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Possible unconventional pairing in (Ca,Sr)3(Ir,Rh)4Sn13 superconductors revealed
by controlling disorder

E. H. Krenkel ,1,2 M. A. Tanatar ,1,2 M. Kończykowski ,3 R. Grasset ,3 E. I. Timmons ,1,2 S. Ghimire ,1,2

K. R. Joshi ,1,2 Y. Lee ,1 Liqin Ke ,1 Shuzhang Chen,4,5 C. Petrovic ,4,5 P. P. Orth ,1,2 M. S. Scheurer ,6

and R. Prozorov 1,2,*

1Ames Laboratory, Ames, Iowa 50011, USA
2Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA

3Laboratoire des Solides Irradiés, CEA/DRF/lRAMIS, École Polytechnique,
CNRS, Institut Polytechnique de Paris, F-91128 Palaiseau, France

4Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
5Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA

6Institute for Theoretical Physics, University of Innsbruck, Innsbruck A-6020, Austria

(Received 5 October 2021; revised 25 January 2022; accepted 25 February 2022; published 30 March 2022)

We study the evolution of temperature-dependent resistivity with added pointlike disorder induced by 2.5 MeV
electron irradiation in stoichiometric compositions of the “3-4-13” stannides, (Ca,Sr)3(Ir,Rh)4Sn13. Three of
these cubic compounds exhibit a proposed microscopic coexistence of charge density wave (CDW) order and
superconductivity (SC), while Ca3Rh4Sn13 does not develop CDW order. As expected, the CDW transition
temperature TCDW is universally suppressed by irradiation in all three compositions. The superconducting
transition temperature, Tc, behaves in a more complex manner. In Sr3Rh4Sn13, it increases initially in a way
consistent with a direct competition of CDW and SC, but quickly saturates at higher irradiation doses. In the
other three compounds, Tc is monotonically suppressed by irradiation. The strongest suppression is found in
Ca3Rh4Sn13, which does not have CDW order. We further examine this composition by measuring the London
penetration depth λ(T ), from which we derive the superfluid density. The result unambiguously points to a
weak-coupling, full single gap, isotropic superconducting state. Therefore we must explain two seemingly
incompatible experimental observations: a single isotropic superconducting gap and a significant suppression
of Tc by nonmagnetic disorder. We conduct a quantitative theoretical analysis based on a generalized Anderson
theorem which points to an unconventional multiband s+−-pairing state where the sign of the order parameter is
different on one (or a small subset) of the smaller Fermi surface sheets but remains isotropic and overall fully
gapped.

DOI: 10.1103/PhysRevB.105.094521

I. INTRODUCTION

Extensive studies over the past few decades have iden-
tified a number of characteristics that are common in
unconventional superconductors. First, unconventional super-
conductivity (SC) often develops in cooperation, competition,
or close proximity to other electronic long-range orders.
Second, non-Fermi-liquid behavior is often observed in the
normal state around the superconducting “dome.” This behav-
ior can be associated with proximity to a putative quantum
critical point (QCP) inside the dome [1–9]. A QCP occurs
when a continuous second-order phase transition is driven
at T = 0 by a nonthermal parameter, such as composition
[10–12], pressure [1,13,14], magnetic field [15–17], or dis-
order [2,18–20]. It has been suggested that the fluctuations
of the coexisting order parameter may act as a “glue” for
Cooper pairing of conduction electrons [1,3,5,9,13]. This ap-
proach is actively discussed for high − Tc cuprates [4,5,7,21],
heavy-fermion materials [3,14], and it is particularly relevant

*Corresponding author: prozorov@ameslab.gov

in iron based superconductors where there is a significant
range of microscopic coexistence of antiferromagnetic and
superconducting phases [8,9,22–28].

In most known cases, the order parameter tuned to a QCP
is spin-density wave (SDW). However, charge-density wave
(CDW) ordering is another candidate if it can be continuously
suppressed [29–31]. While pressure or magnetic field tuning
is particularly useful for singular compositions, it is desirable
to find superconducting systems tuneable through QCP by
doping, allowing for a wider range of different types of mea-
surements. Unfortunately, in most known CDW/SC systems,
CDW ordering appears only in single compositions.

A CDW is formed when electronic energy is suffi-
ciently lowered by opening an energy gap on parts of
the Fermi surface [32–34]. Usually this leads to the for-
mation of a spatially-modulated charge-density state. In a
one-dimensional case, a straightforward nesting determines
the modulation wave vector [32], as observed in one-
dimensional organic materials [34,35]. In two-dimensional
systems such as transition metal dichalcogenides, 2H-NbSe2

[36], 2H-TaSe2 [37], and 2H-TaS2 [38], the nesting mecha-
nism is not so obvious. It is even more complicated in three
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dimensions, such as our 3-4-13 cubic practically isotropic
compounds.

The charge density wave in Remeika 3-4-13 series [39]
was studied by a variety of the techniques, and has a number
of anomalous features. Modulation of the crystal lattice with
the wave vector q = (1/2, 1/2, 0) was found in Ca3Ir4Sn13

[40] and Sr3Ir4Sn13 [41], which does not seem to correspond
to nesting conditions. Similarly, in Sr3Rh4Sn13 computational
mode decomposition has revealed the same q vector (1/2,
1/2, 0) [30]. In a closely structurally related compound
Yb3Co4Ge13, charge density modulation was found to depend
on sample stoichiometry [42]. The EXAFS phase derivative
analysis supports the CDW-like formation by revealing differ-
ent bond distances between two tin sites [Sn1(2)-Sn2] below
and above TCDW in the (110) plane in Sr3Ir4Sn13 [43]. XANES
spectra at the Ir L3-edge and Sn K edge demonstrated an
increase (decrease) in the unoccupied (occupied) density of
Ir 5d-derived states and a nearly constant density of Sn 5p-
derived states. A close relationship was suggested to exist
between local electronic and atomic structures and the CDW-
like phase in the Sr3Ir4Sn13 single crystal [43].

Inelastic neutron scattering data point towards a displacive
structural transition in the Ca3Ir4Sn13 compound arising from
the softening of a low-energy phonon mode with an energy
gap of � = 120 K [40]. Softening of the acoustic phonon
modes was also suggested by ultrafast spectroscopy study in
Sr3Ir4Sn13 revealing also a correlation of optical phonons with
the CDW transition [44]. Reduction of the magnetic suscepti-
bility and a sign change of the Hall resistivity could be due to
transformation of the Fermi surface below TCDW in Ca3Ir4Sn13

and Sr3Ir4Sn13 [45]. This conclusion is supported by optical
reflection study [46] and by the anomalies in the NMR Knight
shift [47]. Splitting of the nuclear magnetic resonance (NMR)
lines in the CDW phase imply local distortions of the Sn2
icosahedra [47]. On the other hand, the detailed structure of
Remeika series compounds may be much more complicated
than usually assumed primitive cubic cell [48–50].

The influences of different structural models on the calcu-
lated electronic structures of some 3-4-13 compounds were
discussed in Ref. [51]. Furthermore, unconventional character
of CDW and second order phase transition have been found by
x-ray structural studies in a related to this work compositions,
(La,Ce)3(Ir,Rh)4Sn13 [52]. Various mechanisms of CDW for-
mation in these materials are suggested [53]. Importantly,
the 3-4-13 compounds, specifically (Ca,Sr)3(Ir,Rh)4Sn13

seem to exhibit a putative QCP under the dome of
superconductivity [29].

Here we study the influence of controlled disorder on CDW
and superconductivity in 3-4-13 superconductors, to uncover
the connection between the two quantum orders and the na-
ture of the superconducting state. Intuitively, the opening of
the CDW gap should decrease the density of states at the
Fermi surface and thus lower the superconducting transition
temperature in materials where CDW and superconductiv-
ity coexist [54]. This is indeed frequently observed [55].
In the YBa2CuO6−δ , the CDW transition is enhanced when
superconductivity is suppressed by magnetic field, and the
superconducting transition temperature increases when CDW
ordering is suppressed with pressure [56]. In the transition
metal dichalcogenides, 2H-NbSe2, 2H-TaS2, and 2H-TaSe2,

FIG. 1. (a) Combined phase diagram of 3-4-13 compounds
as determined from the measurements of (CaxSr1−x )3Rh4Sn13

(bottom axis, cross symbols) [29] and (CaxSr1−x )3Ir4Sn13 (top
axis, square symbols) systems [30]. The phase diagram for
(CaxSr1−x )3(Rh, Ir)4Sn13 was mapped using a combination of dop-
ing and pressure. The positions of the samples used in this study
are shown by yellow-red stars. (b) Temperature-dependent resistivity
of (Sr, Ca)3(Rh, Ir)4Sn13 samples selected for electron irradiation in
this study. The inset zooms at the superconducting transition.

2.5 meV electron irradiation experiments suggested that long-
range ordered CDW directly competes with SC so that
superconducting transition temperature, Tc, increases with the
introduction of disorder [18]. However, this simple competi-
tion between CDW and SC is only part of the story. Further
irradiation experiments showed that as soon as the long-range
CDW order breaks down above approximately 6 × 1018 elec-
trons per cm2, Tc starts to decrease rapidly, initially in a step
like fashion [20]. This implies that CDW also helps super-
conductivity which benefits from softening of the phonon
modes due to long-range CDW order [20]. Phonon soften-
ing near the TCDW transition is also observed in Sr3Ir4Sn13

[44], Sr3Rh4Sn13 [57], and Ca3Ir4Sn13 [40]. Furthermore, later
studies of 2H-NbSe2 showed that in systems with electron-
phonon pairing mechanism, the largest superconducting gaps
occur in the regions of the Fermi surface connected by the
CDW nesting vector [58].

The 3-4-13 family of compounds is well-suited for study-
ing the relationship between CDW and superconductivity.
Their CDW transition can be tuned through a broad range
of temperatures by the selection of different elements or
by the application of pressure. The suppression of CDW
ordering extrapolates to a region where the resistivity ex-
hibits non-Fermi liquid behavior, suggesting the existence of
a QCP in the phase diagram. This QCP was first discovered
in (CaxSr1−x )3Ir4Sn13 compounds at the pressure of about
20 kbar [30], and was later found to be accessible via doping
in the (CaxSr1−x )3Rh4Sn13 series at around x = 0.9 [29,57].
The structural nature of the QCP was confirmed using x-ray
diffraction, showing the continuation of the CDW ordering
inside of the superconducting dome [31]. The summary phase
diagram as determined from these measurements, with the
location of our samples marked, is shown in Fig. 1(a).
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Experimentally, it is determined that CDW materials ex-
hibit mostly conventional electron-phonon mechanism of
superconductivity [59]. In the 3-4-13 compounds most stud-
ies, including this work, are consistent with a single isotropic
gap weak-coupling superconductivity. Thermal conductivity
measurements of Ca3Ir4Sn13 found a vanishing residual lin-
ear term and a weak increase with applied magnetic field,
consistent with a full gap with small or no anisotropy [60].
Heat capacity measurements show exponential decrease at
low temperatures [61] and a linear magnetic field dependence
[62], which also agree with a full-gap superconducting state.
Temperature dependence of the London penetration depth,
λ(T ), determined from lower critical field measurements [45]
as well as this work discussed later in the text provide strong
evidence of a fully gaped superconducting state. Even more so
we found a perfect agreement of the data with λ(T ), expected
from the weak-coupling isotropic BCS theory, parameter-
free, both close to T → 0 and in the full temperature
range.

