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Characterization of collective excitations in weakly coupled disordered superconductors
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Isolated islands in two-dimensional strongly disordered and strongly coupled superconductors become opti-
cally active, inducing subgap collective excitations in the ac conductivity. Here, we investigate the fate of these
excitations as a function of the disorder strength in the experimentally relevant case of weak electron-phonon
coupling. An explicit calculation of the ac conductivity, that includes vertex corrections to restore gauge
symmetry, reveals the existence of collective subgap excitations, related to phase fluctuations and therefore
identified as the Goldstone modes, for intermediate to strong disorder. As disorder increases, the shape of
the subgap excitation transits from peaked close to the spectral gap to a broader distribution reaching much
smaller frequencies. Phase coherence still holds in part of this disorder regime. The requirement to observe
subgap excitations is not the existence of isolated islands acting as nanoantennas but rather the combination
of a sufficiently inhomogeneous order parameter with a phase fluctuation correlation length smaller than the
system size. Our results indicate that, by tuning disorder, the Goldstone mode may be observed experimentally
in metallic superconductors based, for instance, on Al, Sn, Pb, or Nb.
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I. INTRODUCTION

Anderson stated [1] that the Bardeen-Cooper-Schrieffer
(BCS) theory of superconductivity [2] had been the scientific
love of his life. It is likely that collective modes were an
important part of this love story. Shortly after the microscopic
BCS theory [2] was proposed, Anderson [3,4] noticed that two
of its most salient features, the existence of a gapped ground
state and phase rigidity, were to some extent contradictory. If
the phase of the order parameter were rigid, the U (1) gauge
symmetry is spontaneously broken. According to Goldