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Electronic structure of a Josephson vortex in a SIS junction
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The Josephson vortex formed in a superconductor-insulator-superconductor (SIS) junction can affect the quan-
tum mechanics of quasiparticles by creating an effective adiabatic potential determined by the inhomogeneous
distribution of the phase difference of the order parameter along the junction. Starting from the quasiclassical
version of the Bogoliubov—de Gennes theory, we found the quasiparticle spectrum and the local density of states
(DOS) both for the isolated Josephson vortex and the vortex chain. The spatially resolved DOS reveals a peculiar
two-peak structure for each Josephson vortex, which can be detected experimentally using scanning tunneling

microscopy and spectroscopy techniques.
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I. INTRODUCTION

The observation of a rich variety of vortex phases in su-
perconductors and superfluids is known to be one of the
convincing manifestations of the quantum coherence in these
systems. According to a textbook picture (see, e.g., Ref. [1])
each vortex has a 27 circulation of the order parameter phase
and carries the magnetic flux quantum &y = m/ic/e in the
bulk systems. Such vortices affect the local gap function and
thus perturb the quasiparticle spectrum provoking the forma-
tion of the subgap quasiparticle states. Experimental detection
and study of this subgap spectrum can provide information
about the nature of the superconducting state, i.e., about the
symmetry and structure of the superconducting gap function
[2-13]. This approach to the probing of the gap structure can
be applied for different types of vortex systems including a
standard Abrikosov vortex in isotropic superconductors and
strongly disturbed vortex solutions in anisotropic or layered
superconductors with Josephson interaction between the lay-
ers [14-16].

The electronic structure of a singly quantized Abrikosov
vortex has been studied for decades both experimentally and
theoretically [14,17—19]. The vortex has a normal core with a
radius of the order of the coherence length & = hVp/A( with
Fermi velocity Vr and bulk gap value A, surrounded by a cir-
culating supercurrent which reaches a depairing value j,; at the
core boundary and decays at the magnetic penetration depth A.
Circulation of the phase of the order parameter is responsible
for the formation of the subgap bound quasiparticle states,
which form a so-called anomalous spectral branch, originally
discovered in the work of Caroli, de Gennes, and Matricon
(CdGM) [20]. In the quasiclassical limit kz& >> 1, where kg
is the Fermi momentum, the quasiparticles propagate along
the straight classical trajectories, which can be parametrized
by the impact parameter b = —u/k, , where p is the angular
momentum (half an odd integer) defined with respect to the
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vortex axis and k is the momentum component perpendicular
to the vortex axis. The anomalous spectral branch crosses the
Fermi level and varies from —A( to Ay as u changes. The
low-energy CdGM spectrum is a linear function of the angular
momentum p: Ecagm ~ —UAo/kré&.

In real superconducting crystals, the spectral features de-
scribed above can be strongly affected by defects of different
nature, such as columnar defects, point impurities, and twin-
ning planes. In particular, these inhomogeneities can modify
the shape of the vortex core and, consequently, the subgap
spectrum. Another aspect of the influence of the defects on
the vortex electronic structure originates from the elastic scat-
tering of quasiparticles at the defect potential profile. The
consequences of this scattering effect have been investigated
for point impurities [21-24], for columnar [25,26] and planar
[27-29] defects, and for vortices near the surface of various
shapes [30-32]. It has been shown [28], in particular, that
for a vortex pinned at a highly transparent insulating plane
the electron scattering can cause the essential changes in the
structure of the low-energy part of the CdGM spectrum even
without perturbation of the vortex core shape. This leads to a
significant increase in the spectral minigap at the Fermi level
and deviation of the low-energy spectrum structure from the
above equidistant behavior. Recently, this problem has been
also addressed in Ref. [29] for the case of vortices shifted from
the defect plane or pinned by several intersected linear defects.

The changes in the quasiparticle spectrum of the vortex
pinned at a linear defect are of particular interest in the context
of the problem of manipulating of the topologically protected
Majorana states [33—38]. The controllable motion of the vor-
tex along the linear defect in an exemplary hybrid structure
consisting of a primary superconductor with conventional
pairing and a two-dimensional (2D) layer with a nontrivial
topology provides a unique possibility to manipulate the Ma-
jorana state located in the 2D layer. The value of the minigap
in the vortex spectrum in the primary superconductor is of
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crucial importance for the topological protection of these op-
erations.

