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Topological crystalline superconductors are known to have possible higher-order topology, which results in
Majorana modes on d − 2 or lower-dimensional boundaries. Given the rich possibilities of boundary signatures,
it is desirable to have topological invariants that can predict the type of Majorana modes from band structures.
Although symmetry indicators—a type of invariant that depends only on the band data at high-symmetry
points—have been proposed for certain crystalline superconductors, there exist symmetry classes in which
symmetry indicators fail to distinguish superconductors with different Majorana boundaries. Here, we sys-
tematically obtain topological invariants for an example of this kind, two-dimensional time-reversal symmetric
superconductors with twofold rotational symmetry C2. First, we show that the nontrivial topology is independent
of band data on the high-symmetry points by conducting a momentum-space classification study. Then, from
the resulting K groups, we derive calculable expressions for four Z2 invariants defined on high-symmetry lines
or general points in the Brillouin zone. Finally, together with a real-space classification study, we establish
the bulk-boundary correspondence and show that the four Z2 invariants can predict Majorana boundary types
from band structures. Our proposed invariants can fuel practical material searches for C2-symmetric topological
superconductors featuring Majorana edge and corner modes.
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I. INTRODUCTION

The classification of noninteracting fermionic topological
phases of matter has been extensively studied and is complete
for systems with the basic internal symmetries concerning
time-reversal, particle-hole, and chiral symmetries [1–12].
Due to the bulk-boundary correspondence, it is well-known
that internal symmetries can protect gapless modes on (d −
1)-dimensional boundaries in a d-dimensional topological
phase. In systems with crystalline symmetries, however, it
has been realized more recently that the presence of these
spatial symmetries enriches the classification of the bulk
topology [13–19] and induces new phases with gapless modes
in (d − 2)- or even lower-dimensional boundaries. Insula-
tors and superconductors with such boundary signatures are
dubbed higher-order topological phases, which have attracted
great theoretical and experimental interest in the past few
years [20–39]. For example, instead of Majorana edge modes,
a two-dimensional (2D) higher-order topological supercon-
ductor (TSC) under the protection of the inversion symmetry
can host Majorana zero modes at opposite corners [31,36].

Topological invariants that can predict the type of bound-
ary modes detectable in experiments for a given topological
crystalline phase are therefore desirable. For the insulating
phases, it has been shown that both the bulk topology and
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boundary signatures can sometimes be characterized in terms
of the crystalline symmetry eigenvalues of occupied bands on
the high-symmetry points in the Brillouin zone (BZ) [40–43].
This type of invariant, calculated by band structure informa-
tion on the high-symmetry points only, is generally dubbed a
symmetry indicator [36,44–51]. For superconducting phases,
symmetry indicators based on the crystalline symmetry eigen-
values of occupied Bogoliubov–de Gennes (BdG) bands at
high-symmetry points have also been used to distinguish dif-
ferent types of bulk topology as well as Majorana boundary
modes [31,36,50,52–56].

Despite being powerful and easy to compute, symme-
try indicators cannot distinguish all crystalline topological
phases. For insulators of this kind, proper invariants have
been proposed based on the band topology in higher-
dimensional subspaces rather than high-symmetry points of
the BZ [57–59]. However, much less is known for topolog-
ical crystalline superconductors that cannot be characterized
by the symmetry indicators. A prior work [33] found lattice
models for twofold rotational (C2) and time-reversal sym-
metric superconductors where symmetry indicators failed to
distinguish different topological phases. For such classes of
topological crystalline superconductors, a general and sys-
tematic scheme for obtaining momentum-space topological
invariants that are capable of fully characterizing the bulk
topology as well as the boundary signatures remains absent.

Our goal is to study the classification of topological
crystalline superconductors that cannot be characterized by
symmetry indicators and to systematically derive topological
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invariants capable of fully characterizing both the bulk topol-
ogy and the Majorana boundary signatures. In this paper, we
focus on a case study of 2D time-reversal superconductors
with C2 rotational symmetry, motivated by the puzzling failure
of symmetry indicators previously observed in lattice models
of this symmetry class [33]. In fact, by computing the clas-
sification group in momentum space for our case study, we
find that the topology is indeed trivial on the high-symmetry
points, so symmetry indicators are not the proper topological
invariants. Instead, we find nontrivial classification groups of
Z2 on high-symmetry lines and on general points in the BZ.
We therefore seek to derive practically calculable expressions
for the corresponding Z2 topological invariants that not only
fully characterize the bulk topology but can also diagnose
the Majorana boundary type for 2D time-reversal and C2-
symmetric superconductors.

The main challenge in deriving such boundary diagnos-
tics that take band information as inputs is to establish the
bulk-boundary correspondence for the considered topologi-
cal crystalline superconductors. In this paper, we approach
this problem following a three-step scheme that some of us
previously developed [36]. The first step is to study the clas-
sification in momentum space by calculating the K group
for the considered superconductors, and to derive calculable
expressions for the momentum-space topological invariants
accordingly. Given that the K group is generally difficult
to compute in the presence of crystalline symmetries, we
approximate the K group using a mathematical tool called
Atiyah-Hirzebruch spectral sequence (AHSS) [60,61]. The
key idea of the AHSS method is to decompose the full C2-
symmetric BZ into different subspaces with only effective
internal symmetry such that one can directly compute the
contribution from each of the subspaces to the total K group.
The approximation is then improved order by order, which
eventually converges and provides exact information about the
K group.

Importantly, from the AHSS results, we not only find that
the nontrivial topology is fully encoded in the 1D and 2D
subspaces (i.e., the high-symmetry lines and general points
in the BZ) but also obtain various constraints and hints for
writing down explicit expressions for the corresponding Z2

topological invariants. In particular, the invariants we find are
based on the sewing matrix of C2T symmetry of the super-
conductors, where T denotes the time-reversal symmetry. We
further propose an alternative expression that can be practi-
cally computed for more general cases by identifying these
Z2 invariants as the Stiefel-Whitney (S-W) classes of a real
vector bundle defined by the occupied BdG states of the super-
conductors. Similar sewing-matrix-based invariants and the
interpretation as S-W classes have also been written down for
topological crystalline insulators and semimetals [58,62,63].
The resulting four Z2 invariants {ν1a, ν1b, ν1c, ν2}, where
the first three and the last one depend on the BdG band
data on the high-symmetry lines and general points in the
BZ, respectively, together can fully discern 2D time-reversal
and C2-symmetric superconducting phases with distinct bulk
topology.

Next, we establish how these momentum-space invariants
correspond to various Majorana boundary signatures in the
real space. Specifically, in the second step of our protocol,

we conduct a dual classification study in the real space using
a method called topological crystal approach [64–71]. This
real-space analysis allows us to construct the representative
state, learn the protecting symmetries, and obtain the Majo-
rana boundary modes for each of the topologically distinct
phases. For the protecting symmetries, we define weak and
strong phases to be the phases protected by translational and
other symmetries, respectively. For the boundary signatures,
we define second-order and first-order superconductors to be
the states with Majorana corner modes and 1D Majorana
modes on all or certain-directional edges, respectively, regard-
less of the protecting symmetries. When a state supports more
than one type of boundary modes, we define the order to be
the lowest codimension of the boundary modes so the order
indicates the type of Majorana boundaries we expect to be
experimentally detectable. Our result shows that all possible
phases are given by combinations of four fundamental phases,
including two first-order weak phases with Majorana bands on
certain edges, a first-order strong phase with helical Majorana
edge modes, and a second-order strong phase with Majorana
corner modes.

Finally, in the third step, equipped with Z2 momentum-
space topological invariants {ν1a, ν1b, ν1c, ν2} and all possible
types of Majorana boundary modes, we establish the
bulk-boundary correspondence by computing our invariants
for the real-space representative states. Crucially, since these
representative states are adiabatically connected to all other
states in each of the phases, the boundary diagnostics that
we aim to derive are capable of characterizing each of the
phases. By matching the momentum-space and the real-space
bases, we find that the final invariants {z1, z2, z3, z4} that can
diagnose the type of Majorana boundary modes are given
by certain combinations of the original invariants
{ν1a, ν1b, ν1c, ν2}. These practically calculable boundary
diagnostics for 2D time-reversal and C2-symmetric
superconductors are our central results, as we summarize
in Table V.

The rest of the paper is organized as follows. In Sec. II, we
specify the symmetry class of our case study and introduce
key concepts about the equivariant K theory [36,60,61]. In
Sec. III, we conduct the first step in our protocol. We first
review the mathematical tool we use for the momentum-space
classification, that is, the AHSS. We then present the classifi-
cation results for our case study and leave the details of the
calculation in Appendix A. In particular, we show that the
proper topological invariants for our case study are not sym-
metry indicators. In Sec. IV, we derive practically calculable
expressions for the momentum-space topological invariants
from our classification results in the framework of the equiv-
ariant K theory. In particular, we propose expressions based on
the homotopy classes of a sewing matrix as well as the S-W
classes of the real vector bundles constructed from our system.
In Sec. V, we first conduct the second step of our protocol and
perform a real-space classification study using the topological
crystal approach. From the analysis, we obtain the Majorana
boundary signatures for all topologically distinct phases. We
then perform the third step of our protocol and establish the
bulk-boundary correspondence for our case study by explic-
itly computing our momentum-space topological invariants
for each of the real-space representative states. In Sec. VI,
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we explain how to construct the final Majorana boundary
diagnostics from the momentum-space topological invariants.
The results are presented in Table V. Finally in Sec. VII, we
summarize our results and discuss several remarks.

II. CASE STUDY

In this section, we will first briefly introduce the equiv-
ariant K group, a mathematical object that gives the classi-
fications of noninteracting fermionic systems with crystalline
symmetries. We will then specify the symmetry group of the
2D superconductors for our case study in this paper.

A gapped noninteracting fermionic system may possess
one or more of the following internal symmetries: time rever-
sal, particle-hole, and chiral symmetry. It then falls in one of
the ten Altland-Zirnbauer (AZ) classes [1,4,11,12] describing
whether each of the three symmetries is present and, if so,
whether it squares to 1 or −1. To classify the phases of matter
in such a system, one can adiabatically deform the Bloch
Hamiltonian or the BdG Hamiltonian while preserving the
symmetries, so the occupied and unoccupied bands are at two
flat levels, respectively. The problem of classifying the Hamil-
tonians is thus equivalent to classifying the occupied states
treated as a vector bundle with the BZ as its base space. This
allows the classification to be studied under the framework of
the K theory [2,12,72,73].

In addition to the symmetries in the AZ class, the pres-
ence of crystalline symmetries leads to a finer separation
of phases. A formalism called twisted equivariant K theory
has been developed to accommodate crystalline symmetries
in the classification of gapped noninteracting fermionic sys-
tems [18,60,61]. In this formalism, different phases in the
AZ class n form an Abelian group φK (τ,c),−n

G (BZ), where the
symmetry action of group G is further specified by φ, τ , and
c. The group homomorphism φ : G → Z2 denotes whether an
element g ∈ G is unitary (φ(g) = 1) or antiunitary (φ(g) =
−1). The factor system τ gives the U (1) phase factor in the
group multiplication

Ug(g′k)Ug′ (k) = eiτg,g′ (gg′k)Ugg′ (k), (1)

where k under the action of g is changed to gk. A nontrivial τ

arises from the nonsymmorphic symmetries in G and/or the
projective representation of G. The group homomorphism c :
G → Z2 determines the commutation relation between g ∈ G
and the Hamiltonian H by

Ug(k)H (k)Ug(k)−1 = c(g)H (gk). (2)

When the system lives on a d-dimensional lattice with trans-
lational symmetries, the BZ is a torus T d . One can make use
of the mathematical tool of AHSS to construct an approxima-
tion to φK (τ,c),−n

G (BZ) [18,60,61], which is otherwise hard to
compute.

In this paper, we focus on the classification and topological
invariants for 2D time-reversal superconductors with transla-
tional and C2 rotational symmetries. The key reason why we
choose to focus on this symmetry class is because this is the
simplest example where the bulk topology cannot be revealed
by high-symmetry points and that the topological invariants
are not symmetry indicators, as we will explicitly show in
Sec. III and Appendix A.

The symmetry group of our case study is described as fol-
lows. For a given 2D mean-field BdG Hamiltonian at crystal
momentum k,

H (k) =
(

h(k) �(k)
�(k)† −h(−k)∗

)
, (3)

written in the Nambu basis (ĉk,↑, ĉk,↓, ĉ†
−k,↑, ĉ†

−k,↓)T sup-
pressing indices for other degrees of freedom, we con-
sider the case where the single-particle normal state
h(k) transforms projectively under the twofold rotation
as UC2 (k)h(k)UC2 (k)−1 = h(−k) with UC2 (−k)UC2 (k) = −1,
and the superconducting order parameter �(k) transforms
trivially as UC2 (k)�(k)UC2 (−k)T = �(−k). The symme-
try group G of the full BdG Hamiltonian H (k), besides
the translational symmetries in x and y directions, con-
tains the time-reversal symmetry T , particle-hole symmetry
P , and the twofold BdG rotational symmetry R(k) =
diag{UC2 (k),U ∗

C2
(−k)}. The BdG Hamiltonian therefore sat-

isfies the symmetry constraints

T H (k)T −1 = H (−k), (4a)

PH (k)P−1 = −H (−k), (4b)

R(k)H (k)R(k)−1 = H (−k), (4c)

where the symmetries obey the following group relations:

T 2 = −1, P2 = 1, R(−k)R(k) = −1, (5a)

T R(k) = R(−k)T , PR(k) = R(−k)P . (5b)

We note that the C2 rotation R squares to −1 since we con-
sider spinful electrons. The transformation rule of the pairing
function �(k) under C2 rotation determines the form of R
and thus the commutation relation between R and P . To-
gether with the fact that the time-reversal and particle-hole
symmetries are antiunitary such that φ(T ) = φ(P ) = −1, the
relations in Eqs. (4) and (5) fully define the factor system φ,
τ , and c of the equivariant K group φK (τ,c),−n

G (BZ) for 2D
superconductors of symmetry group G.

III. MOMENTUM-SPACE CLASSIFICATION

In this section, we will calculate the K group
φK (τ,c),−n

G (BZ) using the AHSS [36,60] for 2D time-reversal
superconductors with the twofold rotational symmetry whose
rotational axis is out of plane. In the following, we will
illustrate the key steps of the formalism and refer the readers
to the details in Appendix A.

A. Overview

We first provide an intuitive overview of this mathematical
tool before diving into the formal construction. AHSS approx-
imates the equivariant K group for systems with crystalline
symmetries using the following strategy: Instead of comput-
ing the K group on the whole BZ directly, which is generally
a difficult task in the presence of crystalline symmetries, one
first decomposes the BZ into different dimensional subspaces
that do not obey any crystalline symmetries which are not
local in momentum. One can then study the local K groups
restricted to these subspaces. These local K groups can be
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interpreted as the classifications of gapped Hamiltonian re-
stricted to different dimensional subspaces, which is dubbed
the topological phenomena interpretation [36]. Since these
local Hamiltonians only obey symmetries that are local in
momentum, the local K groups are effectively given by the
classifications of AZ classes.

These independent local K groups together provide the
zeroth-order approximation of the whole K group—the start-
ing point of the spectral sequence. Next, one improves the
approximation order by order through proper assembly pro-
cesses of these local K groups until the approximated result
converges, where the assembly processes are guided by the
compatibility relations between different dimensional local K
groups. The AHSS is a formal mathematical tool that encodes
all these structures and allows one to systematically consider
these compatibility relations.

Practically speaking, it is often convenient for calculation
purposes to adopt the representation interpretation [36] and
view the local K groups as the groups associated with the
band irreducible representations (irreps) on high-symmetry
points, lines, and general points in the 2D BZ. Then, the
assembly processes are performed by modifying the represen-
tation groups according to, for instance, how many nontrivial
representations at a high-symmetry point are not trivialized
when extended to the neighboring lines or general points. For
our focus of crystalline superconductors, these representations
are from the BdG bands of the considered local BdG Hamil-
tonians.

