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Charge and spin supercurrents in magnetic Josephson junctions with spin filters and domain walls
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We analyze theoretically the influence of domain walls (DWs) on the DC Josephson current in magnetic
superconducting Sm/Fl/F/Fl/Sm junctions. The Josephson junction consists of two “magnetic” superconductors
Sm (superconducting film covered by a thin ferromagnetic layer), spin filters Fl, and a ferromagnetic layer F
with or without DW(s). The spin filters Fl allow electrons to pass with one specific spin orientation, such that
the Josephson coupling is governed by a fully polarized long-range triplet component. In the absence of DW(s),
the Josephson and spin currents are nonzero when the right and left filters, Flr,l , pass electrons with equal spin
orientation and differ only by a temperature-independent factor. They become zero when the spin orientation
of the triplet Cooper pairs passing through the Flr,l have opposite directions. Furthermore, for the different
chiralities of the injected triplet Cooper pairs, the spontaneous currents arise in the junction yielding a diode
effect. Once a DW is introduced, it reduces the critical Josephson current Ic in the case of equal spin polarization
and makes it finite in the case of opposite spin orientation. The critical current Ic is maximal when the DW is
in the center of the F film. A deviation of the DW from the center generates a force that pushes the DW to the
center of the F film. In addition, we consider the case of an arbitrary number N of DWs, with the case N = 2
resembling a magnetic skyrmion.

DOI: 10.1103/PhysRevB.105.094517

I. INTRODUCTION

Over the past decade, there has been a significant inter-
est in studying the properties of superconductor/ferromagnet
(S/F) hybrid structures. One of the particular aspects of these
heterostructures is related to remarkable phenomena caused
by the magnetic interaction of topological textures in the
superconductor (Abrikosov and Pearl vortices [1,2]) and in
the ferromagnet (domain walls or skyrmions [3–6]). The in-
teraction of vortices with the magnetic field in a ferromagnet
may result in a spontaneous generation of vortices in the
superconductor S in S/F bilayers [7–11]. This effect occurs in
the absence of a direct contact between the electron systems
in S and F (no proximity effect) and is caused by the magnetic
field generated by vortices or the magnetic textures.

At the same time, the penetration of Cooper pairs into
a ferromagnet (the proximity effect) leads to a number of
further interesting effects. In particular, the Josephson current
in S/F/S junctions may change sign in a certain temperature
interval (see [12–17] and also reviews [18,19]). Another in-
teresting effect is the triplet component which arises in S/F
hybrid structures with an inhomogeneous magnetization M(r)
in F. If the magnetization is uniform, the Cooper pairs pene-
trating into the ferromagnet consist of singlet and short-range
triplet components, respectively. Both components penetrate
into the ferromagnet over a short length scale ξJ ≈ √

DF /J
(in the diffusive case), where DF is the diffusion coefficient
and J is the exchange field which, in most ferromagnets, is
much larger than the temperature T [19,20]. If the magne-
tization M(r) is nonhomogeneous, as occurs, for example,
in a S/Fm/F structure, then a long-range triplet component

(LRTC) may occur in the system. Here, Fm is a weak fer-
romagnet with magnetization magnitude m much less than
M and a direction is noncollinear to M. This component
propagates into the F region over a long, compared to ξJ ,
length of the order of ξT ≈ √

DF /πT [21,22]. In this case,
the superfluid component in most parts of F consists solely of
triplet Cooper pairs. For example, the Josephson coupling in
a S/Fm/F/Fm/S structure can be realized through the LRTC
as was predicted [23–29] (see also reviews [18–20,30–32],
and references therein) and observed experimentally [33–48].
Interestingly, the long-range triplet Cooper pairs with spin-up
and -down orientations penetrate the ferromagnet F regard-
less of the magnetization orientation M [49] so that the spin
current Isp in S/Fm/F/Fm/S Josephson junctions is absent,
whereas the charge current IQ is nonzero. Only in the pres-
ence of spin filters at the S/Fm interfaces does the current Isp

become finite.
In this paper, we calculate the Josephson charge IQ and

spin Isp currents in the Sm/Fl/F/Fl/Sm Josephson junctions
under various conditions, where Sm = S/Fm is a conventional
superconductor covered by a thin ferromagnetic layer. First
we consider the system without DWs and calculate the cur-
rents IQ,sp: (a) in the absence or presence of spin filters at the
S/Fm interfaces and (b) for equal or different polarizations
or chiralities of the triplet Cooper pairs injected into F from
the left and right superconductors S. Most importantly, we
also study the influence of the domain walls in F (DWs) on
the IQ and Isp in the dirty case when the condensate Green’s
functions f̂ obey the Usadel equation. Within this approxima-
tion the Green’s functions f̂ do not depend on the momentum
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direction p/|p|. Therefore, according to the Pauli principle,
the functions for the LRTC f̂ (t, t ′) ∼ 〈c↑(t )c↑(t ′)〉 are zero
at coinciding times t = t ′. In other words, these are odd
functions of the Matsubara frequency ω, f̂ (ω) = − f̂ (−ω), so
that summing over all ω gives zero: f̂ (t, t ) ∼ ∑

ω f̂ (ω) = 0.
The triplet odd-frequency Cooper pairs exist in any supercon-
ducting system if there is a Zeeman interaction of electron
spins and a magnetic or exchange field. This case was studied
long ago [50–55]. Unlike homogeneous superconductors with
Zeeman interaction, where the triplet component coexists with
the singlet one, the recently studied hybrid S/F systems allow
the separation of triplet and singlet Cooper pairs. In addition,
we assume a weak proximity effect allowing linearization of
the necessary equations and the boundary conditions yielding
simple analytical expressions for f̂ (r) and the currents IQ,sp.

Although the Josephson effect has been studied for similar
structures in various limiting cases (see references above as
well as [56–61] ), there is no systematic study of the depen-
dence of the IQ,sp on spin polarization, chiralities, and the
presence of the spin filters and DWs. In particular, we show
that although the current IQ is zero for opposite polarization
directions and different chiralities of injected Cooper pairs in
the presence of spin filters, it becomes finite in the presence of
DWs. We will consider an arbitrary number of DWs and pay
special attention to the case of two DWs. The latter case, to
some extent, may be regarded as a model of magnetic texture
such as a skyrmion with N = 1 winding number (like a Bloch
or Néel skyrmion) when the magnetization profile M has the
same orientation outside the DWs and the opposite orientation
between DWs [3–6].