It is important to note here that the solution presented in
Ref. [28] is not self-consistent in the sense that it does not
take into account the deformation of the vortex core and the
redistribution of the order parameter phase along the defect.
The self-consistent numerical analysis of the quasiparticle
spectrum and density of states (DOS) for a vortex pinned
by the plane defect has been carried out in Ref. [27] on
the basis of the Bogoliubov—de Gennes (BdG) theory for a
two-dimensional tight-binding model on a square lattice. The
effect of perturbation correction to the gap profile has been
discussed in Ref. [29]. Such an approximation is valid as long
as the electronic transparency of the barrier 7 is close to unity.
This limit allows one to observe the changes in the local DOS
(LDOS) distribution in the vortex area corresponding to the
transition from the pinned Abrikosov vortex to the interme-
diate Abrikosov-Josephson vortex regime [39-41]. However,
the generic problem of the electronic structure of a disturbed
vortex pinned by a defect with arbitrary transparency has
remained unsolved.

It is the goal of this paper to suggest a theoretical de-
scription of the electronic structure of a vortex pinned by a
low-transparency defect. The spatial distribution of the order
parameter phase in this limit becomes strongly anisotropic,
and the corresponding circulating supercurrent along the de-
fect is characterized by the length £ strongly exceeding &. This
extreme anisotropy allows one to consider the quasiparticle
motion along the junction in the adiabatic approximation.
We found that the inhomogeneous distribution of the phase
difference or a phase soliton corresponding to the Josephson
vortex can form an effective semiclassical potential well for
the trapped quasiparticles with subgap energies. The turning
points for the quasiparticle motion in this well are responsible
for the local increase in the semiclassical wave functions
providing, thus, a two-peak structure in the profile of the
local density of states along the junction. The distinctive
feature of the LDOS pattern for the Josephson vortex under
consideration is that the distance between the LDOS peaks
is determined by the Josephson length and can well exceed
the corresponding distance for Abrikosov vortices. In the
high-resolution scanning tunneling microscopy (STM) and
scanning tunneling spectroscopy (STS) measurements these
features can be obviously viewed as the spectral signatures of
the Josephson vortex. The paper is organized as follows. We
introduce the basic equations of the BdG theory in Sec. II and
describe the general semiclassical approximation for the BAdG
equations in the presence of Josephson vortices in Sec. IIL.
Section IV is devoted to the calculation of the quasiparticle
LDOS in various limits. We summarize our results in Sec. V.

I1. BASIC EQUATIONS

We restrict our consideration to the case of a
superconductor-insulator-superconductor ~ (SIS)  system
(Fig. 1) in a rather thick superconducting film neglecting
all the effects related to the peculiarities of thin-film
electrodynamics. The isolating barrier is positioned
at y=0 and modeled by the delta function potential
V(y) = R2kpm—'Zy8(y), where Z, is the dimensionless

FIG. 1. Sketch of a SIS structure with a Josephson vortex, cre-
ated by a circulation of the order parameter phase (black solid line).
Spatially separated peaks of the local density of subgap states are
schematically shown in orange.

barrier strength. The quantum mechanics of quasiparticles in
such a junction is described by the following BdG equations:
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is the single-particle Hamiltonian; u is the chemical potential,
which is equal to the Fermi energy; A(x, y) is the complex-
valued gap potential; and \if(x,y) = (u(x, y), v(x,y)) is the
wave function with electronlike u# and holelike v components.
For simplicity we consider here the motion of quasiparticles
only in the x-y plane assuming that the Fermi surface is a
cylinder and therefore neglecting the dependence of the quasi-
particle energy on the momentum component k, along the
cylinder axis z. The potential V (y) can be taken into account
by introducing specific boundary conditions:

W (x, +0) = ¥(x, —0),
v v .
—x,+0) — —(x, —=0) = 2kp ZyW (x, +0).  (2)
dy ady

For rather low electron transmission through the barrier the
system can be described taking a standard approximation for
a Josephson junction, i.e., neglecting the spatial dependence
of the absolute value of the order parameter A and assuming
a jumpwise behavior of the superconducting phase:

£i02(x)

>0
Alx,y) = A0{6i91(X) Y

y<O0.