After performing all the assembly processes dimension by
dimension, one can obtain the final groups of the represen-
tations on the high-symmetry points, lines, and general BZ
points. These representation groups (i.e., local K groups) for
different dimensional subspaces can then be characterized by
different dimensional topological invariants, such as symme-
try indicators, winding numbers, and Chern numbers. The
purpose of our AHSS calculation presented in this section is to
identify which of the local K groups are nontrivial for our case
study of 2D superconductors with time-reversal and twofold
rotational symmetries.

B. Cell decomposition

The first step of AHSS is to construct a cell decomposi-
tion of the 2D BZ in a way such that (1) each symmetry
operator in the considered symmetry group G either acts as
the identity operation on a given cell or maps it to another
cell of the same dimensionality, and (2) the orientations of
the cells are consistent among themselves under symmetry
actions (see the example in Fig. 1). A cell of dimensionality
p is referred to as a p-cell, and all cells related by the sym-
metries in G together form an orbit. For calculation purposes,
it is sufficient to consider a representative p-cell out of each
orbit.

For our case study, the cell decomposition of the 2D BZ
with the symmetry group G is given in Fig. 1. The 0-cells form
four orbits {�}, {X }, {Y }, and {M}; the 1-cells form three orbits
{a, a′}, {b, b′}, and {c, c′}; the 2-cells form one orbit {α, α′}.
Of each dimension, an independent set of cells that are not
related by symmetries consists of one cell from each different
orbit. The 0-cells �, X,Y, M are independent of each other;

FIG. 1. The symmetry-preserving cell decomposition for the
Brillouin zone in momentum space. The circles denote the 0-cells, {a,
b, c} denote the independent 1-cells, and α denotes the independent
2-cell. {a′, b′, c′} and α′ are the C2-related counterparts of {a, b, c}
and α, respectively. The arrows on 1-cells and 2-cells represent the
orientations of these cells.

a, b, c together form an independent set of 1-cells; α is the
only independent 2-cell.

C. Pages and differentials

Given the cell decomposition, the second step is to study
the local K groups restricted on different dimensional cells
and the compatibility relations among them. In the language
of AHSS, the first page E1 is a table that consists of the local
K groups (without considering any compatibility relations)
bigraded by the dimensionality p and the AZ symmetry class
n [60]. The physical meaning of the table can be under-
stood by the topological phenomena interpretation: Each entry
E p,−(n+p)

1 is an Abelian group that characterizes the classifi-
cation of gapped systems with the internal symmetries given
by the AZ class n and the k space as disjoint p-spheres [74].
Each p-sphere is a representative p-cell with its boundary
identified to a point. E p+1,−(n+p)

1 can be understood as the
classification of gapless systems on the (p + 1)-cells with the
internal symmetries given by the AZ class n. For clarity, we
summarize the physical meaning of the E1 page entries in
Table I under the topological phenomena interpretation. The
E1 page for our case study is given in Table II.

Next, we assemble the local K groups on p-cells with
those on p ± 1-cells by incorporating the relevant compati-
bility relations. This is formally done by studying the first
differential d p,−(n+p)

1 : E p,−(n+p)
1 → E p+1,−(n+p)

1 , which is a
homomorphism from every entry in the E1 page to its right
neighboring entry on the same page. In the topological phe-
nomena interpretation, this map represents symmetry-allowed
processes that extends a gapped Hamiltonian on a p-cell to a
gapless Hamiltonian on the adjacent (p + 1)-cells in the same
AZ class n. Examples of such processes include a shift in the
chemical potential or a band inversion [60].

By taking into account the assembly processes described
by the first differentials, the local K groups are now modi-
fied into E p,−(n+p)

2 ≡ Ker(d p,−(n+p)
1 )/Im(d p−1,−(n+p)

1 ) and are
organized into the table of E2 page. It is most intuitive to
understand this expression for some entries in the E2 page
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TABLE I. The topological phenomena interpretation of the E1 page entries in the AHSS for classifying systems in the AZ class n. We leave
question marks in the entries whose physical meanings are not clear in this interpretation. Nonetheless, all entries are well-defined and can be
calculated in the representation interpretation (see the main text).

E p̄,−n̄
1 ... p̄ = p p̄ = p + 1 p̄ = p + 2 ...

n̄ = n + p ... p-D gapped Hamiltonians (p + 1)-D gapless Hamiltonians (p + 2)-D Hamiltonians with singular points ...
n̄ = n + p + 1 ... ? (p + 1)-D gapped Hamiltonians (p + 2)-D gapless Hamiltonians ...
n̄ = n + p + 2 ... ? ? (p + 2)-D gapped Hamiltonians ...
...

...
...

...

in the topological phenomena interpretation. Let us consider
the entry E0,−3

2 (see Table III) as an example. Recall that
the diagonal entry E0,−3

1 and the off-diagonal entry E1,−3
1

in the E1-page are the classifications of class-DIII gapped
Hamiltonians on 0-cells and gapless Hamiltonians on 1-cells
in the same class, respectively. Therefore, to improve the ap-
proximation of the diagonal entries E0,−3

1 by considering the
compatibility relation described by the first differential d0,−3

1 ,
we keep only the gapped Hamiltonians on 0-cells in E0,−3

1 that
remain gapped on 1-cells. This set of Hamiltonians is given by
Ker(d0,−3

1 ). We therefore arrive at E0,−3
2 = Ker(d0,−3

1 ), where
the differential d−1,−3

1 is trivial.
Nonetheless, to fully explain the expression for general

entries E p,−(n+p)
2 in the E2 page, it is most transparent and

calculationwise convenient to turn to the representation in-
terpretation since the lower half of the E1 page does not
have clear physical meaning in the topological phenomena
interpretation (labeled by the question marks in Table I). The
two interpretations are mathematically equivalent [60]. In the
representation interpretation, the E1 page entry E p,−(n+p)

1 clas-
sifies the irreps of the effective symmetry group for a point
within each p-cell with internal symmetries in the AZ class
n + p. The first differential d p,−(n+p)

1 describes the process
of mapping an irrep on a p-cell to one or several irreps
of the smaller effective symmetry group for a point in an
adjacent (p + 1)-cell. In the next step of approximating con-
tribution from the p-cells, only these irreps in Ker(d p,−(n+p)

1 )
remain because others correspond to independent irreps on
the adjacent (p + 1)-cells. On the other hand, the irreps in
Im(d p−1,−(n+p)

1 ) can be trivialized by the irreps on the ad-
jacent (p − 1)-cells so they do not contribute. Trivialization
here means the process of moving irreps on adjacent lower-
dimensional cells to a higher-dimensional cell and forming
a trivial irrep together with the original irrep on that cell.
For detail about the interpretations, we refer the readers to
pedagogical discussions in Refs. [36,60].

Following similar procedures of obtaining the E2 page
by considering the first differentials, we can take into ac-
count higher-order assembly processes, which are described

TABLE II. The E1 page we find from our calculation.

AZ class n̄ p̄ = 0 p̄ = 1 p̄ = 2

DIII 3 1 1 1
AII 4 Z4 Z3 Z
CII 5 1 Z3

2 Z2

generally by the rth differential d p,−(n+p)
r : E p,−(n+p)

r →
E p+r,−(n+p+r−1)

r order by order to obtain better approximated
local K groups:

E p,−(n+p)
r+1 = Ker

(
d p,−(n+p)

r

)/
Im

(
d p−r,−(n+p−r+1)

r

)
. (6)

A higher page Er+1 therefore provides a better approxima-
tion to the K group than the previous page Er . By following
Eq. (6) to iteratively improve the approximation of the local K
groups, the Er page will eventually converge at some r∗ (i.e.,
Er∗ = Er∗+r′ ∀r′ � 1). Such convergence will happen when
r � d + 1 or before that for a d-dimensional system since
dr = 0 for any r � d + 1. This final converged page is dubbed
the limiting page E∞.

For our case study, the E1 page and the infinity page E∞
are given in Tables II and III. The detailed calculation of how
to arrive at these tables is also given in Appendix A.

D. Topological invariants

We now discuss how to extract information of topological
invariants for the full system from the infinity page. In the
topological phenomena interpretation, each of the diagonal
entries in the limiting page E p,−(n+p)

∞ , 0 � p � d represents
the classification of gapped systems on the p-dimensional
subspaces of the BZ for the AZ class n. Moreover, these
diagonal entries are subgroups of the full K group and can
lead to the full K group through a short exact sequence with
certain group extensions (see Appendix A). These diagonal
entries can therefore be characterized by a set of topological
invariants on different dimensional subspaces that encodes the
topology of the full system.

There are three pieces of information about the invariants
that we can extract from the diagonal entries E p,−(n+p)

∞ . First,
these groups directly tell us the type of topological invariants
that are necessary to capture the topology of the full system.

TABLE III. The E2 page we find from our calculation. The E2

page is also the limiting page E∞ since it is equal to all higher
pages. According to the topological phenomena interpretation, the
three diagonal entries represent the K groups restricted on 0-, 1-,
and 2-cells for the 2D class-DIII superconductors with C2 symmetry.
These three entries together give rise to the full K group.

AZ class n̄ p̄ = 0 p̄ = 1 p̄ = 2

DIII 3 1 1 1
AII 4 Z Z3

2 Z
CII 5 1 Z3

2 Z2
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Second, these invariants take band data as inputs and we will
know from the diagonal entries which dimensional subspace
in the BZ contributes to each invariant. Finally, the informa-
tion of each invariant is in the form of a homotopy group of
some topological space, which prompts us to find an invariant
characterizing the maps from a subspace of the BZ to that
topological space.

For our case study of 2D class-DIII superconductors with a
twofold rotational symmetry, there are three diagonal entries
in the infinity page: E0,−3

∞ , E1,−4
∞ , and E2,−5

∞ . These three
entries are the local K groups restricted on the 0-cells {�, X ,
Y , M}, the 1-cells {a, b, c}, and the 2-cell α, respectively. We
find that the three subgroups are (see Table III)

E0,−3
∞ = 1, E1,−4

∞ = (Z2)3, E2,−5
∞ = Z2, (7)

where the (Z2)3 comes from one Z2 per 1-cell. We therefore
expect that the topology of the full system cannot be inferred
from the band information on the high symmetry points (as
E0,−3

∞ = 1) but can be fully characterized by four Z2 invari-
ants, three depending on the band data on the high-symmetry
lines and one on general points in the BZ.

Importantly, we can further deduce the topological spaces
for the two types of Z2 invariants as follows. First, as we show
in Appendix A, the two nontrivial local K groups E1,−4

∞ and
E2,−5

∞ are essentially obtained from π0(R0) = Z and π0(R1) =
Z2, respectively, where R0 = O(N1 + N2)/(O(N1) × O(N2))
and R1 = O(N ). Here N , N1, N2 are integers that should be
taken to the infinite limit. To see why E1,−4

∞ = (Z2)3, we note
that there is a modulo-2 operation produced by identifying
Im(d0,−4

1 ) as trivial when calculating the E2 page out of the
E1 page. We will see this in terms of the definition for the
invariant in Sec. IV B. Moreover, the Bott periodicity theo-
rem [11,73] leads to the following identities:

π0(R0) = π1(R7), π0(R1) = π2(R7), (8)

where R7 = U (N )/O(N ). We therefore expect that the topo-
logical spaces for the two types of Z2 invariants should both
be the space R7.

In summary, our AHSS results suggest that the topology
of a 2D class-DIII Hamiltonian with a twofold rotational
symmetry cannot be inferred from band data on the high
symmetry points but can be fully characterized by three Z2

invariants defined on the high-symmetry lines and one Z2

invariant on general points in the BZ. In particular, we expect
that valid forms of the two types of Z2 invariants can be
constructed by maps from 1-cells to the space R7 and 2-cells
to R7, respectively. In the rest of the paper, we will propose
specific forms for these topological invariants and show that
the set of invariants can diagnose the Majorana boundary type
by establishing the bulk-boundary correspondence.

IV. EXPLICIT EXPRESSIONS FOR
TOPOLOGICAL INVARIANTS

From our AHSS calculation, we find that only the K groups
restricted on 1-cells and 2-cells are nontrivial, and our goal is
to write topological invariants that can fully distinguish the
phases. In fact, they have readily provided us hints for the
forms of these invariants. Specifically, the K groups restricted
on 1-cells and 2-cells are given by π1(R7)/Im(d0,−4

1 ) = Z2

and π2(R7) = Z2 [see Eq. (8)], which are based on the first
and second homotopy groups of space R7 = U (N )/O(N ),
respectively. Therefore, to write valid 1D and 2D invariants
that characterize the full bulk topology, our strategy is to find
an object that lives in space R7 and takes the symmetry band
data on 1- and 2-cells as inputs, respectively. The 1D and 2D
invariants are then given by the first and second homotopy
classes of this object.

We propose to use the sewing matrix

Smn(k) ≡ 〈um(k)|T R|un(k)〉 (9)

of the combined symmetry T R to construct the object, where
T is the time-reversal symmetry, R is the twofold rota-
tional symmetry, and |un(k)〉 is the nth occupied state at
momentum k.

To see why S lives in the space of R7, where R7 =
U (N )/O(N ) for N → ∞, first notice that S is a symmetric
matrix since S is an antiunitary operator that is local in k
and satisfies (T R)2 = 1. As a symmetric matrix, S has a
(nonunique) decomposition S(k) = U (k)U (k)T where U (k)
is unitary, known as Autonne-Takagi factorization [75–77].
S therefore remains invariant under the change U → UO for
any orthogonal matrix O. The number of occupied bands can
be taken to the infinite integer by adding any number of trivial
bands since the K-theory classification is stable against this
operation. Therefore, S lies in R7. Moreover, since there are
an even number 2N0 of occupied states due to T 2 = −1, we
can always consider half of the time reversal related pairs, i.e.,
N0 states that are not mapped to each other by time reversal.
We label this set of occupied states and its time reversal
related partner by I and II, respectively. This corresponds to
block diagonalizing S into SI and SII, where the two blocks
are related by T , and then taking only one of them. SI (or,
equivalently, SII) thus defines a map from the BZ to the space
of U (N0)/O(N0). In the limit of a large number of occupied
bands, the target space of SI/II is also R7.

Importantly, since the sewing matrix depends on the occu-
pied wave functions, S is gauge dependent. Specifically, under
a general gauge transformation V , S transforms as

S → V †SV ∗. (10)

There are two gauge choices that are relevant for the invariants
we propose: the first is dubbed the T -constant and smooth
gauge and the second is dubbed the real gauge.

We first define the T -constant and smooth gauge. In a
subspace of the BZ, this gauge satisfies both of the following:

(1) Smooth: the wave functions are smooth.
(2) T -constant: the matrix 〈um(−k)|T |un(k)〉 is indepen-

dent of k.
We refer to the first and the second conditions as smooth

and T -constant, respectively. The T -constant condition was
also used in one definition for the Fu-Kane invariant [78,79]
and the closely related first Z2 descendent for the chiral
classes in Ref. [12]. Loosely speaking, it allows us to sepa-
rate the time-reversal-related partners and focus on one block
SI/II. There may be an obstruction to satisfying both gauge
conditions everywhere in the BZ, which suggests we can no
longer consider only one of the time-reversal-related partners.

In fact, these conditions alone do not fix a unique gauge—
there exist other T -constant and smooth gauges, which are
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related to each other by a smooth gauge transformation. All
such gauges are considered equivalent as far as the S-based
invariants are concerned. In particular, as we will discuss
in detail in Sec. IV B and Appendix A, this gauge freedom
corresponds to the normal subgroup Im(d0,−4

1 ) of π1(R7) so
the classifying group of the 1D invariants is given by the
quotient group π1(R7)/Im(d0,−4

1 ) = Z2. In other words, for
one of the 1D invariants expressed as an integer in the group
π1(R7) = Z, calculating this invariant in another smooth and
T -constant gauge modifies it by an even integer.