On the other hand, an apparent enhancement of the elec-
tronic specific-heat jump at Tc in Sr3Ir4Sn13 and Sr3Rh4Sn13

was interpreted as a sign of a strong-coupling nature of super-
conductivity in these compounds [63]. Furthermore, there are
signs of strong coupling superconductivity in heat capacity
measurements around the QCP region [64–67], which could
also be due to the contribution of critical quantum fluctua-
tions. Muon-spin rotation (μSR) experiments under pressure
find that the superfluid density strongly increases when the
system is tuned closer to the QCP in Ca3Ir4Sn13 [66]. While
μSR measurements of both Ca3Ir4Sn13 [68] and Sr3Ir4Sn13

[69] agree with a single isotropic gap, they also could not
rule out possible two-gap superconductivity with two very
different gaps on different Fermi surface sheets. The same
group discusses possible multiband physics from NMR [70].
We note that in 2D CDW/SC 2H-NbSe2, angle-resolved pho-
toemission spectroscopy (ARPES) [71], thermal conductivity
[72] and London penetration depth [73] measurements found
strong evidence for multigap superconductivity. In Sr3Ir4Sn13,
possible importance of multiband effects was identified in
electronic band-structure study where at least four sheets of
the Fermi surface with sizes differing by a factor of nearly 20
were found [74].

Regarding the superconducting gap(s) anisotropy, most
measurements are consistent with a fully gapped isotropic
superconducting state described by a weak-coupling Bardeen-
Cooper-Schrieffer (BCS) theory [75], which is natural for a
phonon-mediated attractive pairing potential. In the case of
SDW antiferromagnetic fluctuations as in the cuprates, a sign-
changing d-wave pairing is favored [76]. In the present case
of CDW/SC compounds, the pairing type is an open question
and our present work strongly suggests a possibility of an
unconventional multiband s+−-pairing state where the sign of
the order parameter is different on one (or a small subset) of
the smaller Fermi surface sheets, but remains isotropic and
overall fully gapped. Such a state will manifest itself only
in select experiments, such as the response to a nonmagnetic
disorder. On a general note, there is currently significant re-
vived interest in superconductivity in seemingly conventional
compounds, such as elemental niobium where the response
to disorder has helped to reveal anisotropic strong-coupling

superconductivity [77], or in the case of a Dirac semimetal
from our earlier work [78].

It should be noted that thermodynamic measurements are
not sensitive to the sign of the order parameter. On the other
hand, studying the variation of Tc when changing the non
spin-flip (non magnetic) scattering rate is a phase-sensitive
method that provides insights into the nature of the order
parameter and pairing mechanisms [78,79]. In the well-known
limit of an isotropic single-band s-wave superconductor, Tc

is not affected by weak nonmagnetic disorder, known as the
“Anderson theorem” [80,81]. In a stark contrast, the transition
temperature in materials with anisotropic gap(s) [77,82,83], or
sign-changing d-wave superconductivity in the cuprates [84],
as well as s+− pairing states in iron-based superconductors
[85], is strongly affected by nonmagnetic disorder. A gen-
eralized treatment extending the original Abrikosov-Gor’kov
theory [81] for anisotropic order parameters is given by
Openov [86,87], and it can be easily extended to a multiband
case with different gap amplitudes [88]. In multiband and
multiorbital systems, particularly in the presence of spin-orbit
coupling, the suppression of Tc is expected to be somewhere in
between these two limits [78,89–91]. Importantly, combined
with independent measurements of the superfluid density and
theoretical calculations that take into account particular crys-
tal and electronic structure, the evolution of Tc with disorder
is a powerful tool to extract important information about the
superconducting order parameter [77,78].

In this work, we use artificial pointlike disorder to study the
relationship between superconductivity and CDW ordering
in the stoichiometric compounds of the (Ca,Sr)3(Ir,Rh)4Sn13

“3-4-13” Remeika series. The low-temperature (20 K)
2.5 MeV electron irradiation produces vacancy-interstitials
“Frenkel pairs,” which leave a metastable population of
vacancies upon warming up to room temperature due to
very different rates of diffusion of vacancies and interstitials
[50,92,93]. This leads to a residual resistivity increase which
is monotonic with the irradiation dose, reflecting the increase
in the scattering rate. We find that in 3-4-13 compounds, the
CDW transition is universally suppressed by disorder. We also
observe a weak increase of the superconducting transition
temperature, Tc, in Sr3Rh4Sn13, and a nonlinear scattering-
rate dependence of Tc in Sr3Ir4Sn13 and Ca3Ir4Sn13. Contrary
to the expectations for conventional superconductivity, Tc is
rapidly suppressed with disorder in Ca3Rh4Sn13, which does
not exhibit any long-range CDW order. This behavior became
puzzling when precision London penetration depth measure-
ments found a full and isotropic single superconducting gap
in this compound. This apparent contradiction is resolved by a
detailed theoretical analysis of possible pairing states, which
provides strong argument in favor of unconventional multi-
band s+−-pairing state where the sign of the order parameter
is different on one (or a small subset) of the smaller Fermi sur-
face sheets, but remains overall fully-gapped. We note that the
influence of atomic defects produced by rapid quenching from
high temperatures in Ca3Rh4Sn13 was studied thirty years ago
using x-ray spectroscopy [50]. The observed reduction of Tc

[94] was attributed to the creation of Sn-Ca ions exchange
anti-sites. Unfortunately, no physical properties, for example
conductivity, were measured, hence the dimensionless scat-
tering rate was not determined. The authors of Ref. [50]
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speculated that Tc decreased due to the suppression of the
density of states at the Fermi level due to the disturbance of the
Ca-Ca bond length. However, we believe that it is more likely
that they dealt with the same unconventional mechanism as
proposed in our report here. As discussed below, our electron
irradiation creates roughly one atomic defect per thousand
formula units, which has no appreciable effect on the density
of states.

The paper is organized as follows: details of sample prepa-
ration and methods are provided in Sec. II. The experimental
results for all compounds can be found in Sec. III and the-
oretical analysis in Sec. IV. Finally, Sec. V summarizes our
findings.

II. EXPERIMENTAL METHODS

Single crystals of (Ca, Sr)3(Rh, Ir)4Sn13 were grown using
a high temperature self-flux method, as described in Ref. [62].
X-ray diffraction (XRD) data were taken with Cu Kα (λ =
0.15418 nm) radiation of a Rigaku Miniflex powder diffrac-
tometer, and the elemental analysis was performed using an
energy-dispersive x-ray spectroscopy (EDX) in a JEOL JSM-
6500 scanning electron microscope.

Electrical resistivity measurements were conducted in a
Quantum Design PPMS using a conventional four-probe
method. The contacts to the crystal surface were made by
soldering silver wires with tin [95,96]. The contact resistance
is below 100 μ�, and they are sufficiently mechanically sta-
ble to withstand electron irradiation [97]. The samples for
resistivity measurements were cut and polished from single
crystals, with typical sample sizes of (1–2)×0.3 × 0.1 mm3.
The long sample axis was arbitrary with respect to the cubic
structure of these crystals. Standard resistivity runs were made
on both cooling and heating, with negligible hysteresis.

The variation of the in-plane London penetration depth,
�λ(T ), was measured using a sensitive self-oscillating
tunnel-diode resonator (TDR) described in detail elsewhere
[98–101]. In brief, the TDR circuit resonates at approximately
14 MHz, and the frequency shift, which is proportional to
the sample magnetic susceptibility, is measured with preci-
sion better than one part per billion (ppb). The coefficient
of proportionality that includes the demagnetization correc-
tion is measured directly by pulling the sample out of the
resonator at base temperature [101]. This technique was de-
veloped specifically to detect minute changes in the London
penetration depth and is now considered one of the sensitive
tools for studying the anisotropy of the superconducting order
parameter [102–104]. We use this technique to determine the
superconducting gap structure, as well as to show that we do
not induce magnetic states with disorder, and that our crystals
are very homogeneous.

Pointlike disorder was introduced at the SIRIUS facility in
the Laboratoire des Solides Irradiés at École Polytechnique,
Palaiseau, France. Electrons accelerated in a pelletron-type
accelerator to 2.5 MeV knock out ions creating vacancy-
interstitial Frenkel pairs [92,93]. During irradiation the sample
is held in liquid hydrogen at around 20 K. The low-
temperature environment is needed not only to remove the
significant amount of heat produced by subrelativistic elec-
trons upon collisions, but also to prevent the immediate

TABLE I. Head-on knock out partial cross-sections by 2.5 MeV
electron irradiation (1 barn = 1 × 10−24 cm2). The last column
shows the number of defects created per formula unit, per 1 C/cm2.
Roughly 1 defect per 1000 formula units is created. This is suffi-
ciently close to the dilute limit to avoid significant compositional or
electronic change.