The phase difference p(x) = 6,(x) — 6,(x) is a continuous
smooth function changing at a certain length scale £. The
length £ increases with the decrease in the barrier transparency
from the values of the order of several superconducting
coherence lengths to the value of the so-called Josephson pen-
etration depth A; = \/c®y/1672 .1, where j. is the critical
current density through the junction. The spatial distribu-
tion of the function ¢(x) in the Josephson junction can
be obtained from the solution of a standard electrodynamic
problem (see, e.g., Ref. [39]) which is based on some par-
ticular form of the Josephson current-phase relation. The
latter, in principle, should be found from the above con-
sideration of the quasiparticle spectrum and wave functions.
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In our further considerations we do not consider the solu-
tion of this full self-consistent problem, but we just analyze
the quasiparticle spectral properties for some typical profiles
of the superconducting phase. Moreover, in our BdG equa-
tions we completely neglect the vector potential assuming,
thus, that the supercurrents flowing in superconducting leads
are too weak to affect the subgap energy spectrum under
consideration.

III. WKB APPROXIMATION

The model introduced in the previous section contains sev-
eral important length scales: (i) the Fermi wavelength k;l ; (i)
the typical length scale of the wave function decay for the
subgap quasiparticles, which is roughly the coherence length
&; and (iii) the characteristic length of the superconducting
phase profile £. The Fermi wavelength is certainly the smallest
length scale among these values, which allows us to use a
standard quasiclassical approach, i.e., the so-called Andreev
approximation. Moreover, for the junctions with not too large
transparency we can introduce an additional simplification
valid for the small value of the coherence length compared
with the phase distribution length scale £.

The appearance of the small parameter £/¢ allows one
to construct the solution of Eq. (1) using the semiclassical
Wentzel-Kramers-Brillouin (WKB) approximation. Indeed,
the slow change in the phase difference ¢ along the junc-
tion allows one to define the semiclassical energy E(x, k)
assuming the momentum component k, and coordinate x to
be classical commuting variables. As a next step, we can
restore the quantum mechanical commutation rule for these
variables using a standard Bohr-Sommerfeld relation. This
kind of semiclassical procedure allows us to find the true
quantum mechanical bound states.

We consider the structure of the wave function in the form
@ (x, y) = f(x)&(, x). Similarly to the WKB approach, the
function f(x) can be written as the following asymptotic
expansion:

) = SO fo(x) + 1 f1(x) + O] 3)

Here, S(x) is the eikonal; the functions S, fy, and f; are real,;
and k = (kp€)~'. After substituting this solution into Eq. (1)
and separating different orders in ¥ we get the following.

" ( A‘*fx) Af?)}@fo ~o0. )

Kl

hz -/ A
= 5 -US"fo + 218 f)tsg

w92 -
=[—%32 (82+k2 (S/)2)+(A*€C) A_(;i))}gfl.

&)

Here, the prime means the derivative d/dx, and 73 is the
Pauli matrix in the electron-hole Nambu space. Equation (4)
contains a one-dimensional equation, which together with
the boundary conditions (2) can be viewed as the short SIS
junction problem [42,43] in which, due to the semiclassical
approximation, the momentum k, is replaced by §’, and the
coordinate x is a parameter. Introducing an auxiliary equation

(0 e 0 AW
_@%(ﬁ +ki = (S )2>g+ (A*(x) 0 ) = w(x)g
©)

and using (2), we obtain a quasiparticle spectrum w in the
presence of a “frozen” phase distribution ¢ (x). Eigenfunctions

&0y, x) = (gu, g»)" can be written as
o) (c1e™ +d1e1%)80, y <0
e
g(yv -x) = engn(})Tr:“ ' '
(26" + dre™1-7%1)g9, y > 0.
(7

Here, the vector o = (i, ©)” has the electronlike and holelike
parts

and the wave vector is

gr = Jkz — (8')? j:i——
h / ( Y )2

Note that in the latter expression we use the expansion in the

parameter (kx£)~!, which is valid due to the quasiclassical

condition Ay/Ep ~ (krp& )~! « 1. The coefficients c12 and

dy» are determined by the boundary conditions (2) and nor-
malization condition:

/ ', 080, x)dy = k; .