Next, we define the real gauge. If we carry out a gauge
transformation V = U (k), the sewing matrix will become an
identity S = I under this gauge [see Eq. (10)]. We refer to
this gauge as the real gauge [62,63,80]. As we will discuss in
Sec. IV B to IV D, when we calculate our proposed invariants
by taking the homotopy classes of SI (or equivalently SII),
we choose the smooth and T -constant gauge for the sewing
matrices. On the other hand, when we interpret the invariants
as the S-W classes, we calculate the occupied wave functions
in the real gauge.

We now make a final remark about this sewing matrix be-
fore moving on. In fact, sewing matrices of time reversal and
the combined operation of time reversal and C2 rotation have
been used to construct the topological invariants in several
insulating systems [62,63,78]. Here in our case study of super-
conductors, we choose to use the sewing matrix of T R instead
of other symmetry combinations, such as PR or PT , because
the spaces of those sewing matrices are not R7. Specifically,
PR ∈ U (2N )/Sp(N ) and PT ∈ U (2N )/U (p, q), where p +
q = 2N .

A. Reference Hamiltonian

Before we write the actual expressions for the 1D and 2D
invariants based on the homotopy groups of the sewing matrix
S, we first revisit some properties of elements in a K group and
the forms of valid invariants that are capable of distinguishing
these elements. In particular, we will see that it is necessary
to introduce a universal reference Hamiltonian to the analysis
and incorporate it in the invariants accordingly.

In K theory [18,36,60,61], a K group can be viewed
as consisting of adiabatic paths between two gapped Bloch
Hamiltonians H1 and H2 living in some Hilbert space, which
obeys symmetries in a given symmetry class. These paths can
be grouped into different equivalent classes following equiva-
lence relations expected from physics grounds [18,36,60,61],
and the K group classifies how many inequivalent classes of
path there are for the given symmetry class. In Karoubi’s
formulation, such a class of paths is mathematically denoted
as a triple [E, H1, H2] [18,36,60,61,81], where E is the vector
bundle whose base space is the BZ and vector space is formed
by the occupied states of the Hamiltonian H1. Here, the path
connecting H1 and the reference Hamiltonian H2 in E is a
representative path of the equivalence class.

We can further associate different equivalence classes of
paths [E, H, H0] with topologically distinct classes of gapped
phases of matter. To do so, instead of using different reference
Hamiltonians H2 for different triples, it is crucial to define
a trivial Hamiltonian H0 as the universal reference Hamilto-
nian (i.e., to set H2 = H0) for all triples. For our purpose of

investigating superconductors, we define the trivial Hamilto-
nian to be the BdG Hamiltonian

H0 = diag(IN,−IN), (11)

formed by a normal vacuum state, which is described by
a normal-state Hamiltonian consisting of N flat bands with
a chemical potential set at negative infinity. Under such a
construction, each Hamiltonian H belongs to the phase repre-
sented by the triple [E, H, H0], and the triple [E, H0, H0] is the
identity element in the K group. It is worth noting that under
different symmetry actions implicitly specified by E and E ′,
the triples [E, H, H0] and [E ′, H, H0] can represent different
phases even though the Hamiltonians are in the same form H
and H0.

Given the K group of the considered symmetry class, now
the goal is to construct the topological invariants that are
capable of distinguishing Hamiltonians that belong to topo-
logically inequivalent phases. Specifically, we are after the
phase label ν(E, H, H0), which should take different values
for triples belonging to different equivalent classes. Nonethe-
less, it is practically hard to write the actual form for ν. We
therefore turn to writing down invariants w(ε, h) defined for
a given Hamiltonian h living in the vector bundle ε (instead
of a given triple). The key difficulty in writing w occurs when
the symmetry operators carry momentum dependence, which
is implicitly encoded in vector bundle ε. In such cases, the
topological invariant w is generally nonzero for the trivial
Hamiltonian h = H0 defined in Eq. (31). This could therefore
lead to confusion when identifying topological phases be-
cause H0 necessarily corresponds to a trivial phase even when
w(ε, H0) = 0 due to the nontrivial vector bundle ε (shown by
the real-space classification in Sec. V A).

We propose to resolve this issue in the following way. To
account for the contribution to the invariant w from reference
Hamiltonian H0, we need to find a Hamiltonian Hc acting on
a vector bundle Ec such that all the invariants vanish for H0 ⊕
Hc, i.e., w(E ⊕ Ec, H0 ⊕ Hc) = 0. Such Hc is H0-dependent,
and should cancel out the implicit H0 contribution to w even
when the symmetry operators are momentum dependent. This
implies that when calculating the topological invariant w for
a given Hamiltonian H of interest, the correct quantity to
calculate is w(E ⊕ Ec, H ⊕ Hc), which guarantees that w = 0
when H is trivial for any choice of E . In other words, we have
identified this practically calculable quantity as the phase label
defined for the corresponding triple:

ν(E, H, H0) := w(E ⊕ Ec, H ⊕ Hc). (12)

This quantity w(E ⊕ Ec, H ⊕ Hc) is what we will write and
compute for the 1D and 2D invariants for our case study in
the following subsections.

To provide some examples for the choice of Hc, when the
invariants w of a given system are symmetry indicators, it
has been proposed that the reference Hamiltonian H0 should
be accounted for by subtracting the symmetry indicators of
H0 [36,50,53,54]. This is equivalent to setting Hc = −H0

in our approach. Another example is our current case of
2D class-DIII superconductors with C2 rotational symmetry,
where the invariants w are not symmetry indicators but 1D
and 2D invariants. We will show in Secs. IV B and IV C that
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we can generally choose Hc = H0 for the Z2 invariants we
write.

B. One-dimensional invariants

In this subsection, we propose an explicit form for the
Z2 invariants w1 defined on 1-cells, which can distinguish
phases in the subgroup E1,−4

∞ of the K group. We write this
form of w1 based on our AHSS result, which shows that the
contribution to the total K group from the three independent
1-cells {a, b, c} is three copies of Z2, each obtained from
π1(R7)/Im(d0,−4

1 ) = Z2. The key idea here is to consider the
sewing matrix S [see Eq. (9)] and the derived SI/II, both
restricted to the 1-cells, since they live in the space of R7

as the number of bands goes to infinity. The first homotopy
class of SI/II, in general, takes all integer values. Nonetheless,
when requiring this quantity to be gauge invariant under the
T -constant and smooth gauge conditions, under which SI/II

is well-defined, the redundant gauge degrees of freedom in-
cluded in Im(d0,−4

1 ) can be removed and the first homotopy
class of SI/II becomes a Z2 quantity. We therefore propose
writing each of the Z2 invariant w1 as the first homotopy
class of SI/II under the T -constant and smooth gauge. These
three Z2 invariants defined on the three 1-cells together can
diagnose whether a given superconductor is in the first-order
strong topological superconducting phase, and we will discuss
how to predict the actual boundary signatures in Sec. V.

Specifically, for a given BdG Hamiltonian, we start from
the quantity

w1 j = 1

2π

∫
j
dk ∂k ln det S mod 2, j = a, b, c, (13)

which is the line integral of the phase of the sewing matrix
S [see Eq. (9)] along 1-cell j. Here, S is calculated under the
T -constant and smooth gauge conditions, where S is well-
defined and can be block-diagonalized into S = diag(SI,SII )
with SI and SII being the time-reversal partner of each other.

Under this gauge, we can further express w1 j as a loop
integral over only one of the time-reversal copies in the sewing
matrix

w1 j = 1

2π

∮
l ( j∪ j′ )

dk ∂k ln det SI

= 1

2π

∮
l ( j∪ j′ )

dk ∂k ln det SII, (14)

where l ( j ∪ j′) denotes the loop formed by a 1-cell j ∈
{a, b, c}, its symmetry-related counterpart j′, and the bound-
ary between them (see Fig. 1), and the second equality is
true since the T -constant condition implies ∂k ln det SI (k) =
−∂k ln det SII(−k). Importantly, it is clear from Eq. (14) that
w1 j is the winding number of the phase of SI/II over the 1-cell
loop, which characterizes the first homotopy class of SI/II.

Since SI/II lives in space R7, w1 j corresponds to the group
elements in π1(R7) = Z [63,82] and takes all integer values.
Nonetheless, by requiring the winding number w1 j to be
gauge invariant under the T -constant and smooth gauge con-
dition, w1 j becomes a Z2 invariant after the redundant gauge
degrees of freedom are removed. To see this, first note that
when SI/II undergoes a gauge transformation in Eq. (10) with

a general transformation matrix U (k), the integrand ln det SI/II

in Eq. (14) becomes ln det SI/II − 2 ln det U . When we impose
the T -constant and smooth gauge conditions both before and
after the transformation, according to Eq. (14), w1 j changes
by a multiple of 2. We therefore find that w1 j should be
a Z2 quantity, and this redundant degree of freedom within
the T -constant and smooth gauge conditions necessitates the
modulo 2 operation in Eq. (13).

After establishing that the quantity w1 j is Z2, we now
proceed to the last step for writing down the 1D invariant for
our case study. This last step is to remove the unwanted hidden
contribution to w1 j for a given BdG Hamiltonian H from
the universal reference Hamiltonian H0 defined in Eq. (31).
Such a contribution is generally nonzero when the combined
symmetry T R is momentum dependent. This issue can be
resolved by revisiting the relation in Eq. (12) between the
fundamental phase label ν defined for a given triple [E, H, H0]
and the calculable invariant w defined for a given Hamiltonian
H living in the vector bundle E . Applying our general discus-
sion in Sec. IV A to the 1D invariant w1 j , we can further write
Eq. (12) into

ν1 j (E, H, H0) = w1 j (E ⊕ Ec, H ⊕ Hc)

= w1 j (E, H ) + w1 j (Ec, Hc), (15)

where Ec and Hc are chosen such that w1 j (E ⊕ Ec, H0 ⊕
Hc) = 0. The second line follows from the fact that the sewing
matrix for H ⊕ Hc can be written as the direct sum of those for
H and Hc, which is clear from Eq. (9). For the case of w1 j , we
choose Hc = H0 because w1 j is a Z2 quantity. Therefore, we
conclude that the 1D invariant that we should calculate for a
given system is

ν1 j (E, H, H0) = w1 j (E, H ) + w1 j (E, H0), (16)

which guarantees removing the contribution from the refer-
ence Hamiltonian H0 implicitly hidden in w1 j (E, H ) regard-
less of the momentum dependence of the symmetry operator
T R.

Finally, we make a remark about the relation between our
Z2 invariant w1 j and the Berry phase. Berry phase γ is a well-
known quantity that captures the topological properties in
various systems. It is defined as the path integral γ = ∫

C dk ·
Ak (mod 2π ) of the Berry connection Ak = 〈uk|i∇k|uk〉 for
an eigenstate |uk〉 at momentum k, and is quantized when the
path C is a closed loop. When the combined symmetry T R of
time-reversal and twofold rotation is momentum-independent,
similar to what was shown in Ref. [62], the invariant w1 j [see
Eq. (14)] can be related to the Berry phase as w1 j = γ /π .
When the combined symmetry T R is momentum dependent,
by removing the possibly nonzero contribution from the uni-
versal reference Hamiltonian H0 following Eq. (15), we can
arrive at a similar relation w1 j (E, H ) + w1 j (E, H0) = γ /π .

C. Two-dimensional invariant

In this subsection, we propose a way to compute the Z2 in-
variants ν2 defined on 2-cells, which can distinguish phases in
the subgroup E2,−5

∞ of the total K group. This expression of w2

that we find is based on our AHSS result, which shows that the
contribution to the total K group from 2-cells is π2(R7) = Z2.
Similar to the w1 case, it is tempting to identify the second
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homotopy class of the sewing matrix as the invariant w2 since
the sewing matrix lives in the space R7. However, in contrast
to the case of w1, which is clearly the winding number of
the sewing matrix along a 1-cell loop, it is not clear how to
explicitly calculate the second homotopy class of the sewing
matrix defined on 2-cells. In the following, we will show how
to construct an expression for w2 by mapping this quantity to
a transition function defined on a 1D path, which is calculable
under certain cases that have no obstruction to the T -constant
and smooth gauge condition over the 2-cells. This Z2 invariant
w2, as we will see in Sec. V, can diagnose the higher-order
topological superconducting phase protected by the twofold
rotational symmetry.

For the purpose of mapping the second homotopy class of
the sewing matrix to a more tangible quantity, we invoke two
isomorphisms [63,83]

π2(U (N )/O(N )) ∼= π2(U (N ), O(N )) ∼= π1(O(N )), (17)

where π1(O(N )) is the first homotopy group of O(N ), and
π2(U (N ), O(N )) is the second relative homotopy group for
which the interior and the boundary of the 2D base space map
to the target spaces of U (N ) and O(N ), respectively. We will
now apply Eq. (17) to a given BdG Hamiltonian with 2N0

occupied states from our case study.
For the leftmost term in Eq. (17), we restrict ourselves to

the cases where the T -constant and smooth gauge conditions
are imposed over the 2-cells. Under such gauge conditions, the
sewing matrix S is well-defined everywhere on the BZ and
can be block-diagonalized into two time-reversal copies SI

and SII. We can therefore interpret an element in the leftmost
term as the second homotopy class of the sewing matrix SI/II

defined on 2-cells since SI/II lives in the space U (N )/O(N )
under such gauge conditions. This thus corresponds to our
target invariant w2.

Next, by forming a concrete construction through the mid-
dle term in Eq. (17), we show that the rightmost term naturally
corresponds to a well-defined quantity that we can calcu-
late for w2. This can be most conveniently done under a
construction proposed in Ref. [63] for insulators with the
combined symmetry of time reversal and C2 rotation, which
we describe as follows. The first step is to construct the
base space of the homotopy group π2(U (N )/O(N )) by dis-
torting the space formed by the 2-cells and their boundary
(i.e., the BZ) to a 2-sphere. To this end, first notice that since
the 1D invariant w1 [see Eq. (14)] is a Z2 quantity, we can
always find a non-contractible loop l1 (or the sum of the two
noncontractible loops) on the two-torus along which w1 is
trivial. Since w1 = 0, the sewing matrix SI/II defined along
this loop l1 is equivalent to a k-independent sewing matrix
SI/II (whose w1 is clearly also 0) in the sense that they are
related by a gauge transformation [see Eq. (10)] within the
T -constant and smooth gauge conditions. We can therefore
cut the BZ open along l1 and safely identify all the momentum
points on each of the two open edges, which all map to the
same constant sewing matrix SI/II, as a point. This operation
produces a 2-sphere, as illustrated in Fig. 2.

The second step is to transform the sewing matrix SI/II(k)
under the smooth gauge, which can be factorized into
SI/II(k) = U (k)U (k)T using some unitary matrix U (k), into
the real gauge such that SI/II(k) = I for all k on the 2-sphere.

(a) (b)

FIG. 2. Schematics for the procedure of constructing a 2-sphere
from the BZ when computing the 2D invariant w2. (a) shows the BZ
before the procedure, which is denoted by the rectangle. The BZ is
separated into the left (L) and right (R) patches in a way that the
real-gauge wave functions are smooth within each of the patches but
can be discontinuous across the closed loop l2. We then cut the BZ
open along the closed loop l1 and collapse the open edges into two
points to obtain the 2-sphere in (b).

Specifically, this can be done by Eq. (10) with the trans-
formation matrix V (k) = U (k). Under this transformation,
although SI/II(k) simplifies into the identity, the occupied
wave functions may have to sacrifice the smooth condition
and suffer discontinuity at some k’s.

For simplicity, consider the case where the occupied wave
functions in the real gauge are everywhere smooth but suffer
discontinuities across some closed loop l2. In this case, the
real-gauge wave functions |uL(k)〉 and |uR(k)〉 defined on the
two hemispheres k ∈ L and R [see Fig. 2(b)] are related by a
transition function matrix O1(k) defined on the loop l2

O1,mn(k) = 〈u′
L,m(k)|u′

R,n(k)〉, k ∈ l2. (18)

Here, m, n = 1, . . . , N0 are band labels for the occupied wave
functions, and the prime symbol ′ in |u′〉 indicates that the
wave function is in the real gauge. Importantly, since the wave
functions are in the real gauge, the transition function matrices
O1(k) along the closed loop k ∈ l2 are orthogonal and belong
to the space O(N ).