Sr/Ca Ir/Rh Sn total σ dpf×10−3

compound barn barn barn barn per 1 C/cm2

Sr3Ir4Sn13 139 261 148 181 1.13
Sr3Rh4Sn13 139 158 145 147 0.92
Ca3Ir4Sn13 79 258 145 177 1.11
Ca3Rh4Sn13 84 155 143 142 0.89

recombination and migration of produced atomic defects.
The acquired irradiation dose is determined by measuring
the total charge collected by a Faraday cage located behind
the sample. As such, the acquired dose is measured in the
“natural” units of C/cm2, which is equal to 1 C ≡ 1/e ≈
6.24 × 1018 electrons per cm2. Upon warming the sample
to room temperature, the interstitials, which have a lower
barrier of diffusion [92,93], migrate to various sinks (dislo-
cations, surfaces etc). This leaves a metastable population of
vacancies. The resultant vacancy density is determined by
the highest temperature the sample was exposed to. In most
materials, including 3-4-13, vacancies are stable as verified by
the transport measurements of the same samples years apart
and even if the density would slowly change, the resistivity
measurement provides a snapshot of the current scattering
rate in a particular sample. This is the pointlike disorder
discussed in this paper [105,106]. Practically, the level of
disorder induced by the irradiation is gauged experimentally
by the change of resistivity well above the CDW transition,
at the room temperature, where the carrier density is roughly
constant across all compositions and the only change in resis-
tivity comes from the difference in the residual resistivity. We
also calculated the number of defects per formula unit (dpf)
numerically using specialized “SECTE” software developed
in École Polytechnique (Palaiseau, France) specifically to de-
scribe ion-resolved knock-out cross-sections for MeV-range
electron irradiation. The summary of the results for our four
compositions is given in Table I. The first three columns
show partial cross-sections of the defects created upon head-
on collision of a 2.5 MeV electron with an indicated ion,
assuming the same value of the barrier for ion displacement
from its position, Ed = 25 eV. This is a “generic” number for
intermetallic compounds, usually in the range of tens of eV,
and it can be calculated using methods of molecular dynamics
[92,93]. However, its exact value is not very important for
our rough estimates. The fourth column shows the total cross-
section of knocking out any ion by using molecular weight
averaging of the partial cross-sections. The last column shows
the estimated number of defects per formula unit ignoring
possible annealing upon warming up after irradiation at 20 K.
The realistic percentage lost in that process varies from almost
no annealing to about 10%–30%, for example, measured by
in situ resistivity in iron pnictides [105]. Our SECTE calcula-
tions show that electron irradiation of the 3-4-13 compounds
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FIG. 2. Total knock-out cross-sections for studied compounds
as function of electron energy. Our operating energy of 2.5 MeV
is marked by a dotted line. The difference between Ca/Sr pairs is
negligible and is not large between Ir/Rh, being about 30 barn larger
for Ir compounds.

creates less than 1 defect of any kind per 1000 formula units,
which cannot alter the chemical or electronic nature of the
material. This also means that the defects are well-separated
and can be treated as pointlike in the dilute limit. This disorder
is much “softer” than that induced by rapid quenching from
high temperatures used in earlier experiments [50]. Impor-
tantly, electron irradiation does not “dope” the system as was
shown directly by Hall resistivity measurements [105]. In the
present case, even if there was some induced variation of
stoichiometry, Tc(x) of 3-4-13 compounds is practically flat
and could not result in the systematic shift observed. We note
that chemical inhomogeneity and disorder may lead to the
significant spread of Tc [107]. This, however, would change
the observed superfluid density from exponential to a power
law at low temperatures.

The comparison of the total cross-sections as function
of electron energy for the studied compounds is shown in
Fig. 2. There is practically negligible differences between
Ca-(Ir/Rh)-Sn and Sr-(Ir/Rh)-Sn compounds and quite small
differences between (Ca/Sr)-Ir-Sn and (Ca/Sr)-Rh-Sn, where
in Ir compounds the cross-sections are larger by about 30 barn.
The resulting numbers at our operating frequency of 2.5 MeV
are summarized in Table I.

In our experiments, the same physical samples were mea-
sured before and after electron irradiation, thus avoiding
uncertainties from possible variation of stoichiometry within
each batch, geometric factors and other parameters unique
to each sample. For most compositions, measurements were
performed on at least three samples to obtain as objective
results as possible, see Table II.

III. EXPERIMENTAL RESULTS

We now discuss the experimental results obtained in our
irradiation studies for the following compounds, ordered by

TABLE II. Parameters of studied compositions in the pristine
state, including CDW and superconducting transition temperatures,
and the resistivity at room temperature averaged over indicated num-
ber of samples, N .

compound TCDW (K) Tc (K) ρRT (μ� cm) N

Sr3Ir4Sn13 145.2 ± 0.5 5.11 ± 0.03 168 ± 29 3
Sr3Rh4Sn13 135.76 ± 0.14 4.59 ± 0.1 129 ± 17 9
Ca3Ir4Sn13 39.0 ± 0.59 7.17 ± 0.02 120 ± 16 3
Ca3Rh4Sn13 no CDW 8.29 ± 0.01 112 ± 3.87 3

a decreasing value of TCDW: Sr3Ir4Sn13 [A], Sr3Rh4Sn13 [B],
Ca3Ir4Sn13, [C] and Ca3Rh4Sn13 [D]. This way, we are mov-
ing from left to right towards and beyond the quantum critical
point in the generic phase diagram shown in Fig. 1(a). The
trend in the superconducting transition temperature, Tc, is
nonmonotonic in this sequence, with Sr3Rh4Sn13 having the
lowest transition at Tc = 4.2 K, and overall representing a typ-
ical for unconventional superconductors shallow “dome” of
superconductivity. The characteristic transition temperatures
and resistivity values at room temperature in the pristine state
were determined by averaging the measurements of multiple
samples as summarized in Table II.

The overall resistivity decreases with decreasing TCDW,
which is particularly obvious from the measurements on
the samples selected for electron irradiation, shown in
Fig. 1(b). That comparison also reveals similar slopes of the
temperature-dependent resistivity near room temperature. In
the full temperature range, the temperature dependence of
the resistivity, ρ(T ), is quite unusual. In all compounds, the
resistivity in the metallic phase, above TCDW, extrapolates
to a very high residual resistivity, similarly to the tantalum
dichalcogenides [108]. The resistivity “bump” when cross-
ing into the CDW phase (therefore, lowering carrier density,
hence increasing ρ) barely reaches 10% of the resistivity
value at TCDW, and a significant decrease in the resistivity is
observed on further cooling down to low temperatures. This
behavior suggests that the loss of the carrier density due to
the opening of the CDW gap is small, as would naturally be
expected for a three-dimensional CDW material. This is in
line with NMR measurements of Sr3Rh4Sn13, which found
that only approximately 13% of the total density of states is
lost in the CDW transition [109]. The very high values of
ρ obtained by linear extrapolation from high temperatures to
T = 0, and the quick loss of resistivity upon CDW ordering
suggest significant contribution of charge-disorder scattering,
similar to that suggested by Naito and Tanaka for the transition
metal dichalcogenides [110,111]. Interestingly, a similar type
of ρ(T ) behavior is observed in Ca3Rh4Sn13, in which long-
range CDW is not observed. This may be indicate that despite
the total suppression of the long-range CDW ordering in that
compound, short-range correlations may persist similarly to
the case of CDW suppression by disorder in 2H-NbSe2 [20]
and in doped ZrTe3 [112].

A. Sr3Ir4Sn13

The temperature dependent electrical resistivity for
Sr3Ir4Sn13 and its evolution with electron irradiation are
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FIG. 3. The evolution of temperature-dependent resistivity of
Sr3Ir4Sn13 in pristine (blue line) and after electron irradiation of
1.14 (yellow), and 4.4 C/cm2 (red). The green dashed line shows
the resistivity difference between the pristine and 4.4 C/cm2 curves,
finding the Matthiessen’s rule to be valid above TCDW, but, expect-
edly, grossly violated below. The small cartoon in the top left corner
indicates the sample’s position on the generic phase diagram. The
left inset shows the resistivity derivative dρ/dT in the vicinity of
the CDW transition, where the arrows show the positions of the
sharp features used to determine TCDW. The right inset zooms into
the region around the superconducting transition.

shown in the main panel of Fig. 3. The resistivity value for
the selected sample of Sr3Ir4Sn13 is in reasonable agreement
with previous reports of 120 μ� cm [62,65]. Irradiation shifts
the ρ(T ) curves upward at high temperatures, but they re-
main nearly parallel to each other above TCDW. This can be
seen in the plot of the difference between the two curves
�ρ = ρ(4.4 C/cm2) − ρ(0 C/cm2), which is shown as the
green line in Fig. 3. Matthiessen’s rule is largely obeyed above
the transition temperature, suggesting that we are in a normal
metallic state, albeit one with very high residual resistivity.
The minimum in the difference plot is caused by the shift
in the CDW transition temperature as irradiation disrupts the
long-range order. The suppression of that transition tempera-
ture is shown in the left inset via a plot of the derivative of the
resistivity dρ/dT with arrows indicating the location of TCDW.
The superconducting transition temperature is monotonically
suppressed with disorder, and sharpens after irradiation.

B. Sr3Rh4Sn13

In Sr3Rh4Sn13, similarly to Sr3Ir4Sn13, the CDW transition
is monotonically suppressed with the increase of disorder.
However, Sr3Rh4Sn13 is the only compound in which the
expected increase of the superconducting transition temper-
ature, Tc, with the suppression of CDW is actually observed.
The response of Tc to disorder is distinctly nonlinear, with a
significant initial increase which becomes smaller at higher
doses. Also, we found a larger variation of Tc between the
samples from the same batch when performed initial screen-
ing, suggesting that the superconducting state is sensitive to
disorder either directly or via the disruption of CDW order. It

FIG. 4. Temperature-dependent resistivity of Sr3Rh4Sn13 before
irradiation (blue curve), after 1.14 C/cm2 irradiation (yellow), and
after 4.44 C/cm2 (red) irradiations. The green dashed line shows the
resistivity difference between the pristine and 4.44 C/cm2 curves,
finding the Matthiessen rule valid above TCDW, but violated below.
The small cartoon in the top left corner indicates the sample position
on generic phase diagram. The left inset shows the derivative of
the resistivity in a region around the CDW transition with arrows
pointing to TCDW. This emphasizes the transition shift between the
pristine state and after 4.44 C/cm2 dose of irradiation. The right inset
zooms into a region around the superconducting transition showing
a nonmonotonic behavior of Tc: a small initial Tc increase after
1.14 C/cm2 irradiation, but only minimal changes in the behavior
between 1.14 and 4.44 C/cm2.

is possible that in Sr3Ir4Sn13 the incipient superconductivity is
too weak and Tc(x) is too shallow to show any response to the
suppressed CDW. In other words, CDW is too strong. Then
next in line, Sr3Rh4Sn13, has just right ratio of CDW and SC
phases strength to see the effect. Of course, the Tc is always
monotonically suppressed if CDW is not considered. The full
range of resistivity is shown for a selected representative sam-
ple in Fig. 4(b). Mattheissen’s rule is largely obeyed above the
CDW transition, similar to Sr3Ir4Sn13.