II. BASIC EQUATIONS

We consider an Sm/Fl/F/Fl/Sm Josephson junction with
one or multiple DWs in the F film (wire). Schematically the
considered system is shown in Fig. 1. The junction consists
of two “magnetic” superconductors Sm and of two filters (Fl)
which allow only electrons with a single spin polarization,
parallel or antiparallel to the z axis, to pass through. The
magnetic superconductors may be made of conventional su-
perconductors covered by ferromagnetic thin films with the
magnetization aligned parallel to the x or y axis. The magneti-
zation vector M = (0, 0, M ) is supposed to be oriented along
the z axis. The filters may be magnetic insulators selecting
electrons with a spin collinear to the z axis. The Cooper pairs
penetrating into the F film due to proximity effect consist
of triplet long-range components only. We assume that the
proximity effect is weak as is the case in most experimental
setups. The Cooper pairs are described by a matrix quasiclas-
sical Green’s function f̂ (x), which is supposed to be small,
| f̂ | 	 1. The function f̂ (x) in the F film obeys the linearized
Usadel equation [18–20,30,32]

−∂2
xx f̂ + κ2

ω f̂ + iκ2
J

2
(nz(x)[X̂03, f̂ ]+ + nk (x)[X̂0k, f̂ ]+) = 0,

(1)

where κ2
ω = 2|ω|/DF , κ2

Jω = 2J sgnω)/DF , J is an exchange
field, and DF is the diffusion coefficient in the F film which is
assumed to be spin independent. Note that the quasiclassical

FIG. 1. Possible Sm/Fl/F/Fl/Sm junction setups for the system
under consideration shown exemplarily for two domain walls (DW).
Here, Sm = S/Fm is a conventional superconductor covered by a thin
ferromagnetic layer, Fl are spin filters, and F is a ferromagnetic layer.
The red arrows indicate the orientation of the magnetization; the
current flows from left to right.

equation with a spin-dependent DF has been derived previ-
ously in various models [62,63]. The 4 × 4 matrix X̂ik (x) =
τ̂i · σ̂k is a tensor product of the Pauli matrices in the Gor’kov-
Nambu, τ̂i, and spin space, σ̂k , respectively. The square
brackets are anticommutators [X̂03, f̂ ]+ = X̂03 · f̂ + f̂ · X̂03.
The DW is assumed to be of the Bloch type (k = y, z) and
is described by a unit vector n(x) = (0, ny(x), nz(x)), where
ny = sin α(x), nz(x) = cos α(x). The angle α(x) describes the
DW profile: it is equal to 0 (left from DW) and to π (right
from DW) far away from DW. The characteristic size of the
DW is

dW =
∫

dx sin α(x). (2)

In a general case Eq. (1) can be solved only numerically.
However, an exact solution can also be obtained under some
assumptions like, for example, a piecewise linear form of the
DW [21,64]. Here we will use a simple model assuming that
the width of the DW is small. Then, the last term in Eq. (1)
can be written in the form δ(x − li )dDW [X̂02, f̂ ]+, where li
is a position of the DW. This approximation is valid for any
dependence α(x). Thus, the Usadel equation reduces to

−∂2
xx f̂ + κ2

ω f̂ + i
(
κ2

J /2
)
[X̂03, f̂ ]+ = 0, (3)

with matching conditions at x = li,

f̂ |li+0 − f̂ |li−0 = 0, (4)

∂x f̂ |li+0 − ∂x f̂ |li−0 = i(κDW /2)[X̂02, f̂ ]+, (5)

where κDW = κ2
J dDW .

Although we assume that the DW thickness dDW is small,
its finite value in the right-hand side of Eq. (5) allows one to
take into account noncollinearity of the magnetization vectors
inside (Min) and outside (Mout) of the DW: Min ‖ ey and
Mout ‖ ez. Therefore, a conversion of the LRTC into the short-
range component and vice versa occurs at the DW. Thus, the
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problem considered here differs drastically from the problem
with collinear magnetizations Mout and zero width dDW [65]
where there is no such conversion.

A solution of Eq. (3) consists of a short-range and a
long-range component, respectively. The first one decays on a
short distance of the order of ξJ ≈ √

DF /J , while the second
varies on a much longer characteristic length of the order of
ξlr ≈ √

DF /πT . Observe that the condensate matrix Green’s
function f̂ is off-diagonal in the Gor’kov-Nambu space, i.e., f̂
is proportional to τ̂1, τ̂2 matrices. In addition, the LRTC, f̂lr ,
is also off-diagonal in the spin space, i.e., f̂ is proportional
σ̂1, σ̂2 matrices such that the third term in Eq. (3) for this
component vanishes. This means that in a general case the
matrix LRTC f̂lr obeying Eq. (3) can be written in the form

f̂lr (x) =
∑
{i,k}

aik (x)X̂ik , (6)

where {i; k} = {1, 2; 1, 2}. A concrete form of the LRTC is
determined by the boundary conditions at x = ±L. These
boundary conditions, originally employed in Refs. [66–70],
can be represented in a simple form:

∂x f̂ |x=±L = ±κbX̂r,l FS−, (7)

FS− = i� Im(1/ζω+), (8)

where X̂r,l = T̂ · X̂m · T̂ †, κb = 1/(RbσF ), Rb is an interface
(barrier) resistance per unit area, σF is conductivity of the F
film, ζω± =

√
(ω ± iJm)2 + �2, and Jm is an exchange field

in the Fm which can be weaker than the exchange field in
F. As follows from Eq. (8) the function FS−(ω) is an odd
function of ω. All condensate functions injected into the fer-
romagnet F are proportional to FS−, i.e., they describe the
odd-frequency long-range triplet component. The functions
X̂r,l FS− = (T̂ · X̂m · T̂ †)FS− are the Green’s functions of the
Cooper pairs passing through the right (left) filters. The matrix
coefficient T̂ describes the tunneling of Cooper pairs through
the filters and is defined as [66]

T̂ = (T + U X̂33)/
√

2. (9)

The term X̂mFS− ≡ f̂m in Eq. (8) is a matrix Green’s function
in the weak ferromagnet Fm where the function FS− is an
odd function of the Matsubara frequencies ω = πT (2n + 1)
and describes the triplet component. The form of the matrix
X̂m(±L) ≡ X̂m|l,r depends on the chirality of the LRTC, i.e.,
on the orientation of the magnetization m in the Fm ferromag-
netic film [71],