This discontinuity carried by the real-gauge wave functions
is also embedded in the transformation matrix U (k), which
transforms the sewing matrix SI/II (k) from the smooth to the
real gauge. Specifically, suppose the wave functions transform
from the smooth to real gauge on each of the two hemi-
spheres L/R as |uL/R(k)〉 → |u′

L/R(k)〉 = UL/R(k)|uL/R(k)〉.
The transformation matrices UL(k) and UR(k) on the two
hemispheres are both defined on the loop l2, but are related
by a transition function O1(k) along loop l2:

UR(k) = UL(k)O1(k), k ∈ l2. (19)

The third step is to relate the above-mentioned construc-
tion to the middle term π2(U (N ), O(N )) in Eq. (17). To
this end, we focus on a specific smooth gauge for which
the left and right transition matrices along the closed loop
l2 are ŨL(k) = I and ŨR(k) = O1(k), respectively. We can
choose this specific gauge for convenience and without lost
of generality because all gauges that satisfy the T -constant
and smooth conditions are considered equivalent. It follows
that the right transformation matrix ŨR(k) lives in the space
of U (N ) within the internal right hemisphere, but lives in
O(N ) on the boundary loop l2. The map from the right
hemisphere k ∈ R (including the boundary loop l2) to the
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space of ŨR(k) is therefore described by an element in the
middle term π2(U (N ), O(N )) in Eq. (17).

Under this construction, we can further interpret the right-
most term in Eq. (17) as the first homotopy group of the
transition matrix O1(k) along the boundary loop k ∈ l2 of the
right hemisphere, which provides a concrete way to express
the 2D invariant w2 in certain cases. For instance, for the case
where N0 = 2 and O1(k) is in the form of e−iα(k)σy , the 2D
invariant can be computed as

w2 =
∮

l2

dk ∂kα(k), (20)

which is the winding number of the transition function along
the discontinuity loop l2.

Finally, we comment on the situations where our proposed
form for w2 does not hold. First, the construction described
in Sec. IV C only holds when there is no obstruction in sat-
isfying the T -constant and smooth gauge conditions. When
there is no gauge under which the T -constant and smooth
conditions are satisfied everywhere on the BZ, the sewing
matrix SI/II(k) becomes ill-defined at some point k in the
BZ. Such obstruction could be detected upfront using our 1D
invariants ν1a and ν1c [see Eq. (15)] defined on 1-cells a and
c. Specifically, based on the detection of obstruction proposed
in Ref. [84] for cases with reflection symmetry, we conjec-
ture that ν1a + ν1c = 1 implies such an obstruction (see an
example of 2D first-order topological superconducting phase
later in Sec. V D). In this case, w2 is ill-defined. We note that
the obstruction is intrinsic and is not just an avoidable tech-
nical obstruction. As seen below, the physical consequence
is that the boundary supports helical Majorana edge modes
protected by time-reversal symmetry and hence there is no
way to consistently address half of the time-reversal related
pair throughout the BZ. Second, without the obstruction, the
first homotopy group of the transition function O1(k), which
is generally an orthogonal matrix instead of a unitary matrix,
is not always easily written as an integral along k ∈ l2. Here a
well-defined w2 exists but an explicitly calculable expression
for w2 remains elusive. We therefore introduce an alternative
way of expressing w2 in the next subsection.

D. Interpretation as Stiefel-Whitney classes

Given the limitation of the w2 expression we proposed
in Sec. IV C, in this subsection we seek a more generally
calculable expression for w2. Our strategy is to employ the
fact that, mathematically, for a given real vector bundle, there
are a series of Z2 invariants given by the S-W classes, which
characterizes various properties of the real vector bundle.
Specifically, the ith S-W class takes value in the ith coho-
mology class of the base space with Z2 coefficients, which
indicates how similar the vector bundle is to a product vector
bundle on the i-dimensional subspaces of the base space [85].
For instance, the first S-W class assigns the value 0 or 1 to
each non-contractible loop when the bundle is orientable or
nonorientable on the loop. Since both of the invariants w1 and
w2 for 2D time-reversal superconductors with C2 symmetry
are Z2 quantities, which we know from our AHSS results in
Table III, our goal is to obtain a real-vector-bundle description
for the considered superconductors and examine if the S-W

classes can distinguish phases that w1 and w2 are supposed to
discern. This strategy of writing down topological invariants
has in fact been applied to insulators with a combined symme-
try T R of time reversal and twofold rotation by Refs. [62,63].
Here, we will apply a similar approach to identify our expres-
sions for w1 and w2 [see Eq. (14) and Sec. IV C] as the first
and second S-W classes of real vector bundles that describe
2D superconductors with both the time-reversal T and two-
fold rotation R symmetries. Importantly, we will show that a
well-known relation between the first and second S-W classes
allows us to express w2 in terms of w1, which we know how
to calculate explicitly [see Eq. (26)].

We first show that w1 can be identified as the first S-W
class of a rank-N0 real vector bundle E1, which is defined as
follows. The base space of E1 is a closed loop formed by
a 1-cell j ∈ {a, b, c}, its symmetry related 1-cell j′, and the
boundary between them (see Fig. 1). For the vector space of
E1, we impose the T -constant gauge condition on the 2N0

occupied wave functions along the loop such that these wave
functions can be split into two time-reversal-related sets of N0

wave functions I and II. We then define the vector space of E1

as the space spanned by the occupied wave functions of set I
(or, equivalently, set II) in the real gauge. The resulting vector
bundle E1 is a rank-N0 real vector bundle.

The first S-W class of the vector bundle E1 is the orientabil-
ity of E1, which can be extracted from set I of real-gauge
occupied wave functions as follows. Although it is always
possible to demand the wave functions to be in the smooth
gauge along the base space l̃ j = l ( j ∪ j′), which is a 1D
loop, the wave functions may inevitably suffer discontinuous
π -phase shifts when transformed into the real gauge. In such
cases, we can detect a π -phase shift that occurs at momentum
k ∈ l̃ j by the transition function matrix

O1,mn(k) = 〈u′
m(kL )|u′

n(kR)〉, (21)

where |u′
n(kL/R)〉 is the nth real-gauge occupied wave function

within the left and right neighborhoods about k ∈ l̃ j . Since the
transition function formed by real-gauge wave functions is an
orthogonal matrix, its determinant det O(k) = 1 or −1, which
corresponds to the absence or presence of a π -phase shift at k.
Thus, the vector bundle E1 is said to be orientable and nonori-
entable if there exists even and odd numbers of momenta k
with det O(k) = −1, respectively. We can therefore determine
the first S-W class for each loop l̃ j , which is a Z2 number that
labels the orientability of the vector bundle.

We now further relate the first S-W class to our 1D invari-
ant w1 [see Eq. (14)], which is given by the winding number
of the sewing matrix SI/II of one time-reversal copy along a
1-cell loop l̃ j . To this end, note that the discontinuous π -phase
shifts of the wave functions along l̃ j are also embedded in
the gauge transformation matrix U that transforms the sewing
matrix SI/II = UU T in the smooth gauge to that in the real
gauge SI/II = I [see Eq. (10)]. Specifically, the transformation
matrix across some momentum k at which a π shift occurs
also suffers a jump given by the transition function O1,

U (kR) = U (kL )O1(k), (22)

where kL/R are momenta in left and right neighborhoods about
k. Each of the transition functions O1(k) with det O(k) = −1
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contributes a nontrivial π phase winding for U (k). This im-
plies that the phase winding of U (k) along the closed loop l̃ j

is given by
∮

l̃ j
dk∂k ln det U (k) = 0 or π when the first S-W

class is trivial or nontrivial, respectively. This orientability
of the vector bundle E1 is also carried by the smooth-gauge
sewing matrix through the winding of U (k) since SI/II (k) =
U (k)U (k)T . Specifically, the phase winding of the sewing
matrix SI/II(k) along the 1D loop l̃ j is given by twice of that
of U (k). The corresponding winding number of SI/II, which
is just the 1D invariant w1 we obtained from our AHSS result
[see Eq. (14)], is therefore given by

w1 = 1

2π

∮
l̃ j

dk∂k ln det SI/II(k) = 0 or 1 (23)

when the first S-W class is trivial or nontrivial, respectively.
We have thus identified our proposed 1D invariant w1 as the
first S-W class of the real vector bundle E1.

Next, we show that w2 can be identified as the second
S-W class of the following rank-N0 real vector bundle E2. The
base space of E2 is the closed space formed by an orbit of
2-cells and the boundary between them, which is the entire
BZ (see Fig. 1). The vector space of E2, similar to that of E1,
is the space spanned by the occupied wave functions of set
I (or, equivalently, set II in the T -constant and real gauge.
The second S-W class of a vector bundle is a Z2 quantity
that describes whether there exists a set of orthogonal basis
everywhere on the BZ, and is mathematically given by the
first homotopy class π1(O(N )) of the group of orthogonal
matrices. For the vector bundle E2, by applying the arguments
in Ref. [63] for insulators to our superconducting case, we can
identify the winding number of the orthogonal transition func-
tion O1(k) (see Sec. IV C) defined on some noncontractible
loop in the BZ as the second S-W class of E2. Since we have
shown that the 2D invariant w2 can also be calculated by this
winding number [see the discussion near Eq. (20)], we can
identify w2 as the second S-W class of E2.

Now that we have identified our invariants w1 and w2 as
the first S-W class of vector bundle E1 and the second S-W
class of E2, respectively, we are ready to obtain a practically
calculable expression for w2 using the well-known Whitney
sum formula

Wn(E ⊕ Ẽ ) =
∑

i, j�0,i+ j=n

Wi(E )  Wj (Ẽ ), (24)

where Wn for n � 1 denotes the nth S-W class with W0 being
the trivial cohomology class [85],  denotes the cup product,
and E , Ẽ are real vector bundles. Since this formula relates
higher-order to lower-order S-W classes of different vector
bundles, we can apply Eq. (24) to express w2 in terms of w1,
for which we have proposed a broadly calculable expression
[see Eq. (14)].

To apply the Whitney sum formula to our case, we consider
a given time-reversal BdG Hamiltonian H with 4N0 bands
and write H = ⊕N0

s=1 Hs
sub as the direct sum of N0 four-band

sub-Hamiltonians Hs
sub labeled by s. We can then construct a

rank-1 real vector bundle Es for each sub-Hamiltonian Hs
sub,

where the base space is the BZ and the rank-1 vector space
is spanned by one of the two time-reversal-related occupied
states in the real gauge. The direct sum of these rank-1 real

vector bundle Es leads to the vector bundle Etot = ⊕N0
s=1 Es,

for which the vector space is spanned by one of the two
sets of time-reversal-related occupied states of the full BdG
Hamiltonian H . We can now relate the S-W classes of these
rank-N0 and rank-1 bundles using the Whitney sum formula

W2(Etot ) =
∑
(s,s′ )

W1(Es)  W1(Es′ ), (25)

where the sum is over all unordered pairs of (s, s′) with
s, s′ = 1, . . . , N0. Here, we have made use of the fact that the
second S-W class for a rank-1 bundle is always trivial such
that W2(Es) = 0 for all s [86].

The last step is to express the 2D invariant w2 in terms of
the 1D invariant w1 through Eq. (25). The left-hand side of
Eq. (25) corresponds to w2 since we have identified w2 as the
second S-W class of the vector bundle E2, and the real vector
bundle E2 is just Etot. For the right-hand side of Eq. (25), the
first S-W class W1(Es) gives the orientabilities of Es along the
non-contractible 1D loops in the BZ. To relate these to w1’s,
we focus on a bundle Ẽs, j out of Es by restricting the base
space from the full BZ to one of the non-contractible loops l̃ j ,
j ∈ {a, b, c}. Its orientability, previously identified with w1 j ,
is the same as the orientability of Es along l̃ j . Moreover, we
only consider the two inequivalent non-contractible loops l̃b
and l̃c given that the loops l̃a and l̃c (see Fig. 1) belong to
the same homology class. The right-hand side of Eq. (25)
thus corresponds to the sum of all possible products of the
1D invariants w1 for four-band sub-Hamiltonians defined on
orthogonal loops. By combining the left- and right-hand sides
of the Whitney sum formula, we arrive at an expression of w2

in terms of w1,

w2 =
∑
(s,s′ )

(
ws

1bw
s′
1c + ws

1cw
s′
1b

)
, (26)

where ws
1 j can be calculated by Eq. (14) for a sub-Hamiltonian

Hs
sub defined on the 1-cell loop l̃ j . In the above, we focus on

the case without obstruction to the T -constant and smooth
gauge conditions, where w2 and E2 are well-defined. Note
that there is no nice decomposition for the w2 invariant in
contrast to the case of 1D invariants [Eq. (15)]. It is thus
necessary to compute the invariant w2 for the total Hamil-
tonian, including the reference Hamiltonian when there is a
momentum-dependence in the T R symmetry operator. The
invariant w2 computed in this way is by definition the invariant
ν2 in Eq. (12).

V. BULK-BOUNDARY CORRESPONDENCE

Equipped with calculable expressions for the 1D and 2D
invariants w1 and w2, we now show that instead of just di-
agnosing the bulk topology, these bulk invariants are also
capable of diagnosing the type of boundary Majorana modes.
To establish this bulk-boundary correspondence for our case
study, our strategy is to turn to classification analyses in the
real space, where the boundary modes for each phase can
be most naturally studied. In this section, we first study the
real-space classification as well as the Majorana boundary
type of each phase for 2D time-reversal superconductors with
C2 symmetry. We then study our invariants ν1 j , j = a, b, c and
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FIG. 3. The symmetry-preserving cell decomposition for a unit
cell in the real space. The coordinates (x, y) denote the 0-cells, the
brown lines e(1)

i , i = 1, 2, 3 denote the three independent 1-cells, and
the shaded area in grey e(2) denotes the independent 2-cell.

ν2 for each of these phases, whose Majorana boundary type
is known, to understand how to predict boundary signatures
from the momentum-space invariants. This is the key step
in our protocol, which combines the momentum-space and
real-space classification results to establish the bulk-boundary
correspondence for our case study.

A. Real-space classification

The real-space classification method we adopt is the topo-
logical crystal approach [64–71], which is a general real-space
treatment for topological crystalline phases, and is dual to
the momentum-space classification method AHSS we used
in Sec. III. The main idea of this method is that any
d-dimensional topological crystalline state is adiabatically
connected to a real-space stacking of building blocks, which
are db-dimensional topological states with db � d that do
not exhibit crystalline symmetries. From this building block
picture, one can readily determine the boundary signature of
each of the topological crystalline superconducting phases
with C2 symmetry. We will show in the following that all the
noninteracting resultant states built by the real-space building
blocks for this symmetry class can be characterized by our
proposed invariants w1 and w2.

The first step of the topological crystal approach is to per-
form the C2 symmetric cell decomposition in the real space.
Figure 3 is a decomposition of the unit cell that respects the
required symmetries in the real space. The high-symmetry
points are marked with their coordinates. The independent 1D
cells are e(1)

1 , e(1)
2 , and e(1)

3 ; the independent 2D cell is e(2). All
the other cells are related to them by symmetries.

The second step is to identify the 0D, 1D, and 2D building
blocks that live on different dimensional cells. For our sys-
tems, there are no 0D building blocks since the classification
of the effective 0D BdG Hamiltonian is trivial. This can be
seen from the following. The two irreps of C2 rotation la-
beled by R = ±i are mapped to each other by T or P . At
any high symmetry point (0-cells), the emergent AZ class
for either irrep is therefore AIII since the chiral symmetry
PT maps one irrep to itself. Since the classification for 0D
class-AIII BdG Hamiltonians is trivial, there are no nontrivial
0D building blocks in our topological crystal analysis. We

nonetheless have nontrivial 1D and 2D building blocks. Since
the 1-cells and 2-cells (i.e., any point in a unit cell besides
the high-symmetry points) exhibit emergent time-reversal and
particle-hole symmetries, there exist a 1D building block of
a time-reversal-invariant Kitaev chain (spinful Kitaev chain)
and a 2D building block of a 2D time-reversal-invariant TSC
with helical edge states.