With the help of Egs. (7) and (2) we obtain the resulting
spectrum of such a system, which is essentially the spectrum
of the short SIS system [43]

w(x)::I:Ao\/ — T sin? (“”(Zx)), 8)

~1
k272
T=(1+ F—Oz .
ki — (8'(x))
Substituting (6) into (4) and using the condition of existence

of a nontrivial solution, we easily get

E = w(x). (&)

where

To obtain f; from the matrix equation (5), one has to use
the Fredholm theorem [44], which gives us the solvability
condition for Eq. (5):

R s X
fodf (= 511" fo + 28 fi1a2) = 0.
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FIG. 2. Semiclassical orbits (black lines) in the plane (k,, x) de-
scribed by the Eq. (12) for the linearly growing phase difference ¢(x)
(blue dash-dotted line) for a fixed value of the parameter Z, = 2 and
different energies E. Each set of concentric orbits corresponds to a
single vortex in a vortex chain.

which can be rewritten as
(& 0~ ( S) =0. (10)

The term (§'£32) can be expressed as

@0~ < oo
N
using Eq. (6), and it tends to zero only at the specific points
¢(x) =2k with an integer k. Therefore we come to the
equation ( f025/)/ = 0 from which the function f; can be found.
In the first-order WKB approximation, the function (3) has a
standard form:

Flx) = %eﬂ:ifS’(E)dé’ (10

where C is an arbitrary constant. The quantity S’ is the gra-
dient of the eikonal; therefore it can be interpreted as the
x component of the classical local quasiparticle momentum,
and here it is convenient to use the notation S’ = k,. The
expression for this momentum follows from (9):

ke () 5 A} — E?
= [1+22—— .
kp Ajcos’[p(x)/2] — E?

The above dependence of the momentum k, on the coordi-
nate x at a fixed energy E allows one to view the motion of
quasiparticles in the presence of the superconducting phase
profile as the motion in a smooth adiabatic potential. This
potential has a set of turning points where k,(x) = 0; therefore
one can define closed semiclassical orbits in the plane (k,, x).
A set of exemplary semiclassical orbits for the particular case
of a linearly growing phase difference ¢(x) = 0.35(x/¢) + &
is shown in Fig. 2. Obviously, to restore the true quantum
mechanics, one can apply the Bohr-Sommerfeld quantization
rule

12)

f ke (X)dx = 27 (n + B), (13)

where 7 is an integer, and obtain the discrete spectrum levels.
Certainly, the interlevel distance should be small due to the
small parameter «. Similarly to a standard quasiclassical ver-
sion of the quantum mechanics, the parameter 8 is of the order
of unity, and its effect on the behavior of the discrete energy
spectrum at large quantum numbers 7 is rather weak. In order

to determine the appropriate value of 8, one needs to solve the
quantum mechanical problem near the turning points beyond
the quasiclassical approximation. This calculation is beyond
the scope of our work.

Note that the value of k, does not exceed kr in the clas-
sically allowed region, but the denominator of Eq. (12) tends
to zero at some singular points. This is a direct consequence
of using the “frozen” phase approximation; however, since
these points are in the forbidden region, the semiclassical
approximation is not violated.

It should be noticed that the lower bound of the spectrum
is determined by the general expression E, = AgZy/V1 + Z3
for a minimal energy value of localized states w(x). For rather
large values Z, this condition means that all the features
related to the bound states in the Josephson junction can be
observed only at energies rather close to A. The expression
for the low-lying energy levels close to Ej, can be obtained
explicitly from Eq. (13). Using a linearized expression for the
phase difference ¢ ~ ax + m with a slope a in the vicinity of
the orbit center and assuming the condition Zy 2 1in Eq. (12),
we find the discrete spectrum

n (n+ Blark

Zpy/ 1 +Z§

It is interesting to note that the square-root dependence of the
spectrum on the level number # has already been observed in
the case of an Abrikosov vortex pinned at a highly transparent
defect with Zy < 1 [28]. In such a system the deformation
of the bound CdGM states in a vortex core results in the
appearance of a “hard” minigap, which determines the value
of the lowest energy level in the spectrum; besides this, the
electron scattering at the defect plane also provides a “soft”
minigap, which is Ags ~ AgZy. Although direct comparison
of (14) and the result for the high-transparency limit is not
possible, it can be seen that quantitatively this soft minigap
Agofe coincides with the lowest energy level E,—o = AyZp
from (14), which is actually a hard minigap in the present
system where the vortex core is absent. The energy value
AoZy always appears in systems with a barrier of the finite
transparency; therefore one can expect this quantity to play an
essential role throughout the entire crossover from the pinned
Abrikosov to the Josephson vortex with an increase in the
barrier strength Z;.