X̂ (x)
m = X̂11, m ‖ ex, (10)

X̂ (y)
m = X̂12, m ‖ ey. (11)

The matrices X̂ (x)
m , X̂ (y)

m describe triplet Cooper pairs with spin
up and down, which have different chirality. The filter action
converts the {X̂ (x)

m , X̂ (y)
m } matrices to {X̂ (x)

l,r , X̂ (y)
l,r }, where

X̂ (x)
l,r = X̂11 − sl,r X̂22, m ‖ ex, (12)

X̂ (y)
l,r = X̂12 + sl,r X̂21, m ‖ ey. (13)

The parameter s = 2 Re(T U∗)/(|T |2 + |U |2) characterizes
the degree of spin-up and spin-down polarization of the triplet

Cooper pairs injected into the film F. If U = 0, Cooper pairs
with up and down spins penetrate into the F film with equal
probabilities, and therefore the number of the triplet pairs
with both spin orientations in the F is the same. This case
has been called nematic LRTC in Ref. [49]. If |T | = |U | = 1,
then s = ±1, and the triplet Cooper pairs are fully polarized
with total spin parallel or antiparallel to the z axis. Note that
a magnetic half-metal can be used as a spin filter. The case
of s = 0 corresponds to the absence of filters at the Fm/F
interfaces.

Equations (7)–(12) are a generalization of the Kupriyanov-
Lukichev boundary conditions [72], which in turn were
obtained from Zaitsev’s boundary conditions [73] (see also
Ref. [74], where the applicability of the Kupriyanov-Lukichev
boundary conditions is discussed).

So far, we have assumed that the phases of the order pa-
rameter in the superconductors S are chosen to be equal to
zero. The presence of the phases ±ϕ/2 at Sr,l can be easily
introduced via a gauge transformation Ŝϕ = exp(±iX̂30ϕ/4):
ĝS,ϕ = Ŝϕ · ĝS · Ŝ†

ϕ (see, e.g., [75]) so that the boundary con-
dition (7) can be written as

∂x f̂ | x=±L = ±κb[cos(ϕ/2) ± iX̂30 sin(ϕ/2)]X̂l,rFS−. (14)

The matrix condensate function X̂ (x,y)
m FS− describes a short-

range triplet component in the film Fm, but it becomes a
long-range one in the F film because of the noncollinearity
of the magnetization vectors m and M. Note that the func-
tions X̂12FS− and X̂21FS−, written explicitly, consist of triplet
components with up and down spins X̂12FS− ∼ 〈c↑(t )c↑(0)〉 +
〈c↓(t )c↓(0)〉, X̂21FS− ∼ 〈c↑(t )c↑(0)〉 − 〈c↓(t )c↓(0)〉 so that
the function X̂F S− = (X̂12 ± X̂21)FS− describes the Cooper
pairs polarized in one direction (see Appendix A for further
details).

Knowing the Green’s functions f̂ , we can readily calculate
the charge IQ = IQ·ex and the spin currents Isp = I(z)

sp · ex using
the following expressions:

IQ = σF

e
2πT

∑
ω�0

IQ,ω, (15)

Isp = μB
σF

e2
2πT

∑
ω�0

Isp,ω, (16)

where the “spectral” currents IQ,ω and Isp,ω are defined as

IQ,ω = (i/4)Tr{(τ̂3 · σ̂0) f̂LR,0∂x f̂ } ≡ i{ f̂ ∂x f̂ }30, (17)

Isp,ω = (i/4)Tr{(τ̂0 · σ̂3) f̂ ∂x f̂ } ≡ i{ f̂ ∂x f̂ }03 (18)

and further details are given in Appendix B. Similar ex-
pressions for the charge and spin current are obtained in
Refs. [64,71,76,77]. Observe that the traces in the Nambu
space for charge and spin currents are actually different. In the
literature one could also find the expression for the Joseph-
son spin current in a different form Isp,ω = (i/4)Tr{(τ̂3 ·
σ̂3) f̂ ∂x f̂ }, which might be related to the different choice of
basis in the definition of the Green’s functions. Here we follow
the same basis as in Ref. [20] complemented by the Ivanov-
Fominov transformation, Eq. (A9). In this representation, the
Usadel equation has the standard form (B5) with the boundary
conditions Eq. (14).
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In order to find the Josephson current, we need to solve
Eq. (3) with the matching conditions (4) and boundary condi-
tions (8).

We first consider the case of the F film with a uniform
magnetization, M = (0, 0, M ), without DWs. Although
such magnetic Josephson junctions have been already
studied previously in different limiting cases (ballistic and
diffusive) using various mostly numerical techniques
[23–29,56–61,78,79] we will discuss the main results in
the dirty case and in the limit of the weak proximity effect.
Then the formulas for currents acquire a simple analytical
form, not known previously, that allows for a straightforward
physical interpretation. In addition, we will focus our study
on the case of fully polarized triplet Cooper pairs of different
chiralities.

In particular, the solution of Eq. (3), f̂LR,0, which obeys the
boundary conditions (8) has the form

f̂lr,0 = Ĉ
cosh(κωx)

sinh(Lκω )
+ Ŝ

sinh(κωx)

cosh(Lκω )
(19)

with

Ĉ = κb

2κω

[
X̂+ cos

(ϕ

2

)
+ iX̂30 · X̂− sin

(ϕ

2

)]
FS−, (20)

Ŝ = κb

2κω

[
X̂− cos

(ϕ

2

)
+ iX̂30 · X̂+ sin

(ϕ

2

)]
FS−, (21)

where we have defined X̂± = X̂r ± X̂l . Substituting f̂LR,0 from
Eq. (19) into Eqs. (17) and (18), we obtain

IQ,ω = Ĩω[−i{X̂r · X̂l}30 cos ϕ + {X̂r · X̂l}00 sin ϕ],

(22)

Isp,ω = Ĩω[−i{X̂r · X̂l}03 cos ϕ + {X̂r · X̂l}33 sin ϕ],

(23)

Ĩω = (κbFS−)2

κω sinh(2Lκω )
, (24)

and κω = √
2|ω|/DF . Observe that the matrices Ĉ, Ŝ and

X̂r, X̂l anticommute with matrices X̂30, X̂03 so that the traces
{Ĉ2}30, {Ĉ2}03, etc., are equal to zero. In the following we
calculate the charge and spin currents for different cases in
detail.

