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Peak effect in a superconductor/normal-metal strip in a vortex-free state
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We theoretically predict that the critical current Ic and magnetization M of a hybrid superconductor/normal-
metal (SN) strip may have nonmonotonous dependence on a perpendicular magnetic field—so-called peak
effect. In contrast to familiar peak effect, which is connected either with vortex entry to the superconductor
or with peculiarities of vortex pinning, the found phenomenon exists at low fields, in the vortex-free (Meissner)
phase. We argue that the effect appears at specific parameters of the studied hybrid structure when its in-plane
current-supervelocity relation has two maxima. We expect that the same peak effect may exist in two-band
superconductors (like MgB2) where similar current-supervelocity dependence was predicted at low temperatures.
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The influence of a perpendicular magnetic field H on trans-
port properties of type-II superconductors has been the subject
of numerous studies. Usually, the critical current Ic of bulk
superconductors is determined mainly by pinning of vortices
on defects, and it monotonically decreases with increasing H .
However, in conventional low-Tc superconductors, a peak in
Ic(H ) just below the upper critical field Hc2 has been observed
(see, for example, Refs. [1–3]). The peak in Ic(H ) is also
accompanied by a peak in the dependence of magnetization M
on H , and this phenomenon is called the peak effect. The peak
effect near Hc2 is explained by a softening of the vortex lattice
[4,5]. Also, the peak was discovered significantly below Hc2

both in the low-Tc [6,7] and high-Tc superconductors [8,9].
The origin of this type of peak is explained by the transition
from a quasi-ordered vortex lattice to an amorphous vortex
glass state.

In a homogeneous superconducting strip, the critical cur-
rent could be determined not by the bulk pinning of vortices
but by the edge barrier for their entrance [10–13]. Usually, the
effect of the edge barrier is pronounced in a thin strip/bridge
with thickness dS less than the London magnetic field penetra-
tion depth λ and at relatively low magnetic fields when there
is no dense vortex lattice [13–16]. In a relatively narrow strip
(with width W � � = λ2/dS), one may observe a peak in
Ic(H ) near the field for the first vortex entry [16–18] (the same
peak has been observed in thin Pb/In and Nb strips placed in a
parallel magnetic field [19,20]). It originates from the entrance
of the vortex row at some field which does not exit the strip,
and it prevents subsequent vortex entry [21]. It is interesting
that competition of the bulk pinning and edge barrier also may
lead, at some parameters, to the peak effect at low magnetic
fields, as it was predicted in Ref. [22].

Here, we argue that the peak in Ic(H ) and M(H ) may arise
even in the vortex-free state. Below, we show that it could
be realized, for example, in a hybrid superconductor/normal-
metal (SN) thin strip with a large ratio of resistivities of S
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and N layers ρS/ρN � 1 in the normal state. In Ref. [23], it
has been shown that dependence of the superconducting sheet
current density Js (in an ordinary S strip Js = jsdS, where js
is a superconducting current density) on supervelocity vs or
supermomentum h̄q = h̄(∇ϕ + 2πA/�0) ∼ vs (here, ϕ is the
phase of the superconducting order parameter, and A is the
vector potential) may have two maxima at low temperature.
The first maximum at small q is connected with suppression of
the proximity-induced superconductivity in the N layer, while
the second maximum at large q comes from suppression of
superconductivity in the S layer. The predicted dependence
is rather different from Js(q) of an ordinary one-band super-
conductor, which has only one maximum, but it resembles
the dependence Js(q) for two-band superconductors [24,25].
In that case, different maxima correspond to destruction of
superconductivity in different bands.

Our model system is shown in Fig. 1. The SN strip with
width W has two layers: a superconducting one with thick-
ness dS and the normal-metal layer with thickness dN. In
calculations, we use one- (1D) and two-dimensional (2D)
Usadel equations for normal g = cos� and anomalous f =
sin� exp(iϕ) quasiclassical Green functions, assuming that
angle � depends only on x and y and the length of the SN strip
L → ∞ (equations and details of the model are presented in
the Appendix and could be found in Ref. [23]). Our model
cannot consider vortex states, so we consider here only the
Meissner (vortex-free) state. We consider a narrow strip with
width smaller than the magnetic field penetration depth � of
the single S layer to neglect the contribution of screening
currents to the vector potential which we choose as: A =
(0, 0, Hy). In our model, we assume that current reaches the
critical value when q(y = W/2) = qc, where q(y) = ∇ϕ +
2πA(y)/�0 (∇ϕ(y) = const.), and qc is the critical value of q
corresponding to the reaching depairing current density at the
edge. This condition corresponds to instability of the Meissner
state with respect to vortex entry [26].

To find Ic(H ), we numerically solve either 1D or 2D
Usadel equations (see Appendix). In the 1D model, we split
the SN strip into filaments with width ξc and assume that
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FIG. 1. Sketch of superconductor/normal-metal (SN) strip with
transport current I and placed in perpendicular magnetic field H .