C. Ca3Ir4Sn13

Ca3Ir4Sn13 is the compound with the lowest TCDW. As
shown in Fig. 5, a clear feature in the temperature-dependent
resistivity is observed at ∼40 K in the pristine sample (arrow
in the derivative plot, left inset). It is also the closest CDW
composition to the structural quantum critical point. The sup-
pression of CDW with irradiation is clear for 2.17 C/cm2

irradiation. The transition feature in the derivative plot cannot
be resolved at 5.47 C/cm2, suggesting that the CDW order has
been completely suppressed. Similar to Sr3Ir4Sn13, but unlike
Sr3Rh4Sn13 increasing the disorder in this compound only de-
creases the superconducting transition temperature. Further-
more, unlike the Sr3(Ir,Rh)4Sn13 compounds, Matthiessen’s
rule is weakly violated in this material for all temperatures,
below and above TCDW. Matthiessen’s rule holds in good
metals, where the introduction of disorder affects only the
residual resistivity (scattering off the defects and impurities)

094521-6



POSSIBLE UNCONVENTIONAL PAIRING IN … PHYSICAL REVIEW B 105, 094521 (2022)

FIG. 5. Temperature-dependent resistivity of Ca3Ir4Sn13 before
irradiation (blue line), after receiving 2.17 C/cm2 of irradiation
(yellow line), and then an additional 3.3 C/cm2 for a total dose of
5.47 C/cm2 of electron irradiation. The green dashed line shows
the difference between the pristine and 5.47 C/cm2 curves, showing
deviation from Matthiessen’s rule below the transition temperature
TCDW. The small cartoon in the top left corner indicates sample
position on generic phase diagram. The left inset shows the derivative
of the resistivity showing suppression and blurring of the CDW phase
transition with irradiation. The right inset shows the shift in the
superconducting transition temperature.

and appears as a constant offset. Since the change of resistiv-
ity under increasing disorder in Ca3Ir4Sn13 is more complex
than just a constant offset, it may suggest the presence of a
short-range order consistent with the above discussion and
similarity with 2H-NbSe2 [20].

D. Ca3Rh4Sn13

Ca3Rh4Sn13 is our only compound which does not have a
long-range CDW ordering, and is positioned to the right of
the quantum critical point in the generic phase diagram in
Fig. 1(a). Still, the evolution of the temperature-dependent
resistivity with disorder, Fig. 6, reveals that Matthiessen’s
rule is conspicuously not obeyed in the “normal” state. Sim-
ilar to Sr3Ir4Sn13, this suggests that there is some other
type of (short-range) electronic order which is affected by
the introduction of pointlike disorder. One potential candi-
date is the residual short-range CDW order which persisted
across the QCP, as observed in 2H-NbSe2 [20]. We note that
second-order structural phase transition in a 3-4-13 family,
specifically (La,Ce)3Rh4Sn13, has been discussed in the con-
text of unconventional chiral CDW based on structural x-ray
studies [52].

The superconducting transition temperature in Ca3Rh4Sn13

is significantly affected by electron irradiation. Tc is sup-
pressed from Tc,0 = 8.2 K by more than 2 K after 2.1 C/cm2

of irradiation using the zero-resistance offset criterion, and
the transition broadens. Potential scattering is not expected
to suppress Tc in conventional isotropic single-band s-wave
superconductors, so we must consider the possibility of nodal

FIG. 6. Temperature-dependent resistivity of Ca3Rh4Sn13 in the
pristine state before irradiation (blue curve) and after 2.1 C/cm2

irradiation (red curve). The green dashed line shows the difference
between the curves, finding strong Matthiessen’s rule violation at
all temperatures above the superconducting transition. The small
cartoon in the top left corner indicates the position of the com-
pound on the generic phase diagram, (the most right) with no CDW
transition. The inset shows resistivity in the vicinity of the supercon-
ducting transition, revealing substantial Tc suppression by electron
irradiation.

superconductivity, or at least a strong variation of the super-
conducting gap magnitude on the Fermi surfaces. This will be
addressed in detail in the next section.

IV. DISCUSSION

The increase of a sample’s residual resistivity as a function
of irradiation dose is an intrinsic measure of the disorder
introduced by irradiation. However, because the resistivity in
the CDW state depends on the size of the gapped part of the
Fermi surface, which is compound-dependent, a direct com-
parison across chemical compositions is not very informative.
A better proxy for the quantification of the effect of disorder
across compounds is the resistivity in the metallic state above
TCDW. As can be seen from Fig. 1(b), the ρ(T ) curves for all
compounds are nearly parallel approaching room temperature,
and the overall resistivity variation does not exceed 30% or so.
The values of ρ(300 K ) are listed in Table II. This validates
the assumption of practically negligible differences in the
carrier density between the different compounds in the normal
state at elevated temperatures. By measuring the change in
the resistivity in the normal state, we can thus determine the
change in the disorder scattering. Combined with the numeri-
cal estimates of the defect density as described in Sec. II, these
measures allow for a direct comparison between different
samples.

A. Interplay of charge-density wave and superconductivity

In the following, we summarize critical temperatures ex-
tracted from Figs. 3–6 as a function of irradiation. Ideally,
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FIG. 7. (a) The evolution of the CDW transition temperature nor-
malized by the value before irradiation, TCDW/TCDW,0, and (b) similar
plot of the superconducting transition temperature normalized by the
value in pristine samples, Tc/Tc,0 with the induced disorder in units of
defects per formula unit (dpf), see text for details. The X and Y scales
on both graphs are the same for easy comparison. Note a significant
increase of Tc suppression in samples where CDW does not coexist
with superconductivity.

such summary plots would show the error bars in both X and
Y directions. However, it cannot be done in our case because
we did not measure many samples that would allow statistical
analysis. On the other hand, each critical temperature is deter-
mined with such precision that the corresponding uncertainty
error bar is smaller than the symbol size. This is also true
for estimating the X axis values that involve measured total
irradiation dose and residual resistivity.

Figure 7(a) shows the evolution of the CDW ordering
temperature, TCDW, with the defects per formula unit (dpf).
The observed dependence is striking. While the CDW is
suppressed at the same rate in Sr3(Ir,Rh)4Sn13 compounds,
the closer to QCP Ca3Ir4Sn13 shows a much larger sup-
pression rate. Intriguingly, this is the composition where the
Matthiessen’s rule is violated above the CDW transition, as
it is expected that quantum fluctuations affect the proper-
ties near QCP. A similar graph of the normalized Tc/Tc,0 in
Fig. 7(b) shows complex behavior. The rate of suppression
is similar in samples A and C, while Tc increases in sample
B. Such increase is expected when superconducting pairing
and charge-density wave inter-band interaction energies are
comparable and the enhancement of superconductivity due to
CDW suppression overweights the natural suppression of Tc

by disorder. For Ca3Rh4Sn13 which is away from CDW phase,
the suppression of Tc is dramatic, despite the fact that its Tc,0

is similar to B and C. Interestingly, and consistent with this
picture as soon as CDW is completely suppressed in sample C,
the Tc suppression becomes much faster and similar to sample
D. Our measurements establish that in 3-4-13 stannides, there
is a direct competition of CDW and superconductivity, in
addition to quantum fluctuations around QCP that affect even
normal-state properties. Of course, despite similarities, we are
dealing with four distinctly different compounds and some
unique structural and/or electronic features may certainly
contribute to the results.

B. Matthiessen’s rule

The temperature-dependent resistivity in the normal state
of the 3-4-13 system is anomalous and reveals notable
Matthiessen’s rule violations in the vicinity of the QCP, but
not too far away. Comparison of the four compounds finds
some similarity at high temperatures. At temperatures above
massive downturn in the resistivity on cooling, coinciding
with TCDW in Sr3Ir4Sn13 and Sr3Rh4Sn13, the ρ(T ) curves
extrapolate to quite high values in T = 0 limit. This feature
is known to be caused by spin-disorder scattering in magnetic
materials [113]. It is also observed above TCDW in tantalum
dichalcogenides, TaS2 and TaSe2 [110,111] and was sug-
gested to be scattering on charge fluctuations above the transi-
tion. In Ca3Ir4Sn13 and particularly strongly in Ca3Rh4Sn13,
the low-temperature downturn in ρ(T ) does not coincide
with long-range CDW ordering. This type of response may
be suggestive of the scenario realised in NbSe2 [20]. Here
long-range charge density wave ordering is suppressed with
irradiation, however short range ordering remains unaffected.

It is interesting to compare this behavior with another
fully gapped system where doping-dependent spin density
(SDW) wave coexists with superconductivity, for example
electron-doped Ba(Fe1−xCox )2As2 (BaCo122) [12,105]
and iso-electron-substituted iron-based superconductor
BaFe2(As1−xPx )2 [19], both showing proven SDW/QCP
under the dome of superconductivity [10–12]. In these
compounds, Matthiessen’s rule is obeyed near the QCP, as
well as it is in the cuprates, if the sample is not in the regime
of weak localization [84]. On the other hand, the observed
behavior of 3-4-13 bears some similarity to the hole doped
Ba1−xKxFe2As2 (BaK122) in which Matthiessen’s rule is also
strongly violated [105].

C. Dimensionless scattering rate

To put our data in a broader perspective, we compare the Tc

suppression rate in the 3-4-13 compounds with other known
cases. For this, we will use a dimensionless scattering rate
defined as [78,106]

γ λ = h̄�τ−1

2πkBTc,0
= h̄

2πkBμ0

�ρ0

λ2
clean(0)Tc,0

. (1)

Here, �ρ0 is the change of the residual resistivity after irra-
diation compared to the pristine state value, and λclean(0) is
the zero temperature penetration depth in the pristine sam-
ple. Note that we obtained �ρ0 by extrapolation to T = 0.
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FIG. 8. Normalized suppression of the superconducting transi-
tion temperature, Tc/Tc0, as function of the dimensionless scattering
rate γ λ evaluated from resistivity and London penetration depth,
λ(0) using Eq. (1). To set the scale, grey dashed line shows the
predictions of Abrikosov-Gor’kov theory for a line-nodal d-wave
superconductor with nonmagnetic impurities [81,86,87]. Purple stars
are experimental data for the nodal iron-based superconductor
BaFe2(As1−xPx )2 [10], red-yellow squares are for the superconduct-
ing Dirac semimetal PdTe2 [78], maroon cross-pentagons are for
CDW superconductor 2H-NbSe2 [20]. The data for 3-4-13 com-
pounds are shown by red rhombi for Ca3Rh4Sn13, blue squares for
Ca3Ir4Sn13, yellow-blue circles for Sr3Rh4Sn13 and yellow triangles
for Sr3Ir4Sn13.

Inserting the dimensional constants and using units of μ�cm
for �ρ0, 10−7 m for the penetration depth λclean(0), and K for
Tc,0, Eq. (1) takes the form γ λ = 0.97�ρ0/(λ2

clean(0)Tc,0).
To arrive at Eq. (1) we used the simple Drude model

for resistivity, ρ = m∗/(ne2τ ), and the London model for
the penetration depth, λ2

clean(0) = m∗/(μ0ne2) [114] (see also
Appendix D of Ref. [78]). Note that we have used that
the superfluid density equals the total carrier density at
zero temperature. This allows expressing the (change of
the) normal-metal scattering time via measurable parame-
ters, �τ−1 = �ρ0/μ0λ

2
clean(0). We note that λclean(0) and the

normal-state scattering time, τ , do not depend on parameters
of superconductivity and Eq. (1) can thus be used for different
gap symmetries.