A. Currents in the absence of filters

For the case of equal chiralities of the triplet Cooper pairs
injected from the right (left) S/Fl interfaces (ml ‖ mr ||ex

or ml ||mr ‖ ey) and defining X̂r = X̂l = X̂11 ≡ X̂ (x)
m or X̂r =

X̂l = X̂12 ≡ X̂ (y)
m , the charge and spin spectral currents are

I (x,x)
Q,ω = I (y,y)

Q,ω = Ĩω sin ϕ, (25)

I (x,x)
sp,ω = I (y,y)

sp,ω = 0, (26)

i.e., the charge current has the usual form IQ,ω = Ĩ sin ϕ

whereas the spin current is zero. For the case of different
chiralities (X̂r = X̂12, X̂l = X̂11) the currents are given by

I (x,y)
Q,ω = 0, (27)

I (x,y)
sp,ω = Ĩω cos ϕ, (28)

where indices (x,x) and (x,y) refer to the chirality of the
Cooper pairs penetrating the film F on the right and on the left,
that is, I (x,y)

Q,ω ∼ {X̂ (x)
r · X̂ (y)

l }. We also note an important feature
of the obtained currents. In particular, the critical spectral
current Ĩω in the considered Sm/Fl/F/Fl/Sm junction has the
sign opposite to that in the S/N/S Josephson junction since in
the latter case the critical current ĨS/N/S ∼ F 2

S > 0, while in the
system under consideration Ĩω ∼ F 2

S− < 0 [see Eq. (8)], here
FS = �/

√
ω2 + �2. This is a simple representation of the fact

that the LRTC leads to a π -Josephson coupling. Observe that
the negative F 2

S− means a negative local pair density [80,81].
It leads not only to the change of sign of the critical Joseph-
son current but also to an enhanced density of states at zero
energy [82].

Note that the Josephson current I (x,x)
Q,ω is finite for collinear

orientations of the magnetic moments m in the left and right
films Fm and is zero (I (x,y)

Q,ω = 0) for the orthogonal orientations
of the vectors ml,r . The opposite is true for the spin current.
It is zero in the case of vectors ml = mr and is finite if ml ·
mr = 0, i.e., when the vectors mr,l are orthogonal. Moreover,
in the second case a spontaneous spin current arises in the
system even when the phase difference ϕ is zero.

The formulas for the currents (25)–(28) are derived for the
case when the vectors mr,l lie in the plane perpendicular to
the z axis so that mr,l · ez = cos αr,l = 0. They can be easily
generalized for the arbitrary angles αr,l . Taking into account
that only the components mr,l · ex,y contribute to the LRTC, in
a more general case the currents Ĩ are equal to

Ĩα = Ĩ sin αr sin αl . (29)

The formulas for the charge and spin currents IQ,sp,ω are rep-
resented in Table I. The angles αr,l are chosen to be equal to
π/2 so that sin αr = sin αl = 1.

B. Currents in the presence of filters

Now we calculate the currents for the case of a uniform
M in F and in the presence of filters at the interfaces F/Fm.
Recall that in the absence of spin filters, the currents are spin
independent. As we show below, the presence of spin filters
makes both currents spin dependent. For the case of equal
chiralities, i.e., X̂r = X̂l = X̂ (ν) (ν = x or y), the charge and
spin currents can be found by using formulas for X̂ (x) and X̂ (y),
Eq. (10),

I (x,x)
Q,ω = I (y,y)

Q,ω = Ĩω(1 + srsl ) sin ϕ, (30)

I (x,x)
sp,ω = I (y,y)

sp,ω = Ĩω(sr + sl ) sin ϕ. (31)

These formulas show that for parallel spin orientations of fully
polarized triplet Cooper pairs injected from the right and left
superconductors, the values of the coefficients 1 + srsl = 2
and sr + sl = 2 sgn(s) are the same, but the direction of the
spin current depends on the sign of s. In the case of opposite
spin polarization both currents are zero.

For different chiralities X̂r = X̂ (x), X̂l = X̂ (y) we find

I (x,y)
Q,ω = Ĩ (sr + sl ) cos ϕ, (32)

I (x,y)
sp,ω = Ĩ (1 + srsl ) cos ϕ. (33)
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TABLE I. Summary of the charge and spin supercurrents in magnetic Josephson junctions with spin filters and their modifications due to
domain walls for different ferromagnetic filter orientations.

CURRENTS
XX(YY) no Fl XY no Fl XX(YY) + Fl XY + Fl

QI �sin
~I 0 �sin)1(

~
lr ssI � �cos)(

~
lr ssI ��

spI 0 �cos
~I �sin

~
lr ssI �cos)1(

~
lr ssI ��

Corrections to the Currents due to DWs
XX(YY) + Fl, P 
case

XX(YY) + Fl, AP 
case

QI �� sin)
~
( II � �� sin

~I

With equal spin polarizations (sr = sl ), the spontaneous
charge and spin currents occur in this case even in the absence
of a phase difference. Interestingly, the direction of the sponta-
neous charge current depends on the sign of spins s of injected
triplet Cooper pairs. In the case of opposite spin polarization,
these currents disappear. Note that the spontaneous currents
may lead to the Josephson diode effect (see Ref. [83], and
references therein). The conclusion about the possibility of
spontaneous currents in different models of superconducting
magnetic systems (with or without spin-orbit interaction) have
been obtained earlier [29,49,68,84,85] (see also recent papers
[86,87], and references therein). For convenience we summa-
rize the results for the charge and spin currents in Table I.