Js(y) = ∫
js(x, y)dx = ∫

js[x, q(y)]dx = Js[q(y)] (q depends
on the y coordinate of the filament) and may be found from
the solution of the 1D Usadel equation (in this case, � has
dependence only on the x coordinate). Then we calculate Ic =∫

Js[q(y)]dy. In the 2D model, we solve the 2D Usadel equa-
tion with given q(y) and find Ic = ∫

js(x, y)dxdy (� depends
both on x and y). The difference between these approaches is
that, in the 1D model, we neglect the proximity effect between
adjacent filaments which brings the difference between Js(y)
and Js[q(y)]. We expect that the filament model gives quan-
titatively correct results when W � ξN = √

h̄DN/kBT [27],
where DN is a diffusion coefficient in the N layer.

In calculations, we normalize lengths in units of ξc =√
h̄DS/kBTc0, where Tc0 is the critical temperature, and DS

is the diffusion coefficient of S layer. Sheet current density
Js is normalized in units of depairing sheet current density
Jdep(0) = Idep(0)/dS of the S layer at T = 0, and the magnetic
field is measured in units of Hs = �0/2πW ξc (this field is
about the first vortex entry field [12,13] to the strip at I =
0). We choose a ratio of resistivities (diffusion coefficients)
ρS/ρN = DN/DS = 100 which corresponds to NbN, NbTiN,
MoN, or MoSi as a superconductor and Ag, Cu, or Au as a
normal metal.

In Fig. 2(a), we show temperature evolution of |Js|(q) (it
was found from the solution of the 1D Usadel equation) which
is used for calculation of the critical current in the filaments
model. With decreasing temperature, the dependence |Js|(q)
transforms from the ordinary one (with one maximum) to
the dependence with two maxima located at q = qc1 and q =
qc2 (note qualitative similarity with |Js|(q) for the two-band
superconductor MgB2 [24,25]). The first maximum comes
from the suppression of proximity-induced superconductivity
in the N layer, where qc = qc1 ∝ √

1/DN. The second max-
imum comes from the suppression of superconductivity in
the S layer, where qc = qc2 ∝ √

1/DS � qc1. The increase
of the amplitude of the first maximum at low temperatures
is explained by the enhancement of the proximity-induced
superconductivity while the strength of the intrinsic supercon-
ductivity in the S layer is already saturated, and the amplitude
of the second maximum weakly depends on temperature at
low T. As it is discussed in Ref. [23], such an evolution in
Js(q) should lead to the kink on dependence Ic(T ) at low T
[when |Js|(qc1) becomes larger than |Js|(qc2)]. The same kink
is also predicted in Refs. [24,25] for MgB2, and it is caused
by the similar change of Js(q) with temperature.

FIG. 2. (a) Dependence of the amplitude of sheet superconduct-
ing current density Js on q in a superconductor/normal-metal (SN)
strip calculated at different temperatures T in the one-dimensional
(1D) Usadel model. (b) Calculated Ic(H ) of a SN strip at different
T (filaments model). (c) Calculated Ic(H ) in filaments and two-
dimensional (2D) Usadel models at T = 0.2Tc0. In the inset, we show
the spatial distribution of q(y) over the SN strip at different fields
marked by numbers 1–3. The SN strip has the following parameters:
dS = 2ξc, dN = 4ξc, and ρS/ρN = 100.

The dependence Ic(H ) [see Fig. 2(b)] changes with the
temperature according to transformation of Js(q). Indeed, the
external magnetic field changes the distribution of q across
the strip [see inset in Fig. 2(c)]. When the width of the SN
strip is much larger than ξN, one may assume that local Js(y)
is determined only by local q(y). With increasing magnetic
field, q decreases in the strip (except at the edge y = W/2),
and it leads to monotonous decrease of |Js| and critical current
Ic = ∫

Jsdy when dependence |Js|(q) has only one maximum.
However, with decreasing temperature, the additional maxi-
mum appears at low q. At first, it leads to flattening of Ic(H )
[see Fig. 2(b) at T = 0.2Tc0] because of flattening of Js(q).
When the height of the first maximum becomes larger than
the second one, the dependence Ic(H ) changes drastically [see
Fig. 2(b) at T = 0.1 Tc0]. At low fields, Ic drops fast with
increase of H because of much smaller value of q(W/2) =
qc = qc1 � qc2. At some field [marked by Hsw in Fig. 2(b)],
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FIG. 3. The magnetization curves of the superconductor/
normal-metal (SN) strip calculated in the two-dimensional (2D)
model at different temperatures. Magnetization M is measured in
units of M0 = �0/2πξ 2

c . In the inset, we show the distribution q(y)
over the SN strip at T = 0.1Tc0 and different fields marked by
numbers 1–3. The SN strip has the width W = 80ξc, and the other
parameters are as in Fig. 2.

the SN strip transit to the state with larger q(W/2) = qc = qc2

because, in this case, the SN strip may carry larger critical
current [28]. At H > Hsw, the peak in Ic(H ) appears which is
a consequence of the first maximum in |Js|(q).

