fast Fourier transform analysis of Brüel & Kjær PULSE soft-
ware LabShop. Figure 6(c) experimentally demonstrates the
localization of flat-band state, where the excitation condition
is the same as the case in Fig. 5(b). In this case, since the
initial excitation state is a flat-band state and the excitation
frequency deviates from the flat-band frequency of the lattice,
the sound energy is perfectly localized in the excited primitive
cell. Specifically, the measured sound intensities are IB1 =
85 849 mPa2, IB2 = 66 049 mPa2, IB3 = 62 500 mPa2, IB4 =
72 361 mPa2, IC1 = 64 516 mPa2, IC2 = 81 796 mPa2, IC3 =
66 564 mPa2, IC4 = 56 644 mPa2, ID1 = 294 849 mPa2, ID2 =
266 256 mPa2, ID3 = 274 576 mPa2, and ID4 = 299 209 mPa2

in the excited primitive cell. The measured intensities in other
sites are below 1000 mPa2. The site indices can be referred to
in Fig. 3(a). Under the same excitation in Fig. 6(c), we show
the relation of Elkge with respect to the excitation frequency in
Fig. 6(d), where the red dots and the blue line represent the
experiment and simulation results, respectively. Here, Elkge

denotes the normalized leaky energy from the excited prim-
itive cell, which can be calculated by summing the intensities
of all spherical cavities except for the ones in the excited cell.
When the excitation frequency is 196 Hz, the leaky energy of
the flat-band state reaches the maximum in experiments. The
quality factor for the delocalization of the flat-band state is
related to the FWHM of the leaky energy peak in Fig. 6(d).
The measured and simulated FWHMs are about 10 and 0.5
Hz, respectively. It should be pointed out that, in experiments,
the excitation frequency interval is 5 Hz in the ranges of
150–190 and 210–250 Hz, while the interval is 1 Hz in the
range of 190–210 Hz for better characterizing the peak. With
the flat-band excitation condition, we experimentally verified
the delocalization of flat-band state by tuning the excitation
frequency into 196 Hz, as shown in Fig. 6(e). The result
shows that the normalized sound intensities are not localized
in the excited cell but are spreading into the whole lattice.
We experimentally verified the localization of the composite
flat-band state in Fig. 6(f), where the normalized sound in-
tensities are confined in the two adjacent cells. In this case,
the measured sound intensities are IB1 = 77 841 mPa2, IB2 =
74 529 mPa2, IB3 = 73 441 mPa2, IB4 = 63 504 mPa2, IB5 =
76 176 mPa2, IB6 = 61 504 mPa2, IB7 = 78 400 mPa2, IB8 =
65 025 mPa2, IC1 = 66 049 mPa2, IC2 = 54 289 mPa2, IC5 =
93 636 mPa2, IC6 = 52 900 mPa2, ID1 = 248 004 mPa2, ID2 =
247 009 mPa2, ID5 = 245 025 mPa2, and ID6 = 263 169 mPa2
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FIG. 6. (a) The fabricated sample. (b) The measured sound intensity distribution of the dispersive bulk state. (c) The measured sound
intensity distribution of a flat-band bound state. (d) The relation of the normalized leaky energy Elkge with respect to the change of
excitation frequencies. The red dots and blue line represent the experiment and simulation results, respectively. (e) The measured sound
intensity distribution of a flat-band diffusive state. (f) The measured sound intensity distribution of a composite flat-band bound state. All the
experimental results are normalized.

in the excited cells. The measured intensities in other sites
are below 1000 mPa2. The site indices can be referred to in
Fig. 5(d). Here the excitation condition in Fig. 6(f) is the same
as the one in Fig. 5(e). In Appendix C, we also experimentally
demonstrate the localization of other complicated composite
flat-band states.