III. MODIFICATIONS OF THE CURRENTS DUE TO DWs

Next we consider the modifications of the currents, ob-
tained above, for the case of the domain wall in the F film.
We restrict our analysis to the case of equal chiralities (the
generalization to the case of different chiralities is straightfor-
ward) and also assume that the spacing between the nearest
DWs is much larger than the decay length of the short-range
component f̂sr , i.e., |l1 − l2| � ξJ ≈ √

DF /J . The main effect
of the domain wall is the creation of a short-range triplet com-
ponent, which results in a correction δ f̂lr to the long-range
component f̂lr,0 defined by Eq. (19). While the short-range
component exists only near each DW, the LRTC extends over
a larger distance, which can be of the order of L. In particular,
the correction δ f̂lr arises due to matching conditions for the
function δ f̂lr (x) at x = li, where li is the coordinate of a
DW. These conditions for δ f̂lr,0(x) and its partial derivative
are

[δ f̂lr]|li = 0, (34)

[∂xδ f̂lr]|li = i(κDW /2)[X̂02, f̂sr (l )]+. (35)

As usual, these are complemented by the boundary conditions

∂xδ f̂lr |±L = 0. (36)

In the presence of several DWs, the solution for δ f̂lr can be
represented in the form

δ f̂lr (x) =
∑

i

δ f̂ (i)
lr (x), (37)

where the δ f̂ (i)
lr (x) is a perturbation of the LRTC generated

by the ith DW. In order to find this function, one needs to
determine a short-range component f̂ (i)

sr produced by the ith
DW, which we do in the next section.

A. Short-range component generated by the domain wall

The short-range component obeys Eq. (3) and matching
conditions (4) and (5) that can be written as

[ f̂sr]|l = 0, (38)

[∂x f̂sr]|l = i
κDW

2
[X̂02, f̂lr,0]+, (39)

where we also dropped the subindex i in li for simplicity.
Taking into account Eqs. (5), (20), and (21), we can rewrite
Eq. (39) as follows:

[∂x f̂sr]|l = iκDW

(
Ĉ2

cosh l̃

sinh L̃
+ Ŝ2

sinh l̃

cosh L̃

)
, (40)

where l̃ = κωl , L̃ = κωL and Ĉ2 = [X̂02, Ĉ]+, Ŝ2 = [X̂02, Ŝ]+.
A solution for the short-range component, Eq. (3), obeying
the matching conditions (38) and (39) in the vicinity of ith
DW can written in the form

f̂sr = f̂ (A)
sr cos(ϕ/2) + f̂ (B)

sr sin(ϕ/2), (41)
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where the matrices f̂ (A,B)
sr Green’s functions contain exponentially decaying functions

f̂ (A)
sr (x) = −i

{
A+X̂n+ exp [K+(x − l )] + A−X̂n− exp [K−(x − l )], x < l

Ā+X̂n+ exp [−K̄+(x − l )] + Ā−X̂n− exp [−K̄−(x − l )], l < x,
(42)

where K2
± = κ2

ω ± iκ2
J and n = 1, 2 for y, x chiralities, K̄± =

K∓ and X̂n± = (X̂n0 − X̂n3). The matrix f̂ (B)
sr is equal to

f̂ (B)
sr (x) = iX̂30 · f̂ (A)

sr (x), (43)

with the replacement A ⇒ B. The matching condition (38)
yields

A+ = A− = Ā− = Ā+ ≡ A, (44)

B+ = B− = B̄− = B̄+ ≡ B. (45)

The coefficients A and B are determined from Eq. (39). In
what follows we consider several cases.

(a) The x chirality, parallel sr,l orientations. In this case,
X̂r = X̂l = (X̂11 − sX̂22). The coefficients A(x)

P , B(x)
P are equal

to

A(x)
P = −srω

cosh l̃

sinh L̃
FS−, (46)

B(x)
P = −srω

sinh l̃

cosh L̃
FS−, (47)

where rω = (κDW κb)/(K0κω ) and K0 = 4 ReK+.
(b) The x chirality, antiparallel spin orientations, i.e.,

sr = s = −sl . In this case X̂r,l = X̂11 ∓ sX̂22). The coefficients
A(x)

AP, B(x)
AP are given by A(x)

AP = B(x)
P , B(x)

AP = A(x)
P .

(c) The y chirality, parallel (antiparallel) sr,l orientations.
Then, X̂l,r = (X̂12 − sl,r X̂21) and the coefficients A(y), B(y) are
equal to

A(y)
P = A(y)

AP = A(x)
P /s, (48)

B(y)
P = B(y)

AP = B(x)
P /s. (49)

In the next section, we calculate the function δ f̂lr,0(x).

B. Correction to the LRTC due to a domain wall

Finally, the correction δ f̂lr (x) obeys the equation

−∂2
xxδ f̂lr + κ2

ωδ f̂lr = 0, (50)

complemented by the conditions (34)–(36). The solution of
Eq. (50), which obeys the boundary conditions (36), is

δ f̂lr (x) =
{

Ĉ< cosh(x̃ + L̃), −L < x < l

Ĉ> cosh(x̃ − L̃), l < x < L.
(51)

The matrices Ĉ≶ are found from the matching conditions (34)
and (35):

Ĉ≶ = Ĉ(A)
≶ cos(ϕ/2) + iX̂30Ĉ

(B)
≶ sin(ϕ/2) (52)

and find for Ĉ(A,B)
≶ ,

Ĉ(A)
≶ ≡ â≶ = −4

κDW

κω

cosh(L̃ ∓ l̃ )

sinh(2L̃)
AX̂n2, (53)

Ĉ(B)
≶ ≡ b̂≶ = −4

κDW

κω

cosh(L̃ ∓ l̃ )

sinh(2L̃)
BX̂n2, (54)

where the signs ± correspond to x ≷ l and n = 1 for y chiral-
ity and n = 2 for x chirality.

Having known the long-range Green’s function f̂lr =
f̂lr,0 + δ f̂lr , we can find a change of the current in the presence
of a DW.

C. Change of the currents due to domain wall

The corrections to the currents are

δIQ = (σF /e)2πT
∑
ω�0

δIQ,ω, (55)

δIsp = μB(σF /e2)2πT
∑
ω�0

δIsp,ω (56)

and the partial currents δIQ,ω and δIsp,ω are given by

δIQ,ω = i{δ f̂lr∂x f̂lr,0 + f̂lr,0∂xδ f̂lr}30, (57)

δIsp,ω = i{δ f̂lr∂x f̂lr,0 + f̂lr,0∂xδ f̂lr}03. (58)

We find

δIQ,ω = κω{(Ĉ(B) + Ŝ(B)) · â − (Ĉ(A) + Ŝ(A)) · b̂}00,

(59)

δIsp,ω = κω{(Ĉ(B) + Ŝ(B)) · â − (Ĉ(A) + Ŝ(A)) · b̂}33. (60)

Here, the matrices Ĉ(A,B) and Ŝ(A,B) are presented in
Appendix C [Eqs. (C1)–(C4)], and the matrices â ≡ â>, b̂ ≡
b̂> are defined in Eqs. (53) and (54).