By stacking these nontrivial building blocks into 2D su-
perconducting states in different symmetry-allowed ways,
we can obtain the representative states for all topologically
distinct phases in the considered symmetry class. These rep-
resentative states built by building blocks, which are dubbed
building-block states, can be generated from the following
four fundamental block constructions: The first three are 1D-
block states built by placing a spinful Kitaev chain on one of
the 1-cells e(1)

1 , e(1)
2 , and e(1)

3 in every unit cell. The last one is
a 2D-block state built by placing a 2D TSC on the 2-cell e(2)

in every unit cell. The rest of the representative states can then
be generated by the direct sums of these 1D- and 2D-block
states.

Based on the topological crystal classification, the classi-
fying group K̃ of the 2D time-reversal superconductors with
C2 symmetry is described by the short exact sequence

1 → Z3
2 → K̃ → Z2 → 1. (27)

Here, the entry Z3
2 is generated by the 1D block states with a

spinful Kitaev chain placed on each of the three 1-cells e(1)
i ,

i = 1, 2, 3, and the entry Z2 is generated by the 2D block state
with a 2D TSC placed on the 2-cell e(2). The full classification
group K̃ is given by the group extension of Z2 by Z3

2. By
examining the resultant state from stacking two copies of 2D
TSC’s (see Appendix B), we show that the group extension is
trivial, so the classifying group K̃ = Z4

2.
Now we comment on the relation between the real-space

and the momentum-space classification. The AHSS calcu-
lation leads to the subgroups of K that obey a short exact
sequence [see Eq. (A8)] but does not reveal the full group
structure of K . To determine K , one needs to solve the group
extension problem for Eq. (A8), which can be done with the
help of the block-state picture (see Appendix D). We find
that K = Z4

2, which matches with the real space classifica-
tion K̃ = Z4

2. However, the group multiplication rule of K is
ambiguous. Finally, we note that the information about the
group extension is not necessary for the purpose of finding
momentum-space invariants.

B. Boundary signatures of building-block states

The boundary signatures of these building block states can
be naturally obtained from their block constructions. For each
building-block state, we describe the protecting symmetry
and the Majorana boundary signature separately using the
following terminology. Depending on whether the protecting
symmetry of the state is the translational symmetry or one
of the time-reversal and C2 symmetries, the state is said to
belong to a weak or strong phase, respectively. On the other
hand, we define the order of a state with symmetric boundary
terminations to be the lowest co-dimension of boundaries
with gapless Majorana boundary modes. Following our def-
inition, the order of a state directly indicates the dimension of
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Majorana boundary modes that can be probed in experiments.
For example, a state that supports gapless Majorana modes on
partial or all edges is a first-order state, regardless of the pro-
tecting symmetry. A state that supports Majorana zero modes
at two C2-related corners is a second-order state. Finally, a
state built by stacking first-order and second-order states is
considered first order in our definition. In this case, we expect
only Majorana edge modes are visible under experimental
probes since the corner modes are embedded in the edge
modes.

We now discuss the protecting symmetries and the bound-
ary signatures of a few important building block states. First,
the 2D-block state built by placing 2D TSCs on 2-cells e(2) is
clearly a first-order strong state that is protected by the time-
reversal symmetry and hosts helical Majorana edge modes.
Second, a second-order strong state with Majorana corner
modes can be obtained by building a 1D-block state with one
spinful Kitaev chain on each of the 1-cells e(1)

1 and e(1)
3 [33,36].

This can be understood as follows. When we break the C2-
rotational symmetry, all the 1D blocks on e(1)

3 can move
toward the 1D blocks on e(1)

1 and annihilate in pairs without
breaking the translational symmetry. In this case, no boundary
signature survives and the state is trivialized by the breaking
of C2 alone. In contrast, when we break the translation but
preserve the C2 rotational symmetry, most 1D blocks can still
annihilate in pairs in a C2-symmetric way but the one on e(1)

1
that threads through the C2z-rotational axis will survive. Due
to this single 1D block that survives due to C2, the resulting
state supports two C2-related 0D Majorana zero modes and
is therefore a second-order strong phase protected by the C2

symmetry.
We can further achieve a weak state by a 1D-block state

built with a spinful Kitaev chain on the 1-cell e(1)
3 . This state

is purely weak because, when the translational symmetry is
broken, the Kitaev chains in different unit cells can move to
annihilate each other completely such that no boundary signa-
ture is left. Under our definition, this weak state is first order
since we expect Majorana bands along y-direction edges. Sim-
ilarly, the first-order weak state with Majorana bands along x
edges can be constructed by placing one spinful Kitaev chain
on each of the three 1-cells.

Finally, the 1D-block state built by placing a spinful Kitaev
chain on e(1)

1 or e(1)
2 , which are the 1-cells that thread through

the C2z-rotational axis, can be viewed as the combination of
a first-order weak state and a second-order strong state. This
is because when we break the C2-rotational symmetry, all 1D
blocks (the spinful Kitaev chains) can still survive under the
translational protection such that the state supports Majorana
bands along y or x edges. In contrast, when we break the
translation but preserve the C2 rotational symmetry, all 1D
blocks can annihilate in pairs in a C2-symmetric way except
the spinful Kitaev chain that threads through the C2z-rotational
axis. Due to this single 1D block, the resulting state supports
two C2-related 0D Majorana zero modes and is therefore a
second-order strong phase protected by the C2 symmetry. As
a combination of the above two states, this 1D block state is
considered a mixture of weak and strong states in terms of the
protecting symmetries, and is considered first order in terms
of the boundary signature under our definition.

We emphasize that these building-block states serve as
the representatives of the whole phase—any other state is
adiabatically connected to a building-block state if they are in
the same phase (see Sec. V A.). We therefore expect that the
same Majorana boundary signature found in a representative
building-block state is shared by the entire phase to which it
belongs. In the following, we will construct minimal models
for the four fundamental 1D- and 2D-block states and explic-
itly compute our proposed topological invariants w1 and w2

[defined in Eq. (14) and Eq. (26)]. Through such calculations,
we will be able to establish how w1 and w2 are related to
the Majorana boundary signature of each of the topologically
distinct phases.

C. 1D-block states

We start from the 1D-block states. First, we focus on the
state formed by stacking spinful Kitaev chains [50] on the
1-cells e(1)

1 only. According to our topological crystal analysis
in Sec. V B, this state belongs to a first-order phase with
Majorana bands along the y-directional edges. To explicitly
compute our proposed invariants w1 and w2, we consider the
following minimal BdG model:

HKC(k) = −(cos kx + m)τzσ0 + sin kxτxσz, (28)

where |m| < 1, and τi and σi are 2 × 2 Pauli matrices in
the particle-hole and spin spaces, respectively. We denote the
vector bundle on which this model HKC acts by Ee(1)

1
, and

the symmetry operators respecting the commutation relations
Eqs. (4) and (5) are given by

T = iσyK, P = τxK, R = iτzσz, (29)

where K is complex conjugation.
To compute the proposed topological invariants, the first

step is to write the wave functions explicitly in the basis of
the eigenstates | ± ±〉 of both τz and σz, where the former
and latter ± denote the corresponding τz and σz eigenvalues
±1, respectively. In the basis of {++,+−,−+,−−}, the two
real-gauge occupied states of energy −ε0 are

ψ1(k) = 1

2
√

ε0(kx )

⎛
⎜⎜⎜⎜⎝

i
√

cos kx + m + ε0√
cos kx + m + ε0

−i sin kx√
cos kx+m+ε0
sin kx√

cos kx+m+ε0

⎞
⎟⎟⎟⎟⎠,

ψ2(k) = 1

2
√

ε0(kx )

⎛
⎜⎜⎜⎜⎝

√
cos kx + m + ε0

i
√

cos kx + m + ε0

− sin kx√
cos kx+m+ε0

i sin kx√
cos kx+m+ε0

⎞
⎟⎟⎟⎟⎠, (30)

where ε0(kx ) =
√

m2 + 2m cos kx + 1. Note that these two oc-
cupied states are Kramers pairs such that T ψ1(k) ∝ ψ2(−k),
and they are not continuous across kx = π .

The second step is to write the reference Hamiltonian H0.
By taking m in HKC to the negative infinity, we find

H0 = τzσ0, (31)

which acts on Ee(1)
1

and the symmetry operators have the same
forms as in Eq. (29). The occupied states of H0 are two
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degenerate k-independent flat bands with a τzσ0-eigenvalue of
−1. Due to the k-independence, both the 1D and 2D invariants
vanish for the reference Hamiltonian H0 such that

ν1 j
(
Ee(1)

1
, HKC, H0

) = w1 j
(
Ee(1)

1
, HKC

)
, j = a, b, c,

ν2
(
Ee(1)

1
, HKC, H0

) = w2
(
Ee(1)

1
, HKC

)
, (32)

where j = a, b, c labels the 1-cells in the momentum space
(see Fig. 1). We can therefore directly calculate w1 j and w2

for HKC without worrying the contribution from H0.
The last step is to compute w1 j following Eq. (13) and

w2 as the second S-W class. For the 1-cell j = a, we restrict
the real-gauge wave functions ψ1(k) and ψ2(k) on the closed
loop l (a ∪ a′) in the momentum space (see Fig. 1). We then
perform a gauge transformation U = e−i kx

2 I2×2 from the real
gauge to a smooth and T -constant gauge, where the identity
I2×2 acts on the eigenbasis of ψ1 and ψ2. In this gauge,
the sewing matrix becomes S = eikxI2×2 such that the 1D
invariant on 1-cell j = a is clearly w1a = 1 [see Eq. (13)].
Similar treatment for the other 1-cells j = b, c shows that
w1b = 0, w1c = 1. For the 2D invariant w2, we interpret w2 as
the second S-W class of the rank-1 vector bundle Ẽ formed by
either ψ1 or ψ2. This can be done because the 1D real vector
space spanned by one of the two real-gauge wave functions
ψ1/2(k) is well-defined in the entire BZ. Since the second
S-W class for a rank-1 vector bundle is always trivial, we find
w2 = 0. To summarize, we find that the 2D superconducting
state formed by stacking one spinful Kitaev chain per 1-cell
e(1)

1 in the real space is characterized by the following 1D and
2D topological invariants defined in the momentum space

ν1a = ν1c = 1, ν1b = 0, ν2 = 0. (33)

Correspondingly, in the real space this superconducting state
supports Majorana bands along the y-directional edges (with
undetectable Majorana corner modes buried in the Majorana
bands).

Similar to the above case but with kx and ky interchanged,
the 1D-block state formed by stacking spinful Kitaev chains
on e(1)

2 supports Majorana bands along the x-directional open
edges (also with embedded Majorana corner modes). With
a similar calculation, we find that this state is characterized
by 1D and 2D topological invariants ν1a = ν1c = 0, ν1b =
1, ν2 = 0.

Next, we consider the 1D-block state formed by stacking
spinful Kitaev chains on the real-space 1-cells e(1)

3 , where we
denote the corresponding vector bundle as Ee(1)

3
. Importantly,

while the system and the reference Hamiltonians are also
given by HKC in Eq. (28) and H0 in Eq. (31), respectively, the
symmetry operator of C2 rotation now takes a different form
from Eq. (29) since none of the 1-cells e(1)

3 encounters the C2z

rotational axis. Specifically, the symmetry operators are given
by

T = iσyK, P = τxK, R = ieikyτzσz, (34)

where R acquires extra momentum dependence. This extra
factor eiky arises from the fact that upon rotation, the position
y = 1

2 in any unit cell is mapped to the position y = − 1
2 in an-

other unit cell, which differs from the original position by an
integer multiple of lattice vectors in the −y direction [18,50].
This 1D-block state, which is topologically distinct from those

formed by stacking Kitaev chains on e(1)
1 or e(1)

2 , is a weak
phase protected by the translation symmetry alone and sup-
ports Majorana bands along the y-directional edges without
any embedded Majorana corner modes (see Sec. V B.).

For the 1D invariants, note that the phase of the sewing ma-
trix SI/II (k) along a 1-cell loop l̃ j acquires nontrivial winding
from the explicit ky dependence of the combined symmetry
operator T R = ie−ikyτzσxK. In such a case, the 1D topolog-
ical invariants w1 j of not only the system Hamiltonian HKC

but also the reference Hamiltonian H0 can become nontrivial.
Thus, to correctly obtain the 1D invariant ν1 j that character-
izes the weak phase this 1D-block state belongs to, we need to
add the contributions from both Hamiltonians, as discussed in
Sec. IV A and Eq. (16). Specifically, for a momentum-space
1-cell j = a, b, c, we have

ν1 j
(
Ee(1)

3
, HKC, H0

) = w1 j
(
Ee(1)

3
, HKC

) + w1 j
(
Ee(1)

3
, H0

)
, (35)

where the invariants for the reference Hamiltonian are
w1a(Ee(1)

3
, HKC) = w1c(Ee(1)

3
, HKC) = 0, w1b(Ee(1)

3
, HKC) = 1,

whereas the invariants for the system Hamiltonian are
w1 j (Ee(1)

3
, H0) = 1 for all j = a, b, c. We thus arrive at 1D

invariants ν1a = ν1c = 1 and ν1b = 0.
For the 2D invariant, same as the previous 1D-block states,

we can again interpret w2 as the second S-W class of the
rank-1 vector bundle Ẽ formed by either ψ1 or ψ2. The only
difference is that when applying the Whitney sum formula
in Eq. (25), the total Hamiltonian for the second S-W class
on the left-hand side is a direct sum HKC ⊕ H0 of the system
and reference Hamiltonians. Therefore, in the resulting w2-w1

relation in Eq. (26), we need to take the two different sub-
Hamiltonian indices s and s′ to be HKC and H0. From the 1D
invariants we find for the system and reference Hamiltonians
above, it is clear that w2(Ee(1)

3
⊕ Ee(1)

3
, HKC ⊕ H0) = 1. The 2D

invariant for the phase is thus given by

ν2
(
Ee(1)

3
, HKC, H0

) = w2
(
Ee(1)

3
⊕ Ee(1)

3
, HKC ⊕ H0

) = 1, (36)

where we have chosen Ec = Ee(1)
3

and Hc = H0 in Eq. (12).
In Appendix C, we provide another equivalent calculation
of ν2 using the alternative expression we propose for w2 in
Sec. IV C, where w2 is directly calculated from the winding
number of the transition function.

To summarize, we find that the 1D-block state formed by
stacking one spinful Kitaev chain per 1-cell e(1)

3 in the real
space is characterized by the momentum-space topological
invariants

ν1a = ν1c = 1, ν1b = 0, ν2 = 1. (37)

This superconducting state shares the same 1D invariants ν1 j

with the state of stacked chains on e(1)
1 [see Eqs. (33)], but

has a different 2D invariant ν2. In terms of real-space bound-
ary signatures, this state supports Majorana bands along the
y-directional edges without any embedded Majorana corner
modes.