Now we can compare the results of 3-4-14 stannides
with various theoretical expectations as well as other su-
perconductors in which the effect of disorder was studied.
Figure 8 shows normalized Tc suppression for our four sys-
tems as a function of γ λ. The data are compared with nodal
s± BaFe2(As1−xPx )2, [115], Dirac semimetal PdTe2 [78],
and CDW superconductor 2H-NbSe2 [20]. The expectation
from the Abrikosov-Gor’kov theory for a single-band d-
wave superconductor with nonmagnetic scattering [81,86,87],
shown by the dashed line, provides the scale for the largest
suppression rate possible. While in three CDW/SC 3-4-13
compounds, it can be argued that anything is possible due to
cooperation and/or competition between these two quantum
orders, the significant Tc suppression rate in Ca3Rh4Sn13 is

FIG. 9. (Main) Superfluid density in Ca3Rh4Sn13 calculated from
the London penetration depth, λ(T ), measured using the tunnel-
diode resonator technique. The thick orange line shows standard
isotropic s-wave BCS behavior, while the dashed line shows the ex-
pectation for a nodal d-wave order parameter. The lower inset shows
a BCS fit of �λ(T ) to the single-gap expression shown. The only
fitting parameter was λ(0) = 330 nm, while the Tc and the weak-
coupling gap ratio, �0/Tc = 1.764 was fixed. The obtained λ(0) =
330 nm was used to construct the ρs(T ) = (1 + �λ(T )/λ(0))−2

shown in the main panel. The upper inset shows the sharp transition
of our high-quality sample and λ(Tc ) consistent with the expected
skin depth of the normal state.

shown to be intermediate between nodal and nodeless super-
conductors. In fact, it is comparable to the Tc suppression
rate in the nodeless sign-changing s+− state of the optimally
doped Ba(Fe1−xRux )2As2 [106], and is significantly higher
than that of a two-gap s++ 2H-NbSe2 after the suppression of
CDW order. This relatively high Tc suppression rate naturally
raises questions about the superconducting gap structure of
Ca3Rh4Sn13 and to get an insight into the momentum de-
pendence of the order parameter, we measured the London
penetration depth in Ca3Rh4Sn13.

D. London penetration depth of Ca3Rh4Sn13

To examine the anisotropy of the energy gap, we used
a sensitive tunnel-diode resonator technique, described in
the experimental methods, Sec. II, to measure the low-
temperature variation of the London penetration depth in
Ca3Rh4Sn13. Figure 9 shows the variation of the superfluid
density, ρs = λ2(0)/λ2(T ), calculated from the measured
variation of the London penetration depth, �λ(T ) = λ(T ) −
λ(0), over the whole temperature range. This is important to
detect possible signatures of two-gap superconductivity. The
top right inset in Fig. 9 shows a full-range variation of �λ(T )
and the lower left inset zooms on the characteristic low-
temperature range, approximately T < Tc/3, where the order
parameter amplitude is practically constant and any changes
in λ(T ) come from the quasiparticles generated due to angular
variation of the gap function. The red line in the bottom-left
inset shows an excellent fit to the isotropic single-gap s-wave
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function with λ(0) = 330 nm and �0/kBTc = 1.764. There
are no reported measurements of λ(0) in Ca3Rh4Sn13, how-
ever μSR measurements report λ(0) = 291 nm in Sr3Ir4Sn13

[69] and λ(0) = 351 nm in Ca3Ir4Sn13 [68]; so our mea-
surement is perfectly in range considering that λ(0) is a
normal-state property that depends only on the parameters
of electronic band-structure. The superfluid density calcu-
lated from the obtained λ(T ) = λ(0) + �λ(T ) (main panel,
symbols) is in very good agreement with the parameter-free
prediction for an isotropic full-gap s-wave superconducting
state (main panel, thick orange line). For comparison, the
expectation for a d-wave superconductor is shown by the
dashed line. This nearly perfect and robust agreement with
the simplest isotropic BCS is at odds with the significant
rate of the disorder-induced reduction of the Tc. As we show
below, these conclusions are impossible to reconcile without
invoking unconventional pairing in Ca3Rh4Sn13.

Measurements of λ(T ) allow us to address the question of
whether the defects induced by electron irradiation become
magnetic. In principle, nonmagnetic ions may become mag-
netic when their ionization changes. Such magnetic defects
can cause pair-breaking due to spin-flip scattering, resulting
in a Tc suppression even in isotropic s-wave fully-gapped
superconductors [81,86,87]. Our precision measurements of
the London penetration depth in this system exclude this
scenario. Due to the sensitivity of these measurements, even
a minute paramagnetic signal coming from magnetic defects
would be detected. In particular, in the presence of magnetic
impurities, the London penetration depth estimated from the
magnetic susceptibility measurements (such as tunnel-diode
resonator) is renormalized as λm(T ) = √

μ(T )λ(T ), where
λ(T ) is the London penetration depth of a superconduct-
ing sample without magnetic impurities and μ(T ) is the
normal-state magnetic permeability due to dilute noninter-
acting magnetic moments (ions, impurities, etc). We refer to
Ref. [116], which shows what the measured penetration depth
looks like when this effect is relevant. Here we do not see
any trace of the paramagnetic upturn expected if we had mag-
netic impurities. From the concentration of defects induced
by irradiation, which is up to 5 × 10−3 dpf, the volume of
the conventional unit cell (9.7 Å)3, one obtains with Z = 2
formulas for the concentration of defects in conventional units
nd ≈ 1 × 1025 m−3. Now we can evaluate the Curie constant.
Assuming the simplest case, that each scattering center is a
two-level system with the magnetic moment of one Bohr mag-
neton, μ = μB = 9.27 × 10−24 J/T. With the estimated nd we
obtain, C = μ0ndμ

2
B/kB ≈ 7.8 × 10−5 K. This is a very small

number even for such a large moment. It gives a correction
to our penetration depth, λ(0) = 330 nm, of approximately
�λ(0.4 K) ≈ 0.32 Å at the minimum temperature of 0.4 K.
This is a negligible correction. Of course, when T → 0, it
will grow large, but in this paper we are mostly examining
what happens at Tc, and such a dilute system will not be
able to shift Tc in any appreciable way. If for some reason
the magnetic moment is larger or more defects are generated,
the measurements of London penetration depth are capable of
resolving subnanometer variation and would pick up such a
signal. We can therefore say with confidence that magnetism
of the defects induced by electron irradiation does not play a
role in the obtained results.

Finally, together with a very sharp resistive and magnetic
transitions in pristine sample, the behavior of λ(T ) also rules
out possible chemical and structural inhomogeneities that
were shown to lead to a significant spread of the observed Tc

in polycrystalline Ca3Rh4Sn13 [107].

E. Candidate pairing states for Ca3Rh4Sn13

Since Ca3Rh4Sn13 does not exhibit a transition into a
CDW phase, the normal state symmetries out of which su-
perconductivity emerges are expected to be those of the
room-temperature symmetry group of the 3-4-13 series—the
space group Pm3̄n (No. 223) with associated point group Oh;
this is confirmed by XRD measurements [117]. Both in the
literature and in our measurements, there are no indications
of multiple consecutive superconducting transitions. There-
fore we can use the irreducible representations (IRs) of the
normal-state symmetry group [118] to classify the supercon-
ducting order parameters. In the absence of magnetic fields,
it is further natural to assume that the pairing order parameter
transforms trivially under lattice translations and we can focus
on the IRs of the point group Oh. Note that the involved
atoms are moderately heavy and we thus expect spin-orbit
coupling to be sufficiently strong such that the symmetries of
Oh should be thought of as acting on the spatial coordinates
(three-dimensional momentum k) and spin simultaneously.

Since Oh contains inversion, i, all bands are doubly-
degenerate despite the presence of spin-orbit coupling. We
label the degeneracy with a pseudospin quantum number.
Another consequence of i ∈ Oh is that all IRs decay into even,
g, and odd, u, representations under i, associated with pseu-
dospin singlet and triplet. For each μ = g, u, Oh has two 1D
IRs, A1μ and A2μ, one 2D IR, Eμ, and two 3D IRs, T1μ and T2μ,
leading to a total number of 10 IRs. This gives rise to a large
number (26) of possible pairing states [118]. However, most
of these states necessarily have nodes which is not consistent
with the observed temperature dependence of the penetration
depth in Fig. 9. As summarized in Table III, only six states
are left that can be fully gapped. When specifying the super-
conducting order parameter, �k, in Table III, we focus on
generic momenta on the Fermi surfaces without additional
degeneracies between different bands. Therefore �k can be
taken to be a 2 × 2 matrix in pseudospin-space, which we
have expanded in terms of Pauli matrices σ j in Table III.

These six candidate states can be further divided into two
categories: (i) four states that will be fully gapped right below
Tc since their primary order parameters are associated with a
full gap: these are the regular BCS s-wave, spin singlet state,
transforming under A1g, a helical triplet (A1u), and two triplets
transforming under Eu and T2u, respectively; (ii) two states
where the primary order parameter has line nodes but which,
once nonzero, can induce secondary superconducting orders
that have a full gap: these are two singlets, one transforming
under Eg and one under T2g.

The states (ii) are not consistent with experiment for the
following reasons: they will have line nodes in a finite range
below Tc, which together with the temperature-dependent
admixture of a secondary order parameter, is generically
expected to lead to a more unconventional temperature de-
pendence of the penetration depth than what is seen in Fig. 9.
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TABLE III. Possible fully gapped pairing states for Ca3Rh4Sn13 as constrained by the point group Oh. The first four states above the
horizontal line can be fully gapped right below the superconducting critical temperature Tc. The two states below the horizontal line exhibit
line nodes right below Tc but can, in principle, be fully gapped at sufficiently low T . The column dn denotes the dimensionality of the IR and
the column TRS states whether the pairing state has time-reversal symmetry. We use the short-hand notation X = Xk, Y = Yk, Z = Zk to denote
real-valued Brillouin-zone-periodic functions that transform as x, y, and z under Oh. We also indicate the ratio of the maximal to minimal value
of the superconducting gap, �max/�min, for an isotropic Fermi surface around k = 0 and with (X,Y, Z ) = (kx, ky, kz ). As discussed in the text,
only the states of “type” (ia) are natural candidates consistent with the temperature dependence of the superfluid density in Fig. 9.

IR pairing dn TRS order parameter �kiσy �max/�min type

A1g s wave 1 � a + b(X 2 + Y 2 + Z2) 1 (ia)
A1u p wave 1 � Xσx + Y σy + Zσz 1 (ia)
Eu eu(0,1) wave 2 � 2Zσz − Xσx − Y σy 2 (ib)
T2u t2u(1,1,1) wave 3 � (Y + Z )σx + (X + Z )σy + (X + Y )σz 2 (ib)

Eg eg(0,1) wave 2 � 2Z2 − X 2 − Y 2 ∞ (line nodes) (ii)
T2g t2g(1,1,1) wave 3 � Y Z + ZX + XY ∞ (line nodes) (ii)

Further, the admixture of the secondary component has to
be extremely large to not only remove the nodes but also
lead to an approximately isotropic gap function (see also
Appendix A 1).