Then, we find for the currents of Cooper pairs injected
from the right and left Sm reservoirs with equal chiralities and
arbitrary spin polarizations

δIQ = δIQ,ω sin ϕ, (61)

δIsp = δIsp,ω sin ϕ. (62)

The critical currents δIQ,ω and δIsp,ω depend on the chiralities
and polarizations of Cooper pairs propagating from the right
and from the left. For the case (a) (xx) chiralities, P case (s =
sr = sl ),

δI (xx)
Q,ω;P = −2

κ2
DW

K0

(
κb

κω

)2

F 2
S−

cosh(L̃ + l̃ ) cosh(L̃ − l̃ )

sinh2(2L̃)
,

(63)

δI (xx)
sp,ω;P = sδI (xx)

Q,ω;P. (64)

For the case (b) (xx) chiralities, AP case (s ≡ sr = −sl ) we
find

δI (xx)
Q,ω;AP = − δI (xx)

Q,ω;P, δI (xx)
sp,AP = −δI (xx)

sp,P. (65)

Comparing this equation and Eqs. (63) and (64), we see that
the signs of the currents δI (xx)

Q,AP and δI (xx)
sp,AP are changed.
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FIG. 2. Temperature dependence of the normalized critical cur-
rent Ic,0 in the absence of DW (black curve) and a change of the
normalized critical current δIc due to DW (red curve), which is
subtracted from Ic,0 to obtain the total current. For the sake of the
presentation the magnitude of the latter is multiplied by the factor of
5. The change δIc decreases the Josephson critical current Ic if Ic,0 is
not zero and makes Ic finite if Ic,0 = 0 (antiparallel spin orientations
of triplet Cooper pairs injected from the left and from the right). The
temperature T and the exchange Jm energy in Fm are normalized to
�(0). The parameter J ≡ Jm/�(0) is chosen to be equal to 3 (see
Appendix D).

Finally, in the case (c) (yy) chiralities, P(AP) cases, the cur-
rents are

δI (yy)
Q,P = δI (xx)

Q,P = δI (yy)
Q,AP, (66)

δI (yy)
sp,P = −δI (xx)

sp,P = δI (yy)
sp,AP. (67)

In the case of the yy chirality, the coefficients A(y,y) and B(y,y)

do not depend on the polarization s. That is, the currents
are equal for different spin orientations: δI (yy)

Q,P = δI (yy)
Q,AP and

δI (yy)
sp,P = δI (yy)

sp,AP.
The analysis of the obtained results shows that the DW

reduces the Josephson charge and spin currents if Cooper pairs
injected from the right and left superconductors have parallel
spin orientation. Thus, the action of the DW on the critical
current in this case is analogous to the action of paramagnetic
impurities, which decrease the penetration length of the LRTC
[20,88]. In the case of antiparallel orientations, the DW makes
the Josephson critical current finite. It is interesting to note
that the maximum magnitude of the total Josephson current
IQ = |IQ,0 + δIQ| is achieved at l = 0. This means that the
Josephson energy has a minimum if the DW is located in the
center of the junction for the case of parallel spin polarized
Cooper pairs. Note also that the correction to the current
δIω,0 is proportional to the square of κDW : δIω,0 ∼ K0r2

ω =
(κDW κb)2/(K0κ

2
ω ). Thus, the contribution to the current due to

.

.

.

.

.

.

.

.

.

.

50x

FIG. 3. The dependence of the critical current Ic,0(Jm ) on the
exchange field in Fm film Jm for two values of the normalized
temperature and L/ξ� = 1: T/�(0) = 0.05 (black) and T/�(0) =
0.3 (red) (in the latter case, we multiplied this dependence by the
factor 50 because the critical current decreases drastically with
increasing T ).

DW does not depend on whether the magnetization vector M
in the Bloch DW rotates clockwise or counterclockwise. The
results of the change of the Josephson currents due to a single
domain wall are also summarized in Table I.

In Fig. 2 we plot the temperature dependence of the Joseph-
son critical current IQ,0(T ) in the absence of a DW and a
correction to the current due to a DW located in the center
of the F film (l = 0) (see also Appendix D for details of the
numerics). One can see that the critical current IQ,0(T ) and the
correction due to a DW decay monotonously with increasing
the temperature. For completeness we show in Fig. 3 the de-
pendence IQ,0(J ) for two temperatures. A similar dependence
shows the correction to the Josephson current due to a DW.

To estimate how large are the corrections δIQ to the Joseph-
son critical current due to a DW observe that Eq. (63) yields

δIQ,ω ∼ κ2
DW

K0

κ2
b

κ2
ω

F 2
S− cosh−2(κωL), (68)

where K0 ≈ κJω and we set l = 0. On the other hand, the
Josephson critical current in the absence of DWs is given by
[see Eq. (24)]

Ĩω ∼ κ2
b

κω

F 2
S− sinh−1(2κωL). (69)

Thus, for the ratio δIQ,ω/Ĩω we obtain

δIQ,ω/Ĩω ∼
(

κDW

κJω

)2
κJω

κω

. (70)
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The term in brackets is assumed to be small, but the ratio
κJω/κω is large. Therefore, the correction δIQ,ω can be com-
parable with Ĩω and the suppression of the critical current can
be significant.

D. Change of the currents due to two domain walls

We assume that the spacing between the nearest DWs is
much larger than κJ . In this case each DW contributes to
the Josephson current independently from others. Thus, the
correction to the Josephson current due to, for example, two
DWs, is given by

δI (xx)
Q,ω = −2

(κbκDW FS−)2

K0κ2
ω sinh2(2L̃)

[cosh(2L̃)

+ cosh(2l̄ ) + cosh(2δl )] sin ϕ, (71)

where l̄ = (l̃1 + l̃2)/2, δl̃ = l̃1 − l̃2. According to the assump-
tion above, (δl̃κJ ) � 1. This formula means that the DW
reduces the critical current Ic = Ic0 + δIc in the P case and
makes it finite in the AP case. The decrease of the current
Ic = Ic0 − |δIc| in the P case would be minimal if l̄ = 0, i.e.,
the two DWs are located in the center of the F film.