Finally, we get the adiabatic solution of the BdG prob-
lem W(x, y), which consists of two parts: & from (7) and f
from (11). Following the standard procedure of constructing
a semiclassical solution in the potential well [45], we find
the function f(x), which has an oscillating behavior in the
classically allowed region and decays exponentially in the
classically forbidden region.

E,~E, |1 (14)

IV. LOCAL DENSITY OF STATES

As we discussed in the previous section, the distance
between the true quantum mechanical levels appears to be
extremely small due to the small value of the inverse quasi-
classical parameter «. For example, a low-lying part of the
discrete spectrum (14) provides E,11 — E, =~ awk Ay/2(1 +
Z3). Considering possible experimentally measurable hall-
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marks of the subgap quasiparticle states, it may be much more
important to analyze the local density of states in the semiclas-
sical limit neglecting the level quantization. An appropriate
expression for the local DOS reads

ke dk, 5
v(x, y, E) =ka 7o 8 MIVIE — ko], (15)
—kp 4T

where the function g,(x, y) is defined in (7). Evaluating the
integral, we find

vy E) | lgul? 2E/Do(1 - R2)(1 - B2 + 22)
ok 72(1—E?/A2)

, (16
. . (16)

where vop = m/rrh2 is a local density of states of a two-
dimensional electron gas and dimensionless momentum
ko (x) = ky/kr is taken from (12). A singularity v(k, — 0) ~
k! in the vicinity of each turning point k, = 0 should be both
regularized by a more accurate solution of a WKB problem
and smeared by various broadening effects. Since the position
of these peculiarities is defined by the turning points, their
existence is restricted by the energy interval E;, < E < Ay, as
was discussed above.

A. Single Josephson vortex

Now we proceed with consideration of several specific
models for the phase distribution ¢(x). First, consider the limit
Je K ja&€ /A, which is realized for a low-transparency insu-
lating barrier with Zy > /12721 /& [28,39]. In this case the
electrodynamics of the Josephson system is local; therefore
the phase distribution obeys the sine-Gordon equation with
the well-known soliton solution [46]

P(x) = 4arctan ¢"/*, 17)

which corresponds to a single isolated Josephson vortex with
size of € ~ Ay 3> A > & > k. Two last inequalities assume
the limit of a strong type-II superconductor and the validity
of the quasiclassical approximation described above. With the
help of the relation sin?[@(z)/2] = cosh™2(z) we obtain an
explicit expression for the turning points:

o _ (Ao -85 - (83 - B0 +z3)). .
¢ J@3-e)(1+2)

Using the expression (12) for k,(x) and the wave function g,
we can plot the dependence of the LDOS (16) on the coordi-
nate along the junction x directly at the junction line y = 0.
A typical example of the spatial distribution of the LDOS for
different energy values is shown in Fig. 3(a). The local DOS
along the junction clearly reveals two peaks (schematically
shown in Fig. 1). The formation of these peaks, which are
essentially signatures of the Josephson vortex, is a direct con-
sequence of the semiclassical motion of trapped quasiparticles
described above. At the same time, the exact form of the
function ¢(x) does not qualitatively affect the formation of
closed orbits in the plane (k,, x). Therefore the observation
of the above spectral features is possible for various kinds of
27 soliton, proposed for different parameters of the Josephson
SIS junction [39].

V/VZD
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FIG. 3. Distribution of the LDOS of the quasiparticles in the
Josephson vortex v(x,y = 0, E) as a function of the energy £ and
coordinate along the barrier x for (al) local (17) and (b1l) nonlocal
(19) regimes. (a2) and (b2) show the cross section of the LDOS at a
certain energy value for Zy = 10 (a2) and Zy = 1 (b2). The maximum
values are truncated at v/v,p = (1, 3) for (a2) and (b2), respectively,
for illustrative purposes.

For example, one can consider a so-called nonlocal regime
of a Josephson junction, which is realized for the opposite
limit j; > j. > js&/A. In our model, this limit can be re-
alized when the transparency of the barrier is sufficiently
low, i.e., 1 < Zy < /12721 /€. In such a case the nonlocal
equation for the phase has a solitonlike solution

@(x) = m + 2arctan(x/£), (19)

which corresponds to a single Josephson-Abrikosov vortex
with size of £, where A > A; > £ > &. As in the local case,
this solution assumes the condition ¥ = (kpf)~! <« 1 to be
fulfilled; therefore it is possible to use the WKB approx-
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imation for (19). With the help of relation sin’[(z)/2] =
(1 +2z>)~! we obtain an explicit expression for the turning

points:
Xa,b A(z)
— =4 — 1. 20

= -

The spatial dependence of the quasiparticle LDOS for
a nonlocal vortex is shown in Fig. 3(b). Consider-
ing both limits, we find that described peculiarities in
the LDOS can be observed in the wide range of
transparencies.