Among the remaining four states of type (i) in Table III, we
can further distinguish between (ia) states that can have a fully
isotropic gap function and (ib) states which are, by symmetry,
forced to have a momentum-dependent order parameter that
generically leads to a significantly momentum-dependent gap.
The ratio of the maximum to minimum gap size, �max/�min,
on the Fermi surface is expected to be of the order of 2 for the
(ib) states. Based on the penetration-depth data, the (ia) states
thus seem more natural candidates. We therefore focus for the
following analysis of the irradiation data on the A1g singlet
and A1u triplet states.

F. Constraints on pairing from sensitivity to disorder scattering

To quantitatively analyze the measured impact of impu-
rities on Tc in Ca3Rh4Sn13, we use the general expression
derived in Ref. [78] for the sensitivity parameter ζ that de-
scribes the disorder-induced reduction of the superconducting
critical temperature according to

Tc,0 − Tc(τ−1)

Tc,0
∼ π

4Tc,0
τ−1 ζ . (2)

This expression holds in the limit of weak scattering rates,
τ−1 → 0, where ζ corresponds to the linear slope of the Tc

reduction as a function of τ−1. With the normalization in
Eq. (2), we have ζ = 1 for magnetic impurities in a single-
band, isotropic, spin-singlet superconductor and ζ = 1/2 for
a single-band d-wave superconductor in the presence of
nonmagnetic impurities (see grey dashed line in Fig. 8). Com-
parison of the slopes in Fig. 8 allows to extract ζ ≈ 1/9 for
our Ca3Rh4Sn13 sample. Reference [78] related ζ for a general
superconductor and a general form of disorder to a (properly
normalized) Frobenius norm of the commutator appearing in
the generalized Anderson theorem of Refs. [119,120]. The full
expression for general disorder potentials and pairing states is
defined in Appendix A 2 [see Eq. (A7)]. In the following, we
apply it to the relevant pairing states in Ca3Rh4Sn13 that were
identified above. Since electron irradiation creates pointlike,
nonmagnetic defects, we focus on this type of disorder.

We begin with the A1g singlet and assume a general
momentum-dependent order parameter, �k = kiσy where
k is invariant under all symmetries of Oh. Considering
pointlike, nonmagnetic disorder without any momentum de-
pendence in the pseudospin basis, Eq. (A7) readily yields

ζ = 〈|k|2〉FS − | 〈k〉FS |2
2 〈|k|2〉FS

; (3)

here 〈. . .〉FS denotes the average over all momenta k on the
Fermi surfaces of the system (normalized such that 〈1〉FS =
1). Note that our assumption of disorder neglects the fact that
the wave functions at the Fermi surfaces are composed of k-
dependent superpositions of spin and different orbitals, which
is expected [78,89–91] to reduce the impact of disorder on Tc

further. Therefore the following values of ζ should technically
be viewed as upper bounds.

It holds ζ = 0 in Eq. (3) if k is independent of k, re-
covering the well-known Anderson theorem [80]. Therefore,
to obtain finite ζ in Eq. (3) for the A1g singlet, we need to
allow for momentum dependent k. Let us first assume that
this momentum dependence arises from k varying within a
closed Fermi sheet. To illustrate the consequences for ζ , we
will for concreteness focus on a single Fermi surface enclos-
ing the � point. Let us approximate it to be spherical, and only
include the lowest-order lattice harmonic (g-wave in this case)
correction to k = 0 that transforms under the trivial IR A1g

of Oh,

k = 0
(
1 + δ

[
k4

x + k4
y + k4

z

])
. (4)

Here the parameter δ determines the strength of the
momentum-dependent perturbation and has to be real as a
gauge has to exist where k ∈ R (due to time-reversal sym-
metry in the normal state). Note that the superconductor will
be nodal if and only if −3 < δ < −1. From Eq. (3), it is
straightforward to evaluate ζ which is found to be

ζ (δ) = 8 δ2

5δ(41δ + 126) + 525
. (5)

As expected, we have ζ (δ = 0) = 0 since the order parameter
is momentum independent when δ = 0. The maximal value of
1/2 is reached when δ = −5/3 for which the Fermi surface
average of k vanishes. For large |δ|, the order parameter

094521-11



E. H. KRENKEL et al. PHYSICAL REVIEW B 105, 094521 (2022)

FIG. 10. Calculated normalized superfluid density to examine
the influence of gap anisotropy. (a) g-wave correction to s-wave
pairing, as defined in Eq. (4), with relative strengths δ = −3.66
(blue) and −1.08 (black), needed to reproduce the observed sup-
pression of Tc. The 3D structure of the gap in the reciprocal space
is shown as insets. The standard s-wave, k = 0, and d-wave,
k = 0(k2

x − k2
y ), cases are shown by dashed lines. Clearly, the

computed superfluid density is far from the experimental data shown
in Fig. 9. (b) Two-band A++

1g superconductor with two different gap
magnitudes, �1 and �2. To reproduce the observed Tc suppression,
the gap ratio should be �1/�2 = 2.78, see text. There are many sets
of the interaction matrix elements to obtain that value at Tc but with
different temperature dependencies of �1/�2 below Tc (see inset).
We show the computed ρs(T ) for several choices, but none of them
is consistent with the experimental data. See Appendix B for more
details of the computations.

approaches that of the subleading, g-wave basis function, as-
sociated with a value lim|δ|→∞ ζ (δ) = 8/205 ≈ 0.039.

Most importantly, for the experimental value ζ = 1/9,
Eq. (5) is only consistent with two possible values of δ: ei-
ther δ ≈ −1.08, which leads to a superconductor with nodal
lines, or δ ≈ −3.66, for which the superconductor almost
exhibits nodal lines; the associated anisotropy is quite large,
�max/�min ≈ 12. For both values of δ, we have computed
the temperature dependence of the superfluid density ρs, see
Fig. 10(a) for the results and Appendix B for more details.
As can be clearly seen, the strong anisotropy or presence of
nodes leads to a ρs(T ) profile that differs significantly from
the observed s-wavelike behavior and more closely resembles
that of a d-wave state. Since none of these two values of δ

FIG. 11. Fermi surface contours at various kz in Ca3Rh4Sn13

obtained within density functional theory (DFT). Different colors
denote different bands crossing the Fermi energy (see Appendix C
for details).

are consistent with our data, we conclude that the momentum
dependence of k on one (or several) Fermi sheets is not a
possible cause of the observed suppression of Tc.

Next, we consider the possibility that the order parameter
of the A1g state varies between different sheets. As can be seen
in Fig. 11, the normal state of Ca3Rh4Sn13 has eight bands
crossing the Fermi level, giving rise to very complex Fermi
surfaces. Assuming that k is constant on each Fermi sheet,
we write k = �n if k belongs to the nth sheet. Denoting the
density of states at the Fermi level of the nth Fermi surface by
ρn, we find

ζ = 1

2

[
1 −

∣∣∑
n ρn�n

∣∣2( ∑
n ρn|�n|2

) ∑
n ρn

]
(6)

from Eq. (3). We note in passing that it is also possible that the
order parameter on different, symmetry unrelated pockets ex-
hibits nontrivial complex phases, due to frustration [121,122],
�∗

n�n′ /∈ R. However, this can only happen via two (or
more) consecutive superconducting transitions, as a result of
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time-reversal symmetry. As there are no indications of multi-
ple transitions in Ca3Rh4Sn13 we will assume �n ∈ R.

Since �∗
n�n′ < 0 is expected to be impossible for a con-

ventional phonon-mediated pairing mechanism [123,124], we
first focus on the case where �∗

n�n′ > 0 for all n, n′, which
we refer to as the A++

1g state. In the simplest case of only two
different gap magnitudes in Eq. (6), it is straightforward to
show via optimization of the respective density of states that
the maximum possible ζ for given �1/�2 reads as

ζmax

(
�2

�1

)
= ζmax

(
�1

�2

)
= (�2/�1 − 1)2

2(1 + �2/�1)2
. (7)

From this, it is easy to see that ζ = 1/9 can only be reached
when �2/�1 > 2.78 (or �1/�2 < 0.35), which is not consis-
tent with the penetration depth measurement, see Fig. 10(b).
For reference, ζmax ≈ 0.004  1/9 assuming a maximal im-
balance of 20%, �2/�1 = 1.2. In Appendix A 3, we show
that this conclusion is not altered by allowing for three or
more independent gaps. We also use values of ρn determined
from first-principle calculations to show that, irrespective of
how two different gap magnitudes are distributed among the
various Fermi surface sheets, the minimal gap anisotropy con-
sistent with ζ = 1/9 is �max/�min ≈ 2.86.

Since our data cannot be explained by the A++
1g , we now

allow for �∗
n�n′ < 0. Such a multiband s+− state, which

we denote by A+−
1g , cannot be stabilized by electron-phonon

coupling alone and, hence, requires an unconventional pairing
mechanism. As a consequence of the sign change, two dif-
ferent gap values �1 and �2 with �∗

1�2 < 0 are sufficient to
cause much larger ζ in Eq. (6): the maximum possible value of
ζ = 1/2 is reached when ρ1|�1| = ρ2|�2|. Consequently, for
the A+−

1g states, the crucial question is whether ζ = 1/9 is too
small. In Appendix A 3, we show that there are multiple dif-
ferent ways of distributing �1 and �2 with �1/�2 ≈ −1, i.e.,
with almost identical (and isotropic) gaps, among the various
Fermi sheets. Consequently, the unconventional A+−

1g state is
thus far the only option consistent with our measurements.

Finally, let us look into the A1u triplet. As readily follows
from the general expression for ζ derived in [78], it holds
ζ = 1/2 for the A1u triplet state. In fact, ζ = 1/2 holds for
any other unconventional pairing state such as the Eg and
T2g singlets in Table III; as already discussed, these latter
two, are less natural candiates for Ca3Rh4Sn13 since their gap
function is expected to have an anisotropy of about 2, while
the gap of the A1u triplet state can be completely isotropic.
The value of ζ = 1/2 is still too large by about a factor of
four. However, as alluded to above, assuming impurities that
have k-independent, pseudospin trivial matrix elements on
the Fermi surfaces may not be such a good approximation
in a complex multiorbital material such as Ca3Rh4Sn13. In
particular, the presence of spin-orbit coupling can further re-
duce ζ significantly as discussed in several previous works
[78,89–91]. Therefore the A1u triplet cannot be excluded
based on our observations, but requires the additional, yet not
implausible, assumption of spin-orbit-coupling-induced sup-
pression of disorder matrix elements between relevant states at
the Fermi surface (see, e.g., Ref. [78] for a general discussion
of this aspect). One observation that further disfavors the A1u

triplet, however, is that the amount of spin-orbit coupling in

the Bloch states at the Fermi surface should vary significantly
among the four stannides studied and yet the suppression of
Tc with disorder is of the same order in Ca3Rh4Sn13 and
Ca3Ir4Sn13 after CDW order has been fully suppressed in the
latter, see Fig. 7, right panel. Taken together, the A1u triplet
cannot be rigorously excluded based on our data but requires
more fine-tuning and additional assumptions than the A+−

1g
superconductor.