IV. CONCLUSIONS

We have calculated the Josephson charge IQ and spin Isp

currents in an S/Fm/Fl/F/Fl/Fm/S Josephson junction when
the Josephson coupling is realized via different types of a
LRTC. The superconducting condensate in a thin magnetic
layer Fm consists of singlet and triplet Cooper pairs pene-
trating from the S banks into the Fm film. The spin filters Fl
pass only the triplet Cooper pairs which are long range in F
because the magnetization vector m in Fm is perpendicular to
the magnetization vector M ‖ ez in the F film. The long-range
triplet Cooper pairs, penetrating into the F film, differ in chi-
ralities, i.e., by orientation of the vector m(m ‖ ex or m ‖ ey),
and in polarization of the total spin of the triplet Cooper pairs.
First, we considered the case of a uniform magnetization in
F, M(x) = const, and of the absence of spin filters. Then, the
LRTC consists of equal numbers of fully polarized triplet pairs
with opposite directions of the total spin sl,r (the nematic case
in the terminology of Ref. [49]). In this case, the spin current
I (xx)
sp = I (yy)

sp is zero and the Josephson current I (xx)
Q = I (yy)

Q is
finite.

In the presence of the spin filters, both currents, I (xx)
Q =

I (yy)
Q = ĨQ(1 + srsl ) sin ϕ and I (xx)

sp = I (yy)
sp = Ĩsp(sr + sl ) sin ϕ,

are finite. If the chiralities and spin directions of the LRTC
are equal, the currents are finite and differ only by a prefactor.
In the case of antiparallel spin orientations and sr = −sl = s,
both currents are zero. If the triplet Cooper pairs injected
on the right and on the left have different chiralities, spon-
taneous currents may arise: I (xy)

Q = −ĨQ(sr + sl ) cos ϕ, I (xy)
sp =

−Ĩsp(1 + srsl ) cos ϕ. This means that the currents may occur
in the absence of the phase difference and the direction of the
charge current depends on spins. The spontaneous currents
may be the reason for the Josephson diode effect, discussed
recently [83]. All these results are summarized in Table I.

We have studied the change of the charge and spin currents
in the presence of an arbitrary number of DWs in the F film.

It turns out that a DW reduces the critical Josephson current
if the spin directions of the Cooper pairs injected from the
right and left superconductors Sm are parallel (sr = sl ) and
the suppression of the critical current may be significant. The
critical current reaches a maximum if the DW is located in
the center of the F film. In the case of an antiparallel spin,
sr = −sl , the critical current I (AP)

c,0 in the absence of a DW is
zero, but becomes finite in the presence of a DW.

The case of two DWs, which may be considered as a model
of a skyrmion, is particularly interesting. The dependence of
the change of the critical current δI (xx)

Q,ω due to two DWs is
given by Eq. (71). In the case of parallel spins (sr = sl ), the
critical current IQ,c has a maximum if the DWs are located
in the center of the F film. In the case of antiparallel spins
(sr = −sl ), the maximum IQ,c corresponds to the location of
two DWs at the edges of the F film.
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APPENDIX A: GREEN’S FUNCTIONS Ĝik

First we calculate the exact Green’s functions Ĝik and show
that they and the quasiclassical Green’s functions ĝ(x)(s) and
ĝ(y)(s) describe the fully polarized triplet Cooper pairs with
spin s = ±1. We use the Nambu indices defined in Ref. [20],
so that cn,s = cs and cn,s = c†

s̄ for n = 2; cs = c↑ for s = 1
(s̄ = 2) and cs = c↓ for s = 2 (s̄ = 1). The Green’s function
Ĝ12 is

Ĝ12(t, t ′) = − i〈cns(t )X̂12c†
n′s′ (t∗)〉

= − i〈cns(t )τ̂1 ⊗ σ̂2c†
n′s′ (t∗)〉

= − i〈cs(t )σ̂2c†
s̄′ (t ′) + c†

s̄ (t )σ̂2cs′ (t ′)〉
= − i〈−c↑(z)c↑(t ′) + c↓(z)c↓(t ′) − c†

↑(z)c†
↑(t ′)

+ c†
↓(z)c†

↓(t ′)〉 (A1)

and

Ĝ21(t, t ′) = − i〈cns(t )X̂21c†
n′s′ (t∗)〉

= − i〈c↑(z)c↑(t ′) + c↓(z)c↓(t ′) − c†
↑(z)c†

↑(t ′)

− c†
↓(z)c†

↓(t ′)〉. (A2)

Analogously, we obtain for Ĝ11 and Ĝ22

Ĝ11(t, t ′) = −i〈c↑(z)c↑(t ′) + c↓(z)c↓(t ′) + c†
↑(z)c†

↑(t ′)

+ c†
↓(z)c†

↓(t ′)〉, (A3)

Ĝ22(t, t ′) = −i〈c↑(z)c↑(t ′) − c↓(z)c↓(t ′) − c†
↑(z)c†

↑(t ′)

+c†
↓(z)c†

↓(t ′)〉. (A4)

Combining Eqs. (A1)–(A4), one can write

Ĝ(x)(t, t ′) ≡ Ĝ11 − sĜ22 = −2i〈cs(t )cs(t
′) + c†

s (t )c†
s (t ′)〉,

(A5)

Ĝ(y)(t, t ′) ≡ Ĝ12 + sĜ21 = 2i(−1)s〈cs(t )cs(t
′) + c†

s (t )c†
s (t ′)〉.

(A6)
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Equations (A5) and (A6) show that both Green’s functions
Ĝ(x) and Ĝ(y) are off-diagonal in the Nambu space and define
triplet Cooper pairs with spin up (s = 1) and down (s = −1),
which describe a fully polarized triplet component. Since the
matrix structure of the Green’s functions does not change
upon going over to the quasiclassical functions,

ĝBV E = i

π
ν

∫
dξ Ĝ, (A7)

the same statement is true for matrix functions ĝBV E .
Note the transformation suggested by Ivanov-Fominov:

ĝ = Û · ĝBV E · Û †, (A8)

Û = 1
2 (X̂00 + iX̂33) · (X̂00 − iX̂33) (A9)

transform the function ĝBV E introduced in Ref. [20] into the
functions ĝ, employed here. It does not change the rela-
tions because the matrix Û commutes with the matrices X̂00

and X̂33.
These functions arise as a result of the action of the spin

filters (we set T = 1, U = ±1).