IV. CONCLUSIONS

In conclusion, we theoretically and experimentally investi-
gate the localization and delocalization of the flat-band states
in the designed cubic lattice with four sites per one unit cell.
The flat-band states can be realized by setting the excitation
sound pressures and the coupling coefficients, which are fre-
quency independent. Under the flat-band state excitation, the
sound wave can be either localized or delocalized, which is
determined by the excitation frequency. When the excitation
frequency hits the flat-band frequency of the cubic lattice, the
flat-band state is spreading into the whole cubic lattice due
to the resonance energy transfer among primitive cells. When
the excitation frequency is tuned to deviate from the flat-band
frequency, the flat-band state can be perfectly localized in
any primitive cell of the cubic lattice. Moreover, we demon-
strate more complicated flat-band bound states by superposing
different elementary flat-band bound states in multiple prim-
itive cells. Comparing with the Anderson localization, the
construction of the flat-band bound state does not need the
introduction of disorder into the periodic cubic lattice. Also,
different from the defect states and the topologically protected
states, the excitation frequency of the flat-band bound state is

not limited to a finite range, which takes the values both in
band gaps and in continuous bulk bands of the lattice. If the
excitation frequency of the flat-band bound state locates inside
the bulk band, it can be regarded as a BIC-like state. However,
in this case, the realization of the BIC-like state requires that
the excitation frequency deviates from the frequency of flat-
band state of the lattice. Our results shed light on the wave
dynamics of higher dimensional bound states, which provides
a unique scheme for controlling sound in 3D networks and
could be useful for realizing new functionalities and cavity
designs based on 3D BICs.
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APPENDIX A: DERIVATION OF BULK
MOMENTUM-SPACE HAMILTONIAN

As discussed in the Sec. II, the tight-binding bulk Hamilto-
nian of the designed cubic lattice can be expressed as Eq. (1)
in the Wannier-state representation. Meanwhile, based on
the theorem of tensor products, the Wannier state can also
be expressed as |(l, m, n), α〉 = |l, m, n〉 ⊗ |α〉 ∈ Hexternal ⊗
Hinternal. Under such tensor representation, the internal de-
grees of the lattice are separated from the external one. Thus,
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the systematic bulk Hamiltonian Eq. (1) becomes

H =
∑
l,m,n

∑
α

[εα|l, m, n〉〈l, m, n| ⊗ |α〉〈α|] +
∑
l,m,n

[γx(|l, m, n〉〈l, m, n| ⊗ |B〉〈A| + |l + 1, m, n〉〈l, m, n| ⊗ |A〉〈B|)

+ γy(|l, m, n〉〈l, m, n| ⊗ |C〉〈A| + |l, m + 1, n〉〈l, m, n| ⊗ |A〉〈C|)
+ γz(|l, m, n〉〈l, m, n| ⊗ |D〉〈A| + |l, m, n + 1〉〈l, m, n| ⊗ |A〉〈D|) + H.c.]. (A1)

By performing the Fourier transform to the external degree of freedom of the lattice, we have

|k〉 = 1√
N

∑
l,m,n

ei(lkx+mky+nkz )|l, m, n〉. (A2)

By plugging Eq. (A2) into Eq. (A1), we can thus obtain the bulk momentum-space Hamiltonian H (k) as

H (k) = 〈k|H |k〉

= 1√
N

∑
l ′,m′,n′

e−i(l ′kx+m′ky+n′kz )〈l ′, m′, n′|
{∑

l,m,n

∑
α

(εα|l, m, n〉〈l, m, n| ⊗ |α〉〈α|) +
∑
l,m,n

[γx(|l, m, n〉〈l, m, n|

⊗ |B〉〈A| + |l + 1, m, n〉〈l, m, n| ⊗ |A〉〈B|)+γy(|l, m, n〉〈l, m, n| ⊗ |C〉〈A| + |l, m + 1, n〉〈l, m, n| ⊗ |A〉〈C|)

+ γz(|l, m, n〉〈l, m, n| ⊗ |D〉〈A| + |l, m, n + 1〉〈l, m, n| ⊗ |A〉〈D|) + H.c.]