V. CONCLUSIONS

We have studied the impact of controlling the number
of nonmagnetic defects on the transition temperatures of
the superconducting, Tc, and CDW, TCDW, phases in the
four stoichiometric 3-4-13 stannides Sr3Ir4Sn13, Sr3Rh4Sn13,
Ca3Ir4Sn13, and Ca3Rh4Sn13. While TCDW is suppressed with
increasing defect concentrations in the three compounds that
exhibit CDW order, the behavior of superconductivity is
more complex, see Fig. 7, and reveals nontrivial microscopic
physics. The suppression of Tc with weak disorder is by far
the strongest in Ca3Rh4Sn13, which does not exhibit any long-
range CDW. Furthermore, Tc increases with weak disorder in
Sr3Rh4Sn13. All of these findings are consistent with a picture
where CDW and superconductivity compete.

Quantitatively, the suppression of Tc with disorder in
Ca3Rh4Sn13 is about only 4.5 times weaker than the theo-
retical expectation for a nodal superconducting gap function,
such as d-wave, with a vanishing average order parameter
on the Fermi surface, see Fig. 8. However, the measured
temperature dependence of the London penetration depth,
Fig. 9, indicates a full isotropic gap. Based on the sym-
metries of the normal state, we classified the pairing states
in Ca3Rh4Sn13 and list those which can have a full gap in
Table III. Among those, only the A1g singlet and A1u triplet
are naturally consistent with the nearly isotropic gap. Based
on a quantitative comparison [78] of theory and the measured
disorder-induced change of Tc in Ca3Rh4Sn13, a conventional
A1g singlet, where the sign of the order parameter is the
same on all Fermi surfaces, is not consistent with the data.
Instead, the A+−

1g singlet, a multiband s+− state, where the sign
of the order parameter is different on one (or a small subset) of
the smaller Fermi surfaces, naturally reproduces the observed
suppression of Tc. While we cannot rigorously exclude the
A1u triplet, further assumptions about the matrix elements of
the disorder potential on the Fermi surfaces are required to
reduce the impact of disorder on its critical temperature. In
either case, the pairing mechanism giving rise to the A+−

1g
or A1u superconductor cannot [123,124] be based entirely on
electron-phonon coupling, and thus must be unconventional.
Similarly, since regular time-reversal-invariant CDW fluctua-
tions cannot induce unconventional pairing [123], our work
motivates further investigations into a possible microscopic
origin of unconventional pairing.

While this conclusion about unconventional pairing only
directly applies to Ca3Rh4Sn13, it is natural to expect that
the superconductivity has a very similar nature in all of the
studied stannides. We observed an extremely similar super-
fluid density in Ca3Ir4Sn13 (a separate study to be published),
which indicates that it is also a fully gapped superconducting
state. As shown in Fig. 7, Tc is only weakly suppressed in
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Ca3Ir4Sn13 when CDW is present, but is suppressed at a
similar rate to Ca3Rh4Sn13 as soon as CDW is suppressed.
Therefore it is reasonable to conclude that the underly-
ing Tc suppression rate is the same in Ca3Rh4Sn13 as in
Ca3Ir4Sn13, implying similar unconventional pairing. In this
sense, Ca3Rh4Sn13 could be the key compound to unravel the
microscopic physics of superconductivity in the 3-4-13 series.
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APPENDIX A: PAIRING STATES AND IMPACT
OF DISORDER

In this Appendix, we provide more details on the supercon-
ducting pairing states for Ca3Rh4Sn13 and their sensitivity to
pointlike disorder.

1. Admixture of secondary order parameter

To understand why the superconducting order parameters
in the last two lines of Table III allow for admixture of a
secondary order parameter that can be fully gapped, let us
first focus on the eg(0, 1) state. When the order parameter

�k = η
Eg

2 (2Z2
k − X 2

k − Y 2
k )iσy becomes nonzero at Tc, it re-

duces the point symmetries not only in charged but also in
charge-0 observables, such as the spectrum Ek of the Bo-
goliubov quasiparticles. Formally, this means that for some
g ∈ Oh, no ϕg ∈ R exists such that

�gk = eiϕg�k, ∀ k. (A1)

For the eg(0, 1) state, the maximal set of g ∈ Oh for which a
ϕg in Eq. (A1) exists forms the subgroup D4h of Oh; therefore,
Ek will only be invariant under these symmetries, while Egk �=
Ek for g ∈ Oh \ D4h (such as threefold rotational symmetry).
Since the order parameter of the eg(0, 1) state transforms
under the trivial representation, A1g, of D4h [⇔ ϕg = 0 in
Eq. (A1) for all g ∈ D4h], it can couple linearly to the A1g

singlet in Table III. This coupling requires Oh to be broken
due to η

Eg

2 �= 0 and is thus a higher-order process in η
Eg

2 . As
such, we expect the admixed component to have a temperature
dependence ∝(Tc − T )n/2, with n > 1, close to Tc. We note
that this would be different in case of the eg(1, 0) supercon-

ductor with order parameter �k = η
Eg

1 (X 2
k − Y 2

k )iσy; while it

will also reduce Oh to D4h, we will have ϕCz
4
= ϕσd = π in

Eq. (A1) such that the order parameter will transform as B1g

under D4h. Being odd under the mirror planes σd of D4h, any
B1g singlet will necessarily have line nodes.

To demonstrate the admixture for Eg pairing more ex-
plicitly and determine the exponent n in the temperature
dependence of the secondary order parameter, we will next
discuss it on the level of a Ginzburg-Landau expansion. To
this end, we expand the order parameter in the Eg and A1g

representation of Oh as

�kiσy = η
Eg

1

√
3
(
X 2

k − Y 2
k

) + η
Eg

2

(
2Z2

k − X 2
k − Y 2

k

) + ηA1g.

(A2)
As they transform under different IRs of Oh, there cannot be
a quadratic coupling of the form (ηEg

j )∗ηA1g , but upon noting
that Eg ⊗ Eg ⊗ Eg = A1g ⊕ A2g ⊕ 3Eg it is clear that quartic

terms of the form (ηEg

j )∗(ηEg

k )∗ηEg

l ηA1g exist. As η†σxη and

η†σzη, with η = (ηEg

1 , η
Eg

2 )T , transform as
√

3(x2 − y2) and
2z2 − x2 − y2 under Oh, the following coupling is allowed in
the free energy:

κ (ηA1g )∗
(
η†σxη η

Eg

1 + η†σzη η
Eg

2

) + c.c., (A3)

where κ ∈ R as a consequence of time-reversal symmetry. In
agreement with our discussion above, we find that the cou-
pling vanishes for the eg(1, 0) superconductor, where η

Eg

2 =
0; the same holds for the time-reversal-symmetry-breaking
eg(1, i) state for which η = (1,±i). On the other hand, it is
nonzero and given by

−2κ
∣∣ηEg

2

∣∣2
Re

[
(ηA1g )∗ηEg

2

]
(A4)

for the eg(0, 1) pairing phase. We thus see that η
Eg

2 �= 0 will in-

duce a finite ηA1g ∝ |ηEg

2 |3 ∝ (Tc − T )3/2 close to Tc (yielding
n = 3).

While the behavior of ηA1g (T ) and η
Eg

2 (T ) further below
Tc cannot be captured by the leading-order Ginzburg-Landau
expansion and will depend on microscopic details, we can
estimate the gap anisotropy as a function of the ratio η =
ηA1g/η

Eg

2 . Using, as in the main text, (X,Y, Z ) = (kx, ky, kz ),
the gap anisotropy of the eg(0, 1) state on a spherical Fermi
surface reads as

�max/�min =
{ 2+η

η−1 η > 1,

∞ η � 1.
(A5)

For instance, if we want �max/�min < 1.1, we need η > 31,
i.e., the secondary order parameter has to be about 30 times
larger than the primary one, which does not seem to be a
natural assumption.

The analysis for the t2g(1, 1, 1) singlet is similar. In
this case, the coupling analogous to Eq. (A3) is associated
with the A1g term in T2g ⊗ T2g ⊗ T2g = A1g ⊕ A2g ⊕ 2Eg ⊕
3T1g ⊕ 4T2g.

2. General expression for ζ

To be self-contained, we here provide the general expres-
sion for the disorder sensitivity parameter ζ in Eq. (2) derived
in Ref. [78]. The central quantity is

Ck,k′ = �kT †Wk,k′ − tW Wk,k′�k′T †, (A6)
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TABLE IV. Density of states of the bands per conventional unit
cell (Z = 2) of Ca3Rh4Sn13 at the Fermi level ordered by decreasing
magnitude.

n band ρn (states/eV cell)

1 272 13.73
2 273 9.534
3 274 0.847
4 275 0.826
5 271 0.732
6 276 0.670
7 270 0.135
8 269 0.105

which is either a commutator or an anti-commutator depend-
ing on whether we consider time-reversal-even (tW = +1) or
-odd (tW = −1) disorder, respectively; it also appeared in the
generalized Anderson theorem of [119,120]. In Eq. (A6), �k

is the superconducting order parameter at Tc, in our case a
2 × 2 matrix in pseudospin space, and T is the unitary part of
the time-reversal operator (T = iσy for the states in Table III).
Finally, Wk,k′ are the matrix elements of the impurity potential
W with respect to the Bloch states, |k, s〉, at the Fermi sur-
face, i.e., (Wk,k′ )s,s′ = 〈k, s|W |k′, s′〉, with s labeling all bands
including spin.

Defining the Fermi-surface Frobenius norm according to
||C||2F := 1

N2
FS

∑
k,k′∈FS tr[C†

k,k′Ck,k′], where k ∈ FS indicates

that the sum involves all momenta in a finite vicinity around
the Fermi surfaces and NFS = ∑

k∈FS, we can write [78]

ζ = ||C||2F
2 tr[W †W ] 〈tr[�†

k�k]〉FS

, (A7)

where 〈 fk〉FS := 1
NFS

∑
k∈FS fk denotes the normalized Fermi

surface average, as also used in the main text, see Eq. (3).
Due to the generality of Eq. (A7), it can be readily applied

in many different systems, see, e.g., Refs. [122,125] for two
recent applications. Most importantly for us here, Eq. (3) in
the main text is readily derived by focusing on �k ∈ C2×2,
k-dependent pseudospin-singlet pairing, �k = kiσy and
scalar nonmagnetic (tW = +1) disorder of the simple form
W = Wk,k′ = W0σ0, W0 ∈ R.