Ĝ(x) = T33 · Ĝ11 · T †
33, (A10)

Ĝ(y) = T33 · Ĝ12 · T †
33, (A11)

T33 = 1√
2

(T + UX̂33). (A12)

APPENDIX B: CHARGE AND SPIN CURRENTS

The charge density ρ is equal to

ρ(r, t ′) =CQ

∑
p

〈c†
ns(t )X̂30cn′s′ (t ′)〉

=CQ

∑
p

〈c†
ns(t )τ̂3cn′s′ (t ′)〉 = 〈c†

s (t )cs(t
′) − cs̄(t )c†

s̄ (t ′)〉

=CQ

∑
p

〈c†
↑(t )c↑(t ′) + c†

↓(t )c↓(t ′) − c↑(t )c†
↑(t ′)

− c↓(t )c†
↓(t ′)〉, (B1)

where CQ is a constant which will be defined below. The
operators c†

ns(t
′), cn′s′ (t ), as before, depend on times t, t ′. For

equal times t = t ′, we obtain

ρ(t ) = 2CQ

∑
p

〈c†
↑c↑ + c†

↓c↓〉

= − 2iCQ

∑
p

{Ĝ}30 = 2

π
CQν(0){ĝBV E }00. (B2)

Here, ĝBV E is the quasiclassical Green’s function derived in
[20]. The magnetic moment is

M =CM

∑
p

〈c†
ns(t )X̂03cn′s′ (t ′)〉

=CM

∑
p

〈c†
s σ3cs′ + cs̄σ̂3c†

s̄′ 〉

=CM

∑
p

〈c†
↑(t )c↑(t ′) + c†

↓(t )c↓(t ′)〉. (B3)

For equal times t = t ′, we obtain

M(t ) = 2CM

∑
p

〈c†
↑(t )c↑(t ) + c†

↓(t )c↓(t )〉

⇒ 2iCM

∑
p

{Ĝ}03 ⇒ 2

π
CM{ĝBV E }33. (B4)

To find the formula for the charge (spin) current, consider the
Usadel equation for the Keldysh function

τ̂3 · ∂t ĝ + ∂t∗ĝ · τ3 = DF∂x(ĝ · ∂xĝ) + iJ[X̂33, ĝ]. (B5)

Introducing t̄ = (t + t ′)/2 and τ = t − t ′, Eq. (B5) can be
written as

1
2∂t̄ [τ̂3, ĝ]+ + ∂τ [τ̂3, ĝ] = DF ∂x(ĝ · ∂xĝ) + iJ[X̂33, ĝ]. (B6)

We multiply Eq. (B6) first by X̂30, then by X̂03, and calculate
the trace. We get the law of conservation of the charge and the
magnetization

∂ρ

∂ t̄
= −∂x jQ,

∂M

∂ t̄
= −∂ jsp, (B7)

where the charge current jQ is equal to

jQ = − σn

e
2πT

∑
ω�0

1

4
Trτ̂3ĝ∇ĝ

= − σn

e
2πT

∑
ω�0

{ĝ∇ĝ}30 (B8)

and the spin current jsp is given by

jsp = −μB
σn

e2
(iπT )

∑
ω�0

∇{ĝ}03. (B9)

The charge density ρ is

ρ = eν(0)(i2πT )
∑
ω�0

{ĝ}00. (B10)

The Drude conductivity σn is

σn = 2ν(0)Dne2. (B11)

The magnetic moment Mz is [see, e.g., [20], Eq. (A28)]

Mz = μBν(0)(i2πT )
∑
ω�0

{ĝ}33. (B12)

APPENDIX C: COEFFICIENTS IN THE CHANGE
OF THE CURRENTS DUE TO TWO DWs

The coefficients Ĉ(A,B) and Ŝ(A,B) in Eqs. (59) and 60) are
determined by Eqs. (20) and (21). They are equal to

Ĉ(A) = κb

2κω

(X̂r + X̂l ) cos(ϕ/2)FS−, (C1)

Ĉ(B) = κb

2κω

(X̂r − X̂l ) sin(ϕ/2)FS−, (C2)

Ŝ(A) = κb

2κω

(X̂r − X̂l ) cos(ϕ/2)FS−, (C3)

Ŝ(B) = κb

2κω

(X̂r + X̂l ) sin(ϕ/2)FS−. (C4)

094517-9



DAHIR, VOLKOV, AND EREMIN PHYSICAL REVIEW B 105, 094517 (2022)

The matrices â, b̂ equal

â = −4rω

cosh(L̃ ± l̃ )

sinh(2L̃)
A cos(ϕ/2)X̂n2; (C5)

b̂ = −4rω

cosh(L̃ ± l̃ )

sinh(2L̃)
B sin(ϕ/2)X̂n2 (C6)

with n = 1, 2 for y and x chiralities.

APPENDIX D: DETAILS OF THE NUMERICS

The critical current Ĩ0(t ) of the considered Josephson junc-
tion without DWs is

Ĩ0(t ) = I0N (t ), (D1)

I0 = σF �

e
ξ�κ2

b , (D2)

N (t ) = 2πt
∑
n�0

[
Im

�̃(t )√
(tn + iJ̃m)2 + �̃(t )2

]2

× 1√
tn sinh(2L̃

√
tn)

, (D3)

where ξ� = √
DF /2�, L̃ = L/ξ�, tn = πt (2n + 1),

t = T/�(0).
The correction to the current due to a single DW is

δĨ (t ) = −IDW NDW (t ), (D4)

IDW = σF �

e
(ξ�κDW κb)2ξ�, (D5)

NDW (t ) = 2πt
∑
n�0

[
Im

�̃(t )√
(tn + iJ̃m)2 + �̃(t )2

]2

× cosh[
√

tn(L̃ + l̃ )] cosh([
√

tn(L̃ − l̃ )])

tn[sinh(2L̃
√

tn)]2
. (D6)

The temperature dependence of �̃(t ) ≡ �(T )/�(0) can be
approximated as

�(T ) ∼= �(0) tanh[1.74
√

(Tc/T − 1)]. (D7)

In the limits of T = 0 and T ⇒ Tc it reproduces the limiting
expressions (see, e.g., [89])

2�(0) ∼= 3.5Tc, (D8)

�(T )|T ⇒Tc
∼= 3.06

√
(Tc − T )Tc. (D9)
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