Let us note that some basic features of the LDOS and
quasiparticle spectrum discussed above are qualitatively close
to the ones predicted in Ref. [27] on the basis of the nu-
merical BAG calculations. This qualitative similarity reveals
itself, in particular, in the behavior of the lowest energy
level of the subgap spectrum: The energy of this level grows
with the decreasing barrier transparency (i.e., the hopping
strength at the defect line) resulting in the suppression of
the LDOS at low energies and the splitting of the subgap
energy peak (see Figs. 2 and 3 of Ref. [27]). The quantita-
tive comparison is, however, difficult since our calculations
are based on the quasiclassical approach assuming rather
large ratio Ep/Ag, while in Ref. [27] this ratio is not so
large.

B. Array of Josephson vortices

The idea of formation of an adiabatic potential for quasi-
particles in the Josephson vortex holds for a quite general
form of the function ¢(x). Consider as an example a general
solution of the Ferrell-Prange equation describing the local
limit of the Josephson junction

)\.] ¢ d(p
—_ —_— X
V2 Jg C —cosg

where C is a constant, ¢ is a phase difference value at x = 0,
and the scale of the spatial distribution of the phase along
the junction is £ ~ ;. The case C = 1 corresponds to the
phase soliton described in Sec. IV A, while at C > 1 the phase
grows continuously and each increase in the phase by 27 cor-
responds to a Josephson vortex. For such a solution, an array
of semiclassical potential wells is formed, and consequently,
we get an array of LDOS peaks corresponding to these
wells.

For illustration we take the limit of high magnetic fields
and dense vortex lattices, which corresponds to the values
C > 1. The solution can be chosen in the following form:
@(x) = ax/A; + 7, where the constant a is proportional to the
external magnetic field in the contact. Then, using (12), we
find a set of the turning points

Xa,b
AJ

— g 2 _ 2 2 2_7-[
_q:aarccos\/(Zo—l—l)(l EY/83) £ =on, (21)

where n is an integer corresponding to different vortices in
the vortex array. The result is a double-period peak structure
shown in Fig. 4. As the quasiparticle energy approaches the
gap value, the distance between the peaks in each vortex

-10.0 -7.5 -5.0 =25 0.0 2.5 5.0 7.5 10.0
X/A/

-10.0 -7.5 -5.0 -25 0.0 2.5 5.0 7.5 10.0
X/A}

FIG. 4. Spatial distribution of the quasiparticle LDOS v(x, y, E)
for a set of three Josephson vortices, schematically shown by the
dashed lines for the different values of the energy. The white solid
line shows the barrier position. The positions of the peaks of LDOS
X, correspond to the turning points (21) for each vortex. The param-
eters are a = 1, Zy = 2, kp& = 30, and kpA; = 100.

increases and the peaks from different vortices approach each
other. This leads to the coupling of states in the neighboring
classically allowed regions, which is not taken into account in
this paper.

V. SUMMARY

To summarize, we analyzed the subgap spectrum of lo-
calized quasiparticle states in a SIS junction with a finite
transparency in the presence of an inhomogeneous phase dif-
ference along the junction, which corresponds to an array of
Josephson vortices. Since the spatial scale of the Josephson
vortex is usually much larger than the characteristic quasipar-
ticle wavelength, the phase difference profile can be treated
as an effective adiabatic potential. This potential affects the
quasiparticle motion along the barrier and leads to the ap-
pearance of the closed semiclassical orbits in the plane of
(8, x). We restored the quantum spectrum corresponding
to these orbits by using the Bohr-Sommerfeld quantization
rule. The obtained discrete spectrum E, reveals a minigap
which increases with an increase in the barrier strength
Zp.

We found that the semiclassical orbits are responsible for
the formation of a set of turning points at which momentum
along the barrier plane S’ goes to zero. The corresponding
local increase in the quasiparticle wave function near each
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turning point leads to the formation of the corresponding peak
of the LDOS. We claim that these peaks can be observed in the
STS-STM experiments in both local and nonlocal Josephson
junction regimes in a fairly large energy range below the

gap.
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