3. Different gaps on different Fermi sheets

Finally, we discuss in more details which order parameter
ratios �n/�1 in Eq. (6) are consistent with the observed
ζ = 1/9.

In our DFT calculations for Ca3Rh4Sn13 (with details in
Appendix C) we identify eight bands that give rise to Fermi
surfaces, see Fig. 11. Their respective density of states at the
Fermi level, ρn, in decreasing order of magnitude are listed
in Table IV. In principle, the order parameter can be different
for any of these bands. For simplicity, we will first assume
that there are only two different values, �1 and �2, and the
three bands with smallest ρn are combined into one, i.e., we
take them to exhibit the same �n; this amounts to studying the
effective six band problem with respective density of states

ρ ′
n = ρn, 1 � n � 5,

ρ ′
6 = ρ6 + ρ7 + ρ8. (A8)

TABLE V. Ratio of order parameters consistent with ζ = 1/9
in Eq. (6) for all possible independent distributions of the two
different values, �1 and �2, among the six sets of Fermi sheets
defined in Eq. (A8). Here S defines the set of sheets with order
parameter �1, while the order parameter is �2 on the comple-
ment S̄ = {1, 2, 3, 4, 5, 6} \ S. The relative fraction of the density
of states of S is denoted by νS := ∑

n∈S ρn/
∑

n∈S̄ ρn. For a more
clear representation of the gap anisotropy, we define �a/�b :=
max{�1/�2, �2/�1}.

S νS (�a/�b)1 (�a/�b)2

{1} 1.07 3.39 3.21
{2} 0.56 2.86 4.91
{3} 0.03 4.37 −0.56
{4} 0.03 4.41 −0.55
{5} 0.03 4.59 −0.50
{6} 0.04 4.27 −0.60
{1,2} 7.02 −0.35 3.03
{1,3} 1.21 3.61 3.09
{1,4} 1.21 3.61 3.09
{1,5} 1.19 3.58 3.10
{1,6} 1.23 3.63 3.08
{2,3} 0.64 2.92 4.30
{2,4} 0.64 2.91 4.31
{2,5} 0.63 2.91 4.37
{2,6} 0.65 2.92 4.26
{3,4} 0.07 3.55 −0.93
{3,5} 0.06 3.61 −0.99
{3,6} 0.07 3.51 −0.88
{4,5} 0.06 3.63 −0.99
{4,6} 0.07 3.52 −0.90
{5,6} 0.07 3.57 −0.95
{1,2,3} 9.77 −0.57 3.22
{1,2,4} 9.68 −0.57 3.22
{1,2,5} 9.29 −0.54 3.19
{1,2,6} 10.05 −0.59 3.24
{1,3,4} 1.38 3.91 2.99
{1,3,5} 1.36 3.87 3.00
{1,3,6} 1.4 3.94 2.98
{1,4,5} 1.35 3.86 3.00
{1,4,6} 1.39 3.93 2.98
{1,5,6} 1.37 3.89 2.99

There are still many (31) inequivalent ways of distributing two
gaps on the six Fermi surfaces, as listed in Table V together
with the associated anisotropy ratio consistent with ζ = 1/9.
We can see that the smallest possible anisotropy ratio for
the A++

1g state is 2.86. We have checked that this value does
not change when allowing for �1 and �2 to be distributed
arbitrarily on all eight Fermi surfaces in Table IV. As it
should be, this value is larger than the theoretical lower bound
(for ζ = 1/9) of (11 + 6

√
2)/7 ≈ 2.78 based on Eq. (7) for

arbitrary ratio of the density of states; due to the multitude of
different Fermi surfaces, it is also natural that the A++

1g state
can almost reach this theoretical bound.

For the A+−
1g state, there are several solutions with

|�1|/|�2| very close to 1 already in the six-band model, see
Table V. As can also be seen in the table, this is possible
for distributions of order parameters where the sign change
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happens between a set of Fermi surfaces and its complement
exhibiting a ratio of density of states of about 6%–7%.

One might wonder whether more than two different values
of �n in Eq. (6) will allow for an A++

1g state with smaller gap
anisotropy,

A� := max
n,n′

�n

�n′
, (A9)

for given ζ (in our case ζ = 1/9). Instead of systematically
studying all possible ways of distributing N > 2 different
order parameters, �n > 0, n = 1, 2, . . . , N , on the eight dif-
ferent Fermi surfaces in Table IV, we here derive a lower
bound on A�. To this end, let us assume we are given �n > 0
which we order, without loss of generality, such that �n >

�n+1. It is not difficult to show that the maximum value of
ζ in Eq. (6) is reached when ρn = 0 for all n �= 1, N . Con-
sequently, only the smallest and largest �n enter and we are
back to the case with only two gaps, which we have already
analyzed in Sec. IV F of the main text; the maximum value
ζmax thus only depends on �1/�N = A� with form given in
Eq. (7), i.e.,

ζmax({�n}) = (A� − 1)2

2(1 + A�)2
, (A10)

irrespective of how many different �n are taken into ac-
count. Specifically, the lower bound for ζ = 1/9, A� > (11 +
6
√

2)/7 ≈ 2.78, still applies and the A++
1g state with three or

more different gaps is not a natural candidate state either.

APPENDIX B: SUPERFLUID DENSITY
IN DIFFERENT MODELS

Having established in Sec. IV F which fully gapped
conventional singlets are consistent with the observed sup-
pression of Tc with impurity concentration, we next investigate
more quantitatively how the respective temperature depen-
dence of the penetration depth or superfluid density compares
with that measured experimentally (see Fig. 9).

1. Anisotropic, single Fermi surface

We first consider the anisotropic singlet on a single,
isotropic Fermi surface as defined in Eq. (4). As discussed
in the main text, only the values of δ = −1.08 and δ = −3.66
reproduce the observed Tc suppression. The former is nodal
and cannot possibly explain the exponential attenuation of
the penetration depth. The latter is not nodal, but highly
anisotropic. To see whether this anisotropy is consistent with
the superfluid density ρs of Fig. 9, we computed ρs(T ) for this
model.

The calculations followed the Eilenberger formalism with
a common ansatz that temperature and angular parts of the
order parameter can be separated, �(T, kF ) = (T )�(kF ),
where kF is Fermi wave vector and the angular part obeys
the normalization condition for the Fermi surface aver-
age, 〈�2〉FS = 1 [126]. Specifically, for the anisotropic A1g

state in Eq. (4), the angular part in spherical coordinates,

kF = kF (sin θ cos ϕ, sin θ sin ϕ, cos θ ), reads as

�(θ, ϕ) = 1 + δ[(sin θ cos ϕ)4 + (sin θ sin ϕ)4 + cos4 θ ]√
1 + (6/5)δ + (41/105)δ2

.

(B1)
The temperature-dependent order parameter magnitude,

(T ), is then obtained by solving the Eilenberger self-
consistency equation and after that any thermodynamic
quantity, including superfluid density, is calculated. The result
for both values of δ is shown in Fig. 10(a) along with the
curves for a weak-coupling isotropic s-wave BCS (� = 1) and
d-wave (� = √

2 cos 2ϕ) order parameters. The inset shows
the angular dependence of the gap magnitude, |�(kF )|, for
the same two values of δ. Clearly, ρs(T ) differs strongly from
s-wave behavior and, hence, from the data in Fig. 9 for all of
these models.

2. Isotropic self-consistent two-band model

Another way to obtain substantial Tc suppression in a con-
ventional superconductor is to consider a two band system
with two isotropic s-wave bands of different amplitude but
same sign, denoted as A++

1g in the main text.
To compute the superfluid density ρs for this scenario,

we use the self-consistent Eilenberger scheme, called the

FIG. 12. (Top) Band structures and (bottom) partial density of
states of the eight bands across the Fermi level in Ca3Rh4Sn13.
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γ model, which is detailed in Ref. [127]. Starting with an
interaction matrix containing two intraband and one inter-
band interaction constants, a system of 2 × 2 self-consistency
equations yields two order parameters from which the total
ρs can be calculated. Note that the temperature dependen-
cies of the order parameters no longer follow the standard
isotropic single-band curve, implying that the gap ratio is
temperature-dependent; furthermore, its precise temperature
evolution depends crucially on the interaction parameters
while the amount of Tc suppression is dictated by the gap
ratio at Tc (see Appendix A 2). Therefore we selected several
combinations of the interaction parameters, varying intra- and
interband contributions, with the constraint that the gap ratio
at Tc is �1/�2 = 2.78, needed to obtain the measured Tc sup-
pression. In Fig. 10(b), we present the resulting temperature
dependence of ρs (main panel) and of the gap ratio �1/�2

(inset) for three different sets of interaction parameters, with
roughly constant, increasing, and decreasing �1/�2. While
the low-temperature behavior exhibits saturation, it occurs
below the temperature where the small gap saturates, much
lower that Tc/3 of isotropic s-wave. Most importantly, as be-
fore, none of these models of conventional pairing agree with
the measure superfluid density. We therefore have a strong
case in favor of unconventional pairing.

APPENDIX C: DENSITY FUNCTIONAL
THEORY CALCULATIONS

We carry out first-principles calculations to investigate the
electronic structures in Ca3Rh4Sn13. Ca3Rh4Sn13 crystallizes

in the cubic Yb3Rh4Sn13-type (Pm3n, space group no. 223)
structure. The primitive cell contains two formula units. Ca
atoms occupy the 6c (4m2) site, and Rh atoms occupy the
8e (32) site. The Sn atoms are divided into two sublattices;
out of 13 Sn atoms in one formula unit, 12 Sn1 atoms occupy
the 24k (m) site, and one Sn2 atom occupies the 2a (m3) site.
We adopt the experimental crystal structure parameters [128]
in all calculations.

Density functional theory (DFT) calculations are per-
formed using a full-potential linear augmented plane wave
(FP-LAPW) method, as implemented in WIEN2K [129]. The
generalized gradient approximation of Perdew, Burke, and
Ernzerhof [130] is used for the exchange-correlation poten-
tials. To generate the self-consistent potential and charge, we
employed RMT Kmax = 8.0 with Muffin-tin radii RMT = 2.2,
2.4, and 2.4 a.u., for Ca, Rh, and Sn, respectively. The k-point
integration is performed using a tetrahedron method with
Blöchl corrections [131] with 119 k points in the irreducible
Brillouin zone (BZ). The calculations are iterated until the
charge difference between consecutive iterations is smaller
than 10−4 e and the total energy difference is lower than
0.01 mRy.

Figure 12 shows the DFT band structure along the
�-X -M-�-R high-symmetry path and band-resolved partial
density of states (PDOS) near the Fermi level. There are eight
bands across the Fermi level. Figure 11 shows the Fermi
surface contours calculated at various kz. We use the same
color scheme to denote the eight bands in the Fermi surface
contours (Fig. 11) and the band-resolved PDOS [Fig. 12 (bot-
tom)] plots.
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