}
1√
N

∑
l ′′,m′′,n′′

ei(l ′′kx+m′′ky+n′′kz )|l ′′, m′′, n′′〉

=
∑

α

εα|α〉〈α| + γx(|A〉〈B| + e−ikx |A〉〈B| + |B〉〈A| + eikx |B〉〈A|)+γy(|A〉〈C| + eiky |A〉〈C| + |C〉〈A| + e−iky |C〉〈A|)

+ γz(|A〉〈D| + eikz |A〉〈D| + |D〉〈A| + e−ikz |D〉〈A|). (A3)

From Eq. (A3), we know that, under the basis states {|A〉, |B〉, |C〉, |D〉} with the given wave number k, the bulk momentum-
space Hamiltonian of the lattice can be expressed in a 4 × 4 matrix of

H (k) =

⎛
⎜⎜⎜⎝

εA γx(1 + e−ikx ) γy(1 + e−iky ) γz(1 + e−ikz )

γx(1 + eikx ) εB 0 0

γy(1 + eiky ) 0 εC 0
γz(1 + eikz ) 0 0 εD

⎞
⎟⎟⎟⎠. (A4)

APPENDIX B: CONSTRUCTION OF
THE FLAT-BAND STATES

From Appendix A, we conclude that the Hamiltonian
of the cubic lattice system can be expressed by either the
real/Wannier representation or the momentum/Bloch repre-
sentation. In the same way, the transient state function |ψ〉
of the system can be separately expanded by the basic states
|l, m, n〉 ⊗ |α〉 and |k〉 ⊗ |α〉 in both Wannier representation
and Bloch representation.

|ψ〉 =
∑

lmn,α

Clmn,α|l, m, n〉 ⊗ |α〉, (B1a)

|ψ〉 =
∑
k,α

Ck,α|k〉 ⊗ |α〉, (B1b)

where Clmn,α and Ck,α are the occupation probabilities of the
Wannier states |l, m, n〉 ⊗ |α〉 and the Bloch states |k〉 ⊗ |α〉,
respectively. For example, when the site A1 in Fig. 3(a) is
excited by the sound pressure pA1 , the excitation state |ψA1〉
can be expressed under the Wannier representation as∣∣ψA1

〉 = pA1 |l0, m0, n0〉 ⊗ |A〉. (B2)

However, for the Bloch representation, according to
the Fourier transform of |l0, m0, n0〉 = N −1/2∑

k
e−i(l0kx+m0ky+n0kz )|k〉, the excitation state |ψA1〉 is

∣∣ψA1

〉 = 1√
N

∑
k

pA1 e−i(l0kx+m0ky+n0kz )|k〉 ⊗ |A〉, (B3)

where the unit-cell index of site A1 is (l0, m0, n0). From
Eq. (B3), when the site A2 in Fig. 3(a) is excited by the acous-
tic pressure pA2 , the excitation state |ψA2〉 can be expressed as

∣∣ψA2

〉 = 1√
N

∑
k

pA2 e−i[(l0+1)kx+m0ky+n0kz]|k〉 ⊗ |A〉, (B4)

where the unit-cell index of site A2 is (l0 + 1, m0, n0). Since
sites A1 and A2 have the different unit-cell indices, the
excitation state |ψA2〉 thus has an additional phase factor e−ikx

in comparison to the excitation state |ψA1〉. Similarly, we can
obtain the excitation states at other sites in turn. When all the
sites in Fig. 3(a) are excited simultaneously, the excitation
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FIG. 7. The simulations on elementary flat-band bound states, where the sound pressures are normalized with respect to their maxima,
respectively.