Finally, we move to the 1D-block state that belongs to a
second-order strong phase with C2-protected Majorana corner
modes. Such a state can be built by placing spinful Kitaev
chains on both of the real-space 1-cells e(1)

1 and e(1)
3 . In this

case, the system and reference Hamiltonians HHO and H ′
0 are
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given by

HHO(k) = HKC(k) ⊕ HKC(k), H ′
0 = H0 ⊕ H0, (38)

where both act on the same vector bundle EHO = Ee(1)
1

⊕ Ee(1)
3

.
On this vector bundle EHO, the relevant symmetry operators
have the form

T = iσyK, P = τxK, R = iτzσz ⊕ iτzσze
iky . (39)

We can obtain the 1D invariants from those we found
for the 1D-block states of stacked Kitaev chains on e(1)

1 and
e(1)

3 since the 1D invariant w1 j for a direct sum of multiple
Hamiltonians is the sum of their individual 1D invariants [see
the expression of w1 j in Eq. (13)]. Specifically, since we have

(w1a,w1b,w1c) = (1, 0, 1) for w1 j
(
Ee(1)

1
, HKC

)
,

(w1a,w1b,w1c) = (0, 0, 0) for w1 j
(
Ee(1)

1
, H0

)
,

(w1a,w1b,w1c) = (1, 1, 1) for w1 j
(
Ee(1)

3
, HKC

)
,

(w1a,w1b,w1c) = (0, 1, 0) for w1 j
(
Ee(1)

3
, H0

)
, (40)

for the system and reference Hamiltonians of the e(1)
1 state

and e(1)
3 state, we find that the 1D invariants for the higher-

order Hamiltonian HHO and the reference Hamiltonian H ′
0 in

Eq. (38) are given by

(w1a,w1b,w1c) = (0, 1, 0) for w1 j (EHO, HHO),

(w1a,w1b,w1c) = (0, 1, 0) for w1 j (EHO, H ′
0). (41)

The final Z2 1D invariants ν1 j for the second-order phase
are therefore trivial for all three momentum-space 1-cells
j = a, b, c,

ν1 j (EHO, HHO, H ′
0) = w1 j (EHO, HHO) + w1 j (EHO, H ′

0) = 0,

(42)

where we have employed Eq. (16) to incorporate the contribu-
tion from the reference Hamiltonian. Thus, the 1D invariants
ν1 j alone cannot determine whether a superconducting state
is in the trivial or second-order phase, and it is necessary to
consider the 2D invariant ν2.

To obtain the 2D invariant for the second-order phase, we
can make use of the w2-w1 relation in Eq. (26) to obtain
w2 from the 1D invariants w1 j’s of the e(1)

1 and e(1)
3 states

listed in Eqs. (40) and (41). Specifically, first we account for
the nontrivial contribution from the reference Hamiltonian by
choosing

Ec = Ee(1)
3

and Hc = H0 (43)

in Eq. (12) to ensure that w2(EHO ⊕ Ec, H ′
0 ⊕ Hc) = 0. Then

the 2D invariant ν2 for the second-order phase is directly given
by the 2D invariant w2(EHO ⊕ Ec, HHO ⊕ Hc) of the modified
Hamiltonian HHO ⊕ Hc. Now we can apply the w2-w1 re-
lation Eq. (26) to calculate w2(EHO ⊕ Ec, HHO ⊕ Hc), where
the summation on the right-hand side of Eq. (26) is over all
unordered pairs among the sub-Hamiltonians HKC, HKC, and
Hc defined on the bundles Ee(1)

1
, Ee(1)

3
, and Ee(1)

3
, respectively.

Written more explicitly, the 2D invariant for the higher-order
phase is given by

ν2(EHO, HHO, H ′
0) = w2

(
EHO ⊕ Ee(1)

3
, HHO ⊕ Hc

)
= w1b

(
Ee(1)

1
, HKC

)
w1c

(
Ee(1)

3
, HKC

) + w1b
(
Ee(1)

3
, HKC

)
w1c

(
Ee(1)

3
, H0

) + w1b
(
Ee(1)

1
, HKC

)
w1c

(
Ee(1)

3
, H0

)
+ w1c

(
Ee(1)

1
, HKC

)
w1b

(
Ee(1)

3
, HKC

) + w1c
(
Ee(1)

3
, HKC

)
w1b

(
Ee(1)

3
, H0

) + w1c
(
Ee(1)

1
, HKC

)
w1b

(
Ee(1)

3
, H0

)
= 0 × 1 + 1 × 0 + 0 × 0 + 1 × 1 + 1 × 1 + 1 × 1 mod 2 = 1. (44)

To summarize, for the higher-order phase with C2-protected Majorana corner modes, we find the 1D and 2D invariants to be
ν1 j = 0, j = a, b, c and ν2 = 1 [see Eqs. (42) and (44)].

D. 2D-block state

There is only one 2D-block state, which belongs to the time-reversal-protected topological superconducting phase with helical
Majorana edge modes (2D TSC). To compute our 1D and 2D invariants w1 and w2, we consider the following minimal BdG
model [50]:

HT SC (k) = −(cos kx + cos ky − m)τzσ0 + sin kxτxσz + sin kyτyσ0, (45)

where we set |m| < 2, and τ and σ represent the Pauli matrices for the particle-hole and spin spaces, respectively. We denote the
vector bundle on which the Hamiltonian HTSC acts by Ee(2) , and the symmetry operators respecting the commutation relations are
given by

T = iσyK, P = τxK, R = iτzσz, (46)

where K is complex conjugation. The real-gauge wave functions of the two occupied states are given by

φ1(k) = 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎝

( η0+cos kx+cos ky−m
2η0(sin 2kx+sin 2ky )

) 1
2 (i sin kx + sin ky)( η0+cos kx+cos ky−m

2η0(sin 2kx+sin 2ky )

) 1
2 (sin kx + i sin ky)

−i
( sin 2kx+sin 2ky

2η(η0+cos kx+cos ky−m)

) 1
2

( sin 2kx+sin 2ky

2η(η0+cos kx+cos ky−m)

) 1
2

⎞
⎟⎟⎟⎟⎟⎟⎠

, φ2(k) = 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎝

( η0+cos kx+cos ky−m
2η0(sin 2kx+sin 2ky )

) 1
2 (sin kx − sin ky)( η0+cos kx+cos ky−m

2η0(sin 2kx+sin 2ky )

) 1
2 (i sin kx − sin ky)

−( sin 2kx+sin 2ky

2η(η0+cos kx+cos ky−m)

) 1
2

i
( sin 2kx+sin 2ky

2η(η0+cos kx+cos ky−m)

) 1
2

⎞
⎟⎟⎟⎟⎟⎟⎠

, (47)
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in the eigenbases {++,+−,−+,−−} of τz and σz,
where each of the former and latter signs ± denote
the eigenvalues ±1 of τz and σz, respectively. Here, the
momentum-dependent parameter η0 is given by η0(k) =√

(cos kx + cos ky − m)2 + sin 2kx + sin 2ky. We point out that
although both −2 < m < 0 and 0 < m < 2 regimes contain
the 2D TSC phase and support helical Majorana edge modes
when placed next to vacuum, they are topologically distinct in
the sense that when placed next to each other there will be gap-
less Majorana edge modes localized on the boundary. In fact,
the two regimes differ by a weak phase (see Appendix B), but
one cannot tell them apart from their boundary modes against
the vacuum because the edge signature of their difference is
hidden in the bands of the helical states. In the following, we
will study the invariants for both regimes.

To compute the invariants ν1 j and ν2 for this 2D TSC phase
[see Eq. (12)], we first obtain the reference Hamiltonian by
taking m in HTSC to the positive infinity. We find that the refer-
ence Hamiltonian is H0 = τzσ0. Since the symmetry operators
have no explicit k dependence [see Eq. (46)], the reference
Hamiltonian H0 does not contribute to the invariants w1 j and
w2 defined for Hamiltonians. Therefore, the invariants defined
for the 2D TSC phase are simply given by

ν1 j (Ee(2), HTSC, H0) = w1 j (Ee(2) , HTSC), j = a, b, c,

ν2(Ee(2) , HTSC, H0) = w2(Ee(2) , HTSC), (48)

and we can simply compute w1 j and w2 for the system
Hamiltonian HTSC without worrying about the reference
Hamiltonian H0.

We first focus on the regime with 0 < m < 2 (denoted as
TSC+). For the 1D invariants w1 j , we transform the wave
functions φ1(k) and φ2(k) in Eq. (47) from the real gauge
to a smooth gauge along a 1-cell loop l̃ j , while satisfying
the T -constant gauge condition. Although the T -constant and
smooth gauge conditions are not achievable over the full BZ
for this model (i.e., there is obstruction), we can satisfy such
conditions along a single 1-cell loop l̃ j at a price of having
discontinuities away from the loop. For the loop l̃a, since the
real-gauge wave functions in Eq. (47) suffer a discontinuity
at kx = 0, such a gauge transformation to the smooth gauge
can only be done by a momentum-dependent transformation
matrix

U (k) = �(kx )e−i kx
2 I2×2, (49)

where I2×2 is in the basis of φ1 and φ2, and �(kx ) is defined
as +1 for kx � 0 and −1 for kx < 0. Due to the kx-dependent
phase factor e−i kx

2 in U (k), the corresponding sewing matrix
SI/II = UU T exhibits a 2π -phase winding along the loop l̃a.
We thus find w1a = 1 using Eq. (13). In contrast, since real-
gauge wave functions are already smooth along the 1-cell
loops l̃b and l̃c, the corresponding sewing matrices exhibit no
winding such that we find w1b = w1c = 0.

For the 2D invariant, however, we can calculate
w2(Ee(2) , HTSC) using neither our expression in Sec. IV C nor
Eq. (26) since there is an obstruction to achieving the T -
constant and smooth gauge for the wave functions over the full
BZ. We therefore characterize the 2D TSC phase with helical

Majorana edge modes by

ν1a = 1, ν1b = ν1c = 0, ν2 : ill-defined. (50)

From a similar calculation, we find that the other regime −2 <

m < 0 (denoted as TSC−) with helical Majorana edge modes
is characterized by

ν1a = 0, ν1b = ν1c = 1, ν2 : ill-defined. (51)

The 2D invariant ν2 is ill-defined in both regimes due to
the same reason, that is, the obstruction to satisfying the T -
constant and smooth gauge for the occupied wave functions
over the full BZ. In fact, this obstruction is similar to the
obstruction to the T -constant and smooth gauge in the 2D
topological insulator [78,79]. Nonetheless, it is desired to
detect such a phase by well-defined invariants rather than by
the fact that the 2D invariant ν2 is ill-defined.

Before ending this subsection, we therefore show that such
an obstruction can be detected by the well-defined 1D invari-
ants from the condition ν1a + ν1c = 1. The real-gauge wave
functions φ1(k) and φ2(k) in fact already satisfy the smooth
and T -constant conditions everywhere except at one point,
which we refer to as the singular point of the wave func-
tions. When we approach the singular point from different
directions, the wave functions take different values and are
thus not well-defined at the singular point. This happens be-
cause we only take one of the time-reversal-related partners,
whereas the well-defined quantity throughout the entire BZ
is the 2D Hilbert space spanned by both partners. In fact,
in both 0 < m < 2 and the −2 < m < 0 regimes, there is no
gauge in which we can remove this singularity and still satisfy
the T -constant and smooth conditions elsewhere in the BZ.
However, as we demonstrated when computing ν1a, when we
consider a single 1-cell loop that passes through the singular
point, we can always remove the singularity while satisfying
the smooth condition by a momentum-dependent gauge trans-
formation with phase winding [e.g., the transformation matrix
in Eq. (49)]. This will always lead to a nontrivial 1D invariant
ν1 j = 1 along the loop l̃ j that passes through the singularity.
In contrast, for a 1-cell loop l̃ j′ that does not pass through the
singularity, the transformation matrix U from the real gauge
to the smooth gauge, and thus the sewing matrix SI/II = UU T ,
do not pick up a phase winding along the loop. We therefore
expect trivial 1D invariants ν1 j′ = 0 along such loops. Since
the singularity always occur at either l̃a or l̃c, we conclude
that the obstruction to the smooth gauge can be detected by
ν1a + ν1c = 1. In fact, in our calculations for the 0 < m < 2
and the −2 < m < 0 regimes, we find that the singularities
occur at � and M, respectively, such that it is the loop l̃a and
l̃c that pass through the singularity, respectively. This explains
the 1D invariants we find for the two regimes in Eqs. (50)
and (51).

VI. DIAGNOSIS OF BOUNDARY MODES

In this section, we summarize the computed topological
invariants, Majorana boundary modes, and protecting sym-
metries we find for the important building-block states we
studied in Sec. V (see Table IV.). Since each building-block
state is adiabatically connected to other states in the same
phase, these results allow us to fully diagnose the Majorana
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TABLE IV. A summary of the computed 1D invariants ν1 j , j = a, b, c and 2D invariant ν2 for the representative building-block states of
a few important superconducting phases. The bulk-boundary correspondence can be readily established from the results for these states. The
first column specifies the real-space construction for each of the building-block states. For the schematics on the right, the square denotes a
real-space unit cell, a thick brown line denotes a 1D block (spinful Kitaev chain), and a filled square with + or – denotes a 2D block of TSC+

or TSC− state, respectively. The second column specifies the Majorana boundary modes and the protecting symmetries of each phase the
building-block state belongs to, and the third to sixth columns are the computed invariants. Note that the state in the fourth row is adiabatically
connected to the direct sum of the states in the first three rows. The 2D-block states in the fifth and sixth rows, formed by stacking TSC+ and
TSC− states, respectively, are off by a weak phase with Majorana bands on partial edges. However, it is in principle impossible to determine
which belongs to the strong phase and which the mixed phase. We choose one to be the strong state and the other is thus fixed as the mixed
state. Moreover, since the Majorana bands from the additional weak phase are expected to be buried by the Majorana edges from the strong
phase, the two phases are practically speaking indistinguishable.

Boundary signatures and
Real-space construction protecting symmetries ν1a ν1b ν1c ν2

Stacking spinful Kitaev chains on e(1)
1 Majorana bands along y-directional edges; 1 0 1 0

first-order mixed phase

Stacking spinful Kitaev chains on e(1)
3 Majorana bands along y-directional edges; 1 0 1 1

first-order weak phase

Stacking spinful Kitaev chains on e(1)
2 Majorana bands along x-directional edges; 0 1 0 0

first-order mixed phase

Stacking spinful Kitaev chains along x = 1
2 Majorana bands along x-directional edges; 0 1 0 1

first-order weak phase

Stacking TSC+ (0 < m < 2) on e(2) Helical Majorana edge modes; 1 0 0 N/A
first-order strong phase

Stacking TSC− (−2 < m < 0) on e(2) Helical Majorana edge modes; 0 1 1 N/A
first-order mixed phase

Stacking spinful Kitaev chains on e(1)
1 and e(1)

3 Majorana Kramers pairs 0 0 0 1
trapped at two C2-related corners;

second-order strong phase

boundary modes for any given 2D time-reversal and
C2-symmetric superconducting state from our proposed
momentum-space invariants. Our central results of this pa-
per are summarized in Table V, where the final four Z2

topological invariants {z1, z2, z3, z4} we arrive at are combi-
nations of the original invariants {ν1a, ν1b, ν1c, ν2} we find

in the momentum-space analysis. These final invariants each
diagnose the presence of one type of fundamental Majorana
boundary mode protected by a single symmetry. Any mixed
phase or a stacking of multiple strong (weak) phases support-
ing multiple types of boundary modes can be diagnosed by
more than one nonzero invariant.

TABLE V. A summary of the final set of Z2 momentum-space invariants that can diagnose the Majorana boundary signatures. For each of
the new invariants zi, we specify the relation to the original invariants ν1 j and ν2 (listed in the second column). Each new invariant detects only
one type of Majorana boundary mode protected by a single symmetry, as specified in the third and fourth columns. Any superconducting state
that is formed by stacking more than one of these four fundamental states can be detected by a sum of their invariants. Since the invariants are
Z2 numbers, the addition and multiplication in the expressions are up to modulo 2. This table is obtained by choosing the 2D-block state built
with stacking TSC+ as the pure first-order strong phase with helical Majorana edge modes, which has {z1, z2, z3, z4} = {1, 0, 0, 0}. By making
the other equivalent choice of TSC−, one can arrive at another set of self-consistent new invariants z̃i.