At some magnetic field, q and Js(q) change the sign at y =
−W/2. It means that vortices which enter at opposite edges
(y = W/2) cannot exit the SN strip. In an ordinary S strip, it
leads to the peak in Ic(H ) [21,29]. We expect similar behavior
in the SN strip too. Because vortex states cannot be described
by the used model, we are bounded by the field qc2�0/2πW
at which q(−W/2) = 0.

The above discussed features could be seen only for suffi-
ciently wide strips. In a relatively narrow strip with W � ξN,
the proximity effect from the adjacent regions plays an impor-
tant role, and nonmonotonous behavior is smeared out [see
Fig. 2(c)].

It is known that, in the ordinary superconductors, the peak
in Ic(H ) is followed by the peak in the magnetization curve
M(H ) (or vice versa). In the SN strip, we also find the peak
in M(H ) = ∫∫

[r × js]dxdy/[2c(dS + dN)W ] (see Fig. 3). In
contrast to the ordinary peak effect, the peaks are located
at different fields for Ic(H ) and M(H ) dependencies. The
reason for this is the following. In absence of the current,
the evolution of q(y) with increasing of H is different to
the situation with current I = Ic(H ) [see inset in Fig. 3—in
this case, q(y) = 2πA(y)/�0]. It results in larger screening
currents at low fields than at high H (at T = 0.1Tc0), and the
peak is located at a lower field. Here, we stop calculations at
the magnetic field H = �0qc2/(πW ) when |q(±W/2)| = qc2,
and we expect vortex entrance to the SN strip.

We believe that the same effect should exist in an
SS′ bilayer where S′ is a superconductor which has a
large diffusion coefficient (low resistivity in the normal
state, for example, Al, Pb, or Sn). Due to large DS′ , the

superconductivity in the S′ layer should be destroyed at
smaller q, and the current-supervelocity dependence will have
two maxima at proper choice of dS, dS′ , and temperature.
Because qualitatively similar Js(q) dependence was predicted
for the two-band superconductor MgB2 (see Refs. [24,25]), a
peak or plateau in Ic(H ) should be observed in a MgB2 thin
strip at fields �qc2�0/2πW . However, an important condition
for experimental observation of the predicted effect is ap-
proaching of Ic(H = 0) to the depairing current of SN, SS′ or
MgB2. The easiest critical current about Idep could be probably
reached in the SN system as it has been demonstrated recently
for the MoN/Cu strip [27]. However, in MgB2 strips/bridges,
depairing current has not been reached yet. In Refs. [30–32],
Ic � 15–30% of the depairing current was claimed, which
is not large enough for observation of the predicted peak
effect.

To conclude, we hope that the experimental observation of
the peak or plateau on Ic(H ) and/or M(H ) dependencies at
low fields would indirectly confirm existence of two peaks in
Js(q) dependence in SN, SS′ hybrid structures or many-band
superconducting materials.
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APPENDIX: USADEL MODEL

To calculate the superconducting properties of the SN strip,
we use the Usadel model for normal g = cos� and anomalous
f = sin� exp(iϕ) quasiclassical Green functions inside both
S and N layers. We neglect the dependence of � on the longi-
tudinal coordinate z since the length of the SN strip L → ∞
and the system is uniform in this direction. Therefore, we use
the 1D Usadel equation:

h̄D

2

∂2�

∂x2
−

(
h̄ωn + h̄D

2
q2 cos �

)
sin � + � cos � = 0,

(A1)
and the 2D Usadel equation:

h̄D

2

(
∂2�

∂x2
+ ∂2�

∂y2

)
−

(
h̄ωn + h̄D

2
q2 cos �

)
sin �

+� cos � = 0. (A2)

Here, D is a diffusion coefficient (D = DS and D = DN

in superconducting and normal layers, respectively), h̄ωn =
πkBT (2n + 1) are the Matsubara frequencies (n is an inte-
ger), and � is the superconducting order parameter, which
is nonzero only in the S layer. Coordinate axes are pre-
sented in Fig. 1. Here, � should satisfy the self-consistency
equation:

� ln
( T

Tc0

)
= 2πkBT

∑
ωn>0

(
sin �S − �

h̄ωn

)
, (A3)
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where Tc0 is the critical temperature of a single S layer in the
absence of magnetic field. Equations (A1) and (A2) are sup-
plemented by the Kupriyanov-Lukichev boundary conditions
between layers [33] with fully transparent interfaces:

DS
d�S

dx

∣∣∣∣
x=dS−0

= DN
d�N

dx

∣∣∣∣
x=dS+0

.

On the interfaces between the system and vacuum, we use
d�/dn = 0.

The superconducting current density is calculated as

js(x, y) = 2πkBT

eρ
q

∑
ωn>0

sin2 �, (A4)

where ρ is the resistivity of the corresponding layer. To find
js(x, y), we numerically solve either Eq. (A1) or (A2) and
Eq. (A3). Equations are solved by an iteration procedure
using the Newton method combined with a tridiagonal ma-
trix algorithm. Obtained �(x, y) is inserted into Eq. (A3) to
find �, and then iterations repeat until the self-consistency is
achieved.
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