state |ψ0〉 can be expressed as

|ψ0〉 = 1√
N

∑
k

e−iϕ
[(

pA1 + pA2 e−ikx + pA3 e−ikx−iky + pA4 e−iky
)|k〉 ⊗ |A〉 + (

pA5 e−ikz + pA6 e−ikx−ikz

+ pA7 e−ikx−iky−ikz + pA8 e−iky−ikz
)|k〉 ⊗ |A〉 + (

pB1 + pB2 e−ikz + pB3 e−iky−ikz + pB4 e−iky
)|k〉 ⊗ |B〉

+ (
pC1 + pC2 e−ikx + pC3 e−ikx−ikz + pC4 e−ikz

)|k〉 ⊗ |C〉 + (
pD1 + pD2 e−ikx + pD3 e−ikx−iky + pD4 e−iky

)|k〉 ⊗ |D〉], (B5)

where the phase ϕ = l0kx + m0ky + n0kz.
From Eq. (B5), to construct a flat-band state, we assume that the excitation sound pressures pA1 = pA2 = pA3 =

pA4 = pA5 = pA6 = pA7 = pA8 = 0 for the A sites, pB1 = pB2 = pB3 = pB4 = pB for the B sites, pC1 = pC2 = pC3 = pC4 =
pC for the C sites, and pD1 = pD2 = pD3 = pD4 = pD for the D sites. Finally, the excitation state |ψ0〉 in Eq. (B5) is
simplified to

|ψ0〉 = 1√
N

∑
k

e−iϕ[pB(1 + e−iky )(1 + e−ikz )|k〉 ⊗ |B〉 + pC(1 + e−ikx )(1 + e−ikz )|k〉 ⊗ |C〉

+ pD(1 + e−ikx )(1 + e−iky )|k〉 ⊗ |D〉]. (B6)
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FIG. 8. The simulations on different composite flat-band bound states, where the sound pressures are normalized with respect to their
maxima, respectively.

At any given wave number k, by projecting Eq. (B6) into the band-vector space {u1(k), u2(k), u3(k), u4(k)} in Eq. (4), we will
obtain the occupation probabilities of dispersive band vectors u1(k) and u4(k) as

c1,4 = 〈u1,4 | ψ0〉

= 1√
2

(
∓1,

γx(1 + e−ikx )

ε
,
γy(1 + e−iky )

ε
,
γz(1 + e−ikz )

ε

)⎡
⎢⎢⎢⎣

0

pB(1 + e−iky )(1 + e−ikz )

pC(1 + e−ikx )(1 + e−ikz )

pD(1 + e−ikx )(1 + e−iky )

⎤
⎥⎥⎥⎦

= (1 + e−ikx )(1 + e−iky )(1 + e−ikz )√
2ε

(pBγx + pCγy + pDγz ). (B7)

APPENDIX C: SIMULATION AND EXPERIMENTS
ON COMPOSITE FLAT-BAND STATES

In this part, we show the simulation and experiment results
on the composite flat-band states. The structural parameters
are the same as those in Fig. 5. In Fig. 7, the chosen excitation
primitive cells locate at the centers of the designed cubic
lattices. The excitation frequency f = 150 Hz. To analyze
the excitation state in a convenient manner, the excitation
primitive cells are expanded into 2D planes as shown at the
top of every subfigure, where “0” and “π” denote that the
excitation modes are out of phase. “+” and “–” indicate that

the acoustic pressures are in-phase and out-of-phase excited.
The results in Fig. 7 show that there exist 11 elementary
flat-band bound states in total with different sound pressure
distributions in a primitive cell. Here the mode 9 is actu-
ally the flat-band bound state that is discussed in Figs. 3(d)
and 5(b).

Figure 8 shows the simulated sound pressure distributions
of eight composite flat-band bound states. It should be men-
tioned that the composite flat-band bound states can be easily
constructed by superposing a number of elementary flat-band
bound states in Fig. 7. In Fig. 8, T1 denotes that the flat-band
bound state is translated by one primitive cell. Rα denotes
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FIG. 9. The experimental results on different composite flat-band bound states, where the sound intensities are normalized with respect to
their maxima, respectively. The excitation frequencies are 100 Hz in (a) and 150 Hz in (b)–(e).

that the flat-band bound state is rotated by 90 ° around the
α axis. Figure 9 shows the measured normalized intensity

distributions corresponding to some chosen cases in Figs. 7
and 8.
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