Redefined invariant Expression Boundary signature Protecting symmetry

z1 ν1a + ν1c helical edge modes time reversal
z2 ν1b Majorana band translation along x
z3 ν1c Majorana band translation along y
z4 (when z1 = 0) ν2 + ν1bν1c + ν1b + ν1c Majorana corner modes C2 rotation
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FIG. 4. A flowchart that describes how to diagnose the type
of Majorana boundary modes from our Z2 momentum-space topo-
logical invariants for a given 2D time-reversal and C2-symmetric
superconductor. Here, ν1a = ν1c implies either a first-order strong
state or the direct sum of a first-order strong state and other states.
The mixed phase in the bottom right box is the combination of a
second-order strong phase and a first-order weak phase.

In the following, we first describe how to extract the Majo-
rana boundary signatures from the original momentum-space
invariants {ν1a, ν1b, ν1c, ν2} for any given time-reversal and
C2-rotational symmetric superconductor with translational
symmetries in the x and y directions. This is summarized
in Fig. 4 and is deduced from the resulting invariants we
calculated for each of the building-block states (see Table IV).
First, we can detect the presence of the first-order strong
phase by inequivalent 1D invariants ν1a = ν1c or an ill-defined
2D invariant ν2, which results from the obstruction to the
T -constant and smooth conditions (see discussion at the end
of Sec. V D.). Note that this first-order strong phase can also
be mixed with any other phases. For the rest of the cases
with ν1a = ν1c, the 2D invariant ν2 is well-defined and can
be calculated by either the transition function method (see
Sec. IV C) or under the interpretation of the second S-W class
(see Sec. IV D). When all the invariants vanish, the state is
trivial and has no boundary Majoranas. When ν2 = 1 is the
only nontrivial invariant, the state is in the second-order strong
phase with a pair of C2-protected 0D Majorana Kramers pairs.
These two pairs of Majorana Kramers pairs are expected to be
trapped at C2-related corners, and could in principle annihilate
each other by moving along heavily C2-broken edges. When
the 1D invariant(s) associated with x- or y-directional 1-cells
are also nontrivial besides ν2 = 1, i.e., when {ν1a, ν1b, ν1c} =
{1, 0, 1} or {0, 1, 0}, the state is in a purely weak phase sup-
porting translation-protected Majorana bands along the y- or
x-directional edges, respectively. According to our definition
for the boundary description, such a weak phase is also con-
sidered a first-order phase. Finally, any other combination of
invariants indicates that the state is formed by stacking more
than one of the above four states. For instance, a vanishing but

well-defined ν2 together with at least one nontrivial 1D invari-
ant indicate that the state is in a phase formed by stacking at
least one weak phase with a second-order strong phase. Such
a phase is considered a mixed phase since it is protected by
both C2 and translational symmetries, and is considered first
order since the corner Majoranas are likely embedded within
the Majorana bands along partial edges.

Next, since the 1D and 2D topological invariants
{ν1a, ν1b, ν1c, ν2} are not expressed in a basis that naturally has
one-to-one correspondence to the type of Majorana bound-
aries and protecting symmetries, we now explain how to
re-express them into a new set of Z2 invariants {z1, z2, z3, z4},
which has a simpler relation with the boundary signatures.
The results are summarized in Table V. Specifically, we start
by picking one of the two inequivalent states TSC± as the
real-space 2D building block. Here, we pick the TSC+ state
without loss of generality (the choice made in Table IV)
and demand that only one of the new invariants, say z1, is
nonvanishing for the resulting first-order strong state built by
stacking TSC+’s. It is therefore clear that z1 is related to the
original invariants by z1 = ν1a + ν1c. Similarly, by demanding
that z2, z3, and z4 are the only nontrivial invariants for a weak
phase with Majorana bands along x edges, a weak phase with
Majorana bands along the y edges, and a second-order strong
phase with Majorana corner Kramers pairs, respectively, we
arrive at the relation between the new and original invariants in
Table V. Note that since z4 depends on ν2, which is ill-defined
in the presence of obstruction to the T -constant and smooth
gauge conditions, z4 can only be computed when z1 = 0. A
state formed by stacking more than one of the above four
states can be easily detected by more than one nontrivial new
invariant zi. In other words, a state with a mixed boundary
signature must have more than one nonzero entry in the new
set of Z2 invariants {z1, z2, z3, z4}.

It is worth pointing out two subtleties in the implications of
these new invariants. First, the C2-protected corner Majoranas
are only expected to be visible in experiments for a pure
second-order strong state characterized by {z1, z2, z3, z4} =
{0, 0, 0, 1}. When any other invariants are nonzero, the corner
Majoranas are expected to be buried by 1D Majorana modes
on all or partial edges. Similarly, Majorana bands on partial
edges are expected to be buried by Majorana edge modes on
all edges. Second, we made an arbitrary choice for the 2D
block since it is in principle impossible to determine which
of the states built by TSC+ and TSC− belongs to the pure
first-order strong phase. Under our choice of TSC+, the other
building-block state formed by stacking TSC− consists of a
first-order strong state and some weak state(s). Such a mixed
state is characterized by z1 = 1 along with other nonvanishing
invariants z2 and/or z3. One can equivalently choose the TSC−

state to be the 2D building block and arrive at another self-
consistent set of new invariants.

VII. CONCLUSION AND DISCUSSION

In this paper, we study the classification and the topo-
logical invariants for 2D time-reversal superconductors with
twofold rotational symmetry C2. We choose superconductors
with this symmetry group because this is one of the simple
examples where the symmetry indicators cannot distinguish
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crystalline topological phases or infer their Majorana bound-
ary features, as observed in previous studies [33]. We stress
that the C2 symmetry obeying Eq. (5) is different from the
inversion symmetry, which squares to 1 and for which sym-
metry indicators arise from the parity eigenvalues [36]. By
establishing the bulk-boundary correspondence for this sym-
metry class of superconductors using a three-step protocol
that some of us previously developed [36], we find topolog-
ically distinct phases supporting various Majorana boundary
modes, including the first-order phases with edge Majoranas
and a second-order phase with C2-protected corner Majoranas.
Importantly, we show that the topological invariants that can
fully distinguish the bulk topology of these phases should
depend on band structure information on high-symmetry lines
and general points in the BZ instead of the high-symmetry
points. Based on our classification results, we derive practi-
cally calculable expressions for these invariants, which takes
band structures as input and are capable of diagnosing the
Majorana boundary types.

The three-step protocol we use to derive topological invari-
ants for topological crystalline superconductors consists of
the following steps. The first step is to conduct classification
study in the momentum space by approximating the K group
using the AHSS, where the converged result produces exact
subgroups of the K group [36,60]. From our AHSS results,
we find: (1) the K group restricted to high-symmetry points is
trivial. The topological invariants are therefore not symmetry
indicators. (2) The K group restricted to each of the three
high-symmetry lines and the K group for general points in
the BZ are both Z2. The bulk topology can therefore be fully
characterized by Z2 invariants that take band data on high-
symmetry lines and general points in the BZ as input. We dub
such invariants 1D and 2D invariants, respectively. (3) Since
the K group contains π1(R7) and π2(R7) when restricted to 1-
and 2-cells, respectively, we write down explicit expressions
for the 1D and 2D invariants using the first and second ho-
motopy classes of the sewing matrix for the C2T symmetry,
which lives in the space R7.

Based on our AHSS results, we propose practically cal-
culable expressions in the momentum space for three Z2 1D
invariants defined on the three independent high-symmetry
lines (1-cells) and one Z2 2D invariant defined on the BZ
(2-cells). Specifically, we express the 1D invariants ν1 j by
the winding number of the sewing matrix along the 1-cell
j. Importantly, by requiring this winding number to be in-
variant under gauges that satisfy the T -constant and smooth
conditions, this integer winding number becomes a Z2 num-
ber. For the 2D invariant ν2, we propose the following two
expressions for practical computation [62,63]. The first is
obtained by writing the second homotopy class of the sewing
matrix defined on the full BZ in terms of the winding number
of transition functions between occupied BdG states along
noncontractible loops of the BZ. Given that this first expres-
sion is only practically calculable for specific cases, we also
propose a second expression for the 2D invariant. Specifi-
cally, by identifying the 1D and 2D invariants as the S-W
classes of real vector bundles that characterize the system,
we can express ν2 in terms the 1D invariants ν1 j’s based on
the Whitney sum formula, which we generally know how to
calculate.

The second step of our protocol is to conduct a classi-
fication study in the real space for the considered class of
superconductors. The purpose of this step is to understand
the Majorana boundary signatures carried by different su-
perconducting phases in this symmetry group, given that the
boundary types can be naturally obtained in the real-space
picture. The method we adopt is the topological crystal ap-
proach. This method offers a systematic way to construct
representative states (dubbed building-block states) for each
of the phases, where these building-block states naturally
reveal their Majorana boundary types and are adiabatically
connected to other states in the same phase. From our topo-
logical crystal results, we find a Z4

2 classification and there
are 16 topologically distinct Majorana boundaries, including
strong phases with Majorana edges or corners, weak phases
with Majorana bands on certain-directional edges, and com-
binations of these phases.

The third step of our protocol is to establish the bulk-
boundary correspondence for the 2D topological crystalline
superconductors with time-reversal and C2 symmetries. The
purpose of this step is to arrive at topological invariants that
do not only discern the bulk topology, but can also predict the
type of Majorana boundary modes that we expect to be ob-
served experimentally for a superconductor of interest. Given
the 1D and 2D topological invariants ν1 j’s and ν2 we obtained
in the momentum-space approach and the Majorana boundary
types of building-block states we obtained in the real-space
approach, we establish the bulk-boundary correspondence by
explicitly computing the invariants for each of the building-
block states.

We have summarized our findings from the third step
as a flowchart in terms of the Z2 1D and 2D invariants
{ν1a, ν1b, ν1c, ν2} in Table IV and Fig. 4. Given that these 1D
and 2D invariants {ν1a, ν1b, ν1c, ν2} are not expressed in a ba-
sis that naturally has one-to-one correspondence to the type of
Majorana boundaries and protecting symmetries, we further
re-express them into another more intuitive set of invariants
{z1, z2, z3, z4}.

This final set of Z2 topological invariants {z1, z2, z3, z4}
is our central result (summarized in Table V). These invari-
ants are boundary diagnostics that take band data on the
high-symmetry lines and general points in the BZ as in-
puts. Each invariant diagnoses the presence of one type of
fundamental Majorana boundary mode protected by a sin-
gle symmetry. Specifically, z1 diagnoses the presence of the
first-order strong phase, which supports time-reversal-
protected helical Majorana edge modes. Purely weak phases,
which support translation-protected Majorana bands along
x- and y-directional edges, are diagnosed by nontrivial z2

and z3, respectively. Finally, a nontrivial z4 (in the pres-
ence of vanishing z1) diagnoses a stand-alone second-order
strong phase, which supports two C2-protected zero-energy
Majorana Kramers pairs trapped at C2-related corners. A com-
bination of the above phases supporting multiple types of
boundary modes (possibly embedded in one another) can then
be diagnosed by more than one nonzero invariant.

We make three remarks about our results. First, in
Ref. [33], the authors constructed a lattice model for time-
reversal and C2-symmetric superconductors. The model real-
izes four different phases, including a trivial, a higher-order,
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a weak, and a nodal phase. They argued that there are
no symmetry indicators for these systems and numerically
showed the boundary signatures including a higher-order
phase with Majorana corner modes. In the gapped phases
of the lattice model, it is in fact adiabatically connected to
the 1D-block states built by stacking of the spinful Kitaev
chains, which we have discussed in Sec. V C. We expect
our topological invariants still apply even when the Ki-
taev chains are weakly coupled as long as the gap remains
open.

Second, when a given superconducting state contains a
first-order strong state, we expect inevitable obstruction to
the T -constant and smooth gauge conditions, similar to the
obstruction in the time-reversal protected 2D topological in-
sulator [78]. While we can detect such obstruction by the 1D
invariant condition z1 ≡ ν1a + ν1c = 1, as shown in this paper,
we point out that the 2D invariant ν2 is ill-defined under such
obstruction. In the absence of a first-order strong state, ν2 is
well-defined and can be computed as the second homotopy
class of the sewing matrix or as the second S-W class of a
vector bundle that characterizes the system, as we propose in
this paper. In particular, the second S-W class can be obtained
from first S-W classes through the Witney sum formula. Other
ways of computing the second S-W class have been proposed
in previous works for specific cases, such as a method using
Wilson loop operators [62,63,87]. Another example is when
the system is described by a rank-2 vector bundle. In such
cases, the second S-W class is equal to the Euler class mod 2
and has an integral expression as done in Refs. [62,63,88] for
insulating systems and semimetals.

Finally, in this paper we have characterized one example
of topological crystalline superconducting system, where the
AHSS method provides information on the momentum-space
topological invariants. We expect that our discussion can ex-
tend to other spinful systems with time-reversal and Cn (for
an even integer n) rotational symmetries. In such systems,
the combined time-reversal and C2 rotational symmetry is
present and the same sewing matrix can be utilized to ob-
tain well-defined topological invariants. While the expressions
for the invariants depend on the specific symmetries in the
system, the same procedure can be applied to any other sym-
metry class, where crucial information about the invariants
is extracted from the AHSS calculation and the bulk bound-
ary correspondence is established by matching the real-space
analysis.
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APPENDIX A: AHSS CALCULATION

We follow the procedure introduced in Ref. [60] to get
the total classification group φK (τ,c),−3

G (BZ). The calculation
is based on the representation interpretation. With the cell
decomposition in Fig. 1, we examine the little group and the

emergent AZ class for each independent p-cell in a given AZ
class n. On the E1 page, each entry E p,−n

1 is the group clas-
sifying the 0D Hamiltonians of AZ class n with symmetries
given by the little group on the p-cells.

1. 0-cells

Here we first calculate the emergent AZ class on the 0-
cells. On any of the four 0-cells, the little group is the C2

rotation and the internal symmetries of class n̄. There are
two irreps R = ±i for the point group C2, related by T or
P if such an antiunitary symmetry exists. We find that, with
class DIII (n̄ = 3), the emergent AZ class for an irrep is AIII
because the combined symmetry of T P maps an irrep back
to itself; with class AII (n̄ = 4), the emergent AZ class for an
irrep is A since there is no effective symmetry for an irrep;
with class CII (n̄ = 5), the emergent AZ class for an irrep is
AIII due to the effective symmetry T P .

2. 1- and 2-cells

On a 1-cell or 2-cell, the little group is generated by the
combined symmetry T R and/or PR if T and/or P exist.
In this case, the emergent AZ class for class DIII (n̄ = 3)
is CI because both T R and PR act as effective antiunitary
symmetries where (T R)2 = 1, (PR)2 = −1. The emergent
AZ class for class AII (n̄ = 4) is AI due to the effective sym-
metry T R; the emergent AZ class for class CII (n̄ = 5) is BDI
due to the effective symmetries T R and PR. There are three
independent 1-cells and one independent 2-cell, respectively.

The classification on each representative cell can be read
from the zero-dimensional entries for the corresponding
emergent AZ classes in the periodic table of topological in-
sulators and superconductors [11]. The E1 page is shown in
Table II. For example, the diagonal entry E0,−3

1 = π0(C1) = 0,
where C1 = U (N ) is the classifying space of the emergent
AZ class AIII for n̄ = 3 on the 0-cells. The entry E1,−4

1
was obtained from π0(R0) = Z for each 1-cell, where R0 =
O(N + M )/(O(N ) × O(M )) is the classifying space for the
emergent AZ class AI for n̄ = 4 on the 1-cells. The entry
E2,−5

1 was obtained from π0(R1) = Z2, where R1 = O(N ) is
the classifying space for the emergent AZ class BDI for n̄ = 5
on the 2-cells.

3. First differentials

We find that the only nontrivial first differential is d0,−4
1

since, for the n̄ = 4 row (class AII), the two irreps R = ±i
are related by T and must coexist on any 0-cell. The generator
on the 0-cell thus contributes two states when extended to the
adjacent 1-cells. In summary, we have d0,−4

1 given by

d0,−4
1 =

� X Y M
a 2 −2 0 0
b 0 2 0 −2
c 0 0 2 −2

where each entry is the number of generating states formed
by an irrep on the 0-cell of the column extended to the 1-cell
of the row. Note that the sign is negative if the orientations
of the 1-cell and of the adjacent 0-cell disagree. Other first
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differentials are all trivial. From the first differential and
Eq. (6), we arrive at the E2 page given in Table III.

The calculation we have done so far is based on the repre-
sentation interpretation, which serves as a formal calculation
tool. It is illuminating to make connection with the topological
invariants defined in Sec. IV. Recall that the entry E1,−4

1 in
the E1 page was obtained from π0(R0) for each 1-cell, where
R0 = O(N + M )/(O(N ) × O(M )) is the classifying space for
the emergent AZ class AI of the n̄ = 4 row on the 1-cells.
Invoking the isomorphism

π0(R0) ∼= π1(R7), (A1)

where R7 = U (N )/O(N ), the right-hand side of Eq. (A1) cor-
responds to the 1D topological invariants defined in Sec. IV B.
We can also understand the first differential d0,−4

1 : E0,−4
1 →

E1,−4
1 as the gauge freedom in the 1D invariants based on the

first homotopy group of the sewing matrix as follows. Recall
that we obtained the entry E0,−4

1 from π0(C0) for each 0-cell,
where C0 = U (N + M )/(U (N ) × U (M )) is the classifying
space for the emergent AZ class A of the n̄ = 4 row on the
0-cells. Moreover, there is an insomorphism

π0(C0) ∼= π1(C1), (A2)

where C1 = U (N ). Following Ref. [63], we interpret the
gauge freedom of the sewing matrix as the image of the
induced map j∗ : π1(U (N )) → π1(U (N )/O(N )), where j :
U (N ) → U (N )/O(N ) is the projection. We see that the first
differential d0,−4

1 consists of such maps for each 1-cell. There-
fore, we expect Imd0,−4

1 = (2Z)3 corresponds to the gauge
freedom in the 1D invariants. In Sec. IV B, we have shown
explicitly that gauge freedom indeed leads to the 2Z redun-
dancy on each 1-cell.

4. Second differentials

The next step is to study the second differentials d p,−n
2 :

E p,−n
2 → E p+2,−(n+1)

2 . We find that only d0,−4
2 may be nontriv-

ial. We now turn to the topological phenomena interpretation
to calculate the second differential d0,−4

2 .
In the topological phenomena interpretation, a second dif-

ferential encodes the process where a band inversion occurs
at a 0-cell and generating gapless points in the neigh-
boring 2-cells. We model this process by the following
Hamiltonian around a 0-cell at k0:

Hk0 (k) = [(k − k0)2 − μ]σ0τz + (kx − k0,x )σzτx. (A3)

Time reversal and C2 rotation act as T = iσyK and R = iσzτz.
The gapless points arise when the chemical potential is tuned
from μ < 0 to μ > 0. At one of the gapless points, however,
a mass term (ky − k0,y)σ0τy which respects the effective sym-
metry T R on the 2-cell can open up a gap. This suggests that
d0,−4

2 , and further d2, is trivial. In a 2D system, dr = 0 for any
r > 2. The E2 page is therefore the limiting page E∞. From
the diagonal entries of the limiting page E∞, we extract the
three subgroups of φK (τ,c),−3

G (BZ):

E0,−3
∞ = 0, E1,−4

∞ = (Z2)3, E2,−5
∞ = Z2, (A4)

(a) (b)

FIG. 5. Configurations to analyze the boundary modes. In (a),
two copies of 2D TSC’s with different parameter ranges are placed
in the half-infinite planes next to each other, with a straight edge
between them; in (b), there is a 2D TSC within a circle surrounded
by vacuum, whose radius is assumed to be large.

5. Obtaining the K group through the short exact sequences

In Sec. III we omitted the detailed relation between a
generic φK (τ,c),−n

G (BZ) and its subgroups from the AHSS cal-
culation. We now briefly review it before presenting the result
for our system. Denoting the p-skeleton in the cell decomposi-
tion of the BZ by Xp, one can write the classification excluding
contributions from subspaces of dimensions lower than p as

F p,−(n+p) = Ker
(

f :φK (τ,c),−n
G (BZ) →φ K

(τ,c)|Xp−1 ,−n

G (Xp−1)
)
,

(A5)

where f is given by restricting the BZ to its subspace Xp−1 and
(τ, c)|Xp−1 describes the symmetry action restricted to Xp−1.
The diagonal entries on the limiting page then satisfy a series
of short exact sequences:

1 → F 1,−(n+1) → φK (τ,c),−n
G (T d ) → E0,−n

∞ → 1,

1 → F 2,−(n+2) → F 1,−(n+1) → E1,−(n+1)
∞ → 1,

...

1 → Ed,−(n+d )
∞ → F d−1,−(n+d−1) → Ed−1,−(n+d−1)

∞ → 1.

(A6)

In 2D systems, φK (τ,c),−3
G (BZ) satisfies

1 → F 1,−4 → φK (τ,c),−3
G (BZ) → E0,−3

∞ → 1,

1 → E2,−5
∞ → F 1,−4 → E1,−4

∞ → 1. (A7)

From these and E∞ in Table III we reach the result

1 → Z2 →φ K (τ,c),−3
G (BZ) → Z3

2 → 1. (A8)

APPENDIX B: STACKING TWO COPIES OF 2D TSC’S

We analyze the real-space building blocks by examining
their edge signatures. First, we show that the 2D TSC model
in Eq. (45) corresponds to two different phases in the regimes
0 < m < 2 and −2 < m < 0. We construct an interface as
shown in Fig. 5(a) by varying m in the x direction: 0 <

m(x) < 2, x > 0; −2 < m(x) < 0, x < 0. When m = 0, the
gap closes at (kx, ky) = (π, 0) and (0, π ) in the BZ. The
effective Hamiltonian around (π, 0) is

H (x, y) = m(x)τzσ0 + iτxσz∂x − iτyσ0∂y, (B1)

where kx, ky are replaced with −i∂x,−i∂y, respectively. The
wave function �(x, y) satisfies the eigenequation:

[m(x)τzσ0 + iτxσz∂x]� + [−E − iτyσ0∂y]� = 0. (B2)
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The edge states are of the form e− ∫ x
x′=0 m(x′ )dx′

χ (y), where
−τyσzχ = χ . The two solutions are

χ1 ∝ 1√
2

⎛
⎜⎝

1
0
−i
0

⎞
⎟⎠, χ2 ∝ 1√

2

⎛
⎜⎝

0
1
0
i

⎞
⎟⎠. (B3)

They are related by time reversal and cannot be gapped out.
Similarly, the two edge states around (0, π ) are related to each
other by time reversal. The translational symmetry forbids the
states around (π, 0) and those around (0, π ) to couple and
open up a gap. This implies that the two regimes 0 < m < 2
and −2 < m < 0 correspond to different phases and differ by
a weak phase.

To determine the extension in Eq. (27), we place a 2D
TSC next to vacuum, as shown in Fig. 5(b). Without loss of
generality, we focus on the regime 0 < m < 2. The circular
geometry is chosen so we can distinguish the higher-order
phase from the trivial phase [31]. The 1D gapped boundary
of the former, when C2 symmetry is preserved, will contain
gapless points. When m = 2, the gap closes at (0,0). The
effective Hamiltonian around (0,0) is

H (x, y) = −(2 − m(x, y))τzσ0 − iτxσz∂x − iτyσ0∂y, (B4)

where 0 < m(x, y) < 2, x2 + y2 < r2
0 ; m(x, y) > 2, x2 +

y2 > r2
0 . Changing to polar coordinates, we obtain

H (r, θ ) = −m̃(r)τzσ0 − i(cos θτxσz + sin θτyσ0)∂r

+ i

r
(sin θτxσz − cos θτyσ0)∂θ , (B5)

where m̃ ≡ 2 − m and 0 < m̃(r) < 2, r < r0; m̃(r) < 0, r >

r0. The radius of the region r0 should be very large compared
to any other scale in the Hamiltonian. The last term in Eq. (B5)
is much smaller than the other terms and we drop it in the
calculation. In this approximation, the wave function localized

at r = r0 is �(r, θ ) ≈ e
∫ r

r′=r0
m̃(r′ )dr′

χ (θ ), where (cos θτyσz −
sin θτxσ0)χ = χ . We write the two solutions as

χ1 = ξ1(θ )√
2

⎛
⎜⎜⎝

e−iθ/2

0
ieiθ/2

0

⎞
⎟⎟⎠, χ2 = ξ2(θ )√

2

⎛
⎜⎜⎝

0
eiθ/2

0
−ie−iθ/2

⎞
⎟⎟⎠, (B6)

where |ξ1,2| = 1. Reference [31] gives the explicit θ de-
pendence of ξ1,2 in term of the orbital angular momentum
quantum number. Now we are equipped to study the direct
sum of the 2D TSC to itself. The low-energy Hamiltonian is
H (r, θ ) ⊗ ρ0, with ρ another Pauli matrix in the space of the
two copies. The space of the edge modes is spanned by the
following states:

�1 = e
∫ r

r′=r0
m̃(r′ )dr′

χ1(θ ) ⊗ |0〉,
�2 = e

∫ r
r′=r0

m̃(r′ )dr′
χ1(θ ) ⊗ |1〉,

�3 = e
∫ r

r′=r0
m̃(r′ )dr′

χ2(θ ) ⊗ |0〉,
�4 = e

∫ r
r′=r0

m̃(r′ )dr′
χ2(θ ) ⊗ |1〉, (B7)

where |0/1〉 is the ±1 eigenstate of ρz. �1 and �3 are related
by time reversal, and a gap cannot open from the coupling

between them; the same is true for �2 and �4. Projecting
H (r, θ ) ⊗ ρ0 to the edge subspace, we obtain the edge effec-
tive Hamiltonian as − i

r τ0σzρ0∂θ . A k-independent symmetric
coupling �τxσxρy can then open a gap. In the edge subspace,
this is

�

⎛
⎜⎜⎝

0 0 0 −ξ ∗
1 ξ2

0 0 ξ ∗
1 ξ2 0

0 ξ1ξ
∗
2 0 0

−ξ1ξ
∗
2 0 0 0

⎞
⎟⎟⎠. (B8)

The gap is therefore nonvanishing everywhere on the circular
boundary, in contrast to the boundary of the high-order phase.
In conclusion, the direct sum of the 2D TSC to itself is in
the trivial phase. To see examples of other symmetry classes
where the group extension like the one in Eq. (27) is nontriv-
ial, we refer the readers to, e.g., Refs. [36,89].

APPENDIX C: ν2 AS THE WINDING OF THE
TRANSITION FUNCTION

In the main text, we obtain w2(Ee(1)
3

⊕ Ee(1)
3

, HKC ⊕ H0)
by considering the second S-W class. Equivalently, we can
calculate it as the winding of the transition function of the
real-gauge wave functions as described in Sec. IV C. In this
system, w1b(Ee(1)

3
⊕ Ee(1)

3
, HKC ⊕ H0) = 0, so the winding of

SI/II in the smooth and T -constant gauge is trivial along the
ky direction. We pick the loop of kx = 0/2π as l1 and the loop
of kx = π/ − π as l2. Then we choose two occupied states
that are not related by time reversal and fix them in the real
gauge. Using the notation in Eq. (30), one choice is

u1(k) = e−i
ky
2

⎛
⎜⎜⎜⎜⎝

ψ1(k)

0
0
0
0

⎞
⎟⎟⎟⎟⎠, u2(k) = e−i

ky
2

⎛
⎜⎜⎜⎜⎝

(0)

0
0
1
0

⎞
⎟⎟⎟⎟⎠, (C1)

where (0) denotes a four-component zero vector. They obey

u1(−π, ky) = −u1(π, ky), u2(−π, ky) = u2(π, ky),

u1(kx,−π ) = −u1(kx, π ), u2(kx,−π ) = −u2(kx, π ).
(C2)

After bringing all the occupied states to the same energy level,
we can carry out a gauge transformation,

u′
1(k) = cos

(
ky + π

2

)
u1(k) + sin

(
ky + π

2

)
u2(k),

u′
2(k) = − sin

(
ky + π

2

)
u1(k) + cos

(
ky + π

2

)
u2(k),

(C3)

so u′
1,2(k) still satisfy the real-gauge condition and are smooth

along l1. There is a discontinuity across l2, at which the tran-
sition function is

〈u′
i(−π, ky)|u′

j (π, ky)〉 =
(− cos(ky + π ) sin(ky + π )

sin(ky + π ) cos(ky + π )

)
.

(C4)

The determinant of the transition function Eq. (C4) is
−1, which signals the nontrivial w1a = w1c. The transition
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function Eq. (C4) has a winding number 1 around the loop
l2, giving w2 = 1. A similar calculation can be carried out for
the higher-order state to obtain w2(Ee(1)

1
⊕ Ee(1)

3
⊕ Ee(1)

3
, HKC ⊕

HKC ⊕ H0).

APPENDIX D: GROUP MULTIPLICATION

The AHSS result itself does not specify the group exten-
sion in Eq. (A8). Taking the real-space building block states
as examples, we can determine the extension by explicitly
calculating the group multiplication rule of the K group, i.e.,
how the invariants add up. Table IV summarizes the invariants
for the real-space building block states and some of their direct
sums. In Eq. (A8) group Z3

2 has trivial action on group Z2. We
write the group multiplication as

[ν1a, ν1b, ν1c; ν2] + [ν ′
1a, ν

′
1b, ν

′
1c; ν ′

2]

= [ν1a + ν ′
1a, ν1b + ν ′

1b, ν1c + ν ′
1c; ν2 + ν ′

2

+ c((ν1a, ν1b, ν1c), (ν ′
1a, ν

′
1b, ν

′
1c))], (D1)

where c is a 2-cocycle, i.e., c ∈ Z2(Z3
2,Z2). From the

group structure in the real-space block sates and the
correspondence with the topological invariants in Ta-
ble IV, we find that there are two possible choices:
c((ν1a, ν1b, ν1c), (ν ′

1a, ν
′
1b, ν

′
1c)) = ν1bν

′
1c + ν1cν

′
1b, or c((ν1a,

ν1b, ν1c), (ν ′
1a, ν

′
1b, ν

′
1c)) = ν1bν

′
1a + ν1aν

′
1b. Since ν2 is ill de-

fined for a state with ν1a = ν1c, we don’t know which one

is the correct choice. These two cocycles are in fact 2-
coboundaries and therefore correspond to the trivial class in
the cohomology group H2(Z3

2,Z2). For example, one can
remove c = ν1bν

′
1c + ν1cν

′
1b in Eq. (D1) by redefining the 2D

invariant ν2 → ν2 + ν1bν1c, and similarly for the other choice.
This shows that the group extension is trivial and we have
K = Z4

2. However, the group multiplication rule is not fixed
due to the ambiguity of the coboundaries.

The group multiplication rule can also be partially deduced
from the Whitney sum formula. Without any singular point in
the real-gauge wave functions, there is a well-defined rank-N0

vector bundle with the entire BZ as its base space. Its first
S-W class takes value in the cohomology group H1(BZ,Z2)
and its second S-W class in H2(BZ,Z2). In this case, w1b and
w1c (= w1a) correspond to the Z2 numbers associated with
the two noncontractible loops l (b ∪ b′) and l (c ∪ c′) (in the
same homology class as l (a ∪ a′)), respectively. Similarly, w2

corresponds to the Z2 number associated with the 2-cycle in
the BZ. After taking the reference Hamiltonian into account,
we may interpret ν1 j’s and ν2 as the S-W classes of either
the original vector bundle or its direct sum with the refer-
ence Hamiltonian. The n = 2 case in Eq. (24) suggests that
c is determined by the cup product of the first S-W classes
for the two summand vector bundles. This is ν1bν

′
1c + ν1cν

′
1b

or, equivalently, ν1bν
′
1a + ν1aν

′
1b. The choice can be subse-

quently fixed by the case where a singular point is present
and ν1a = ν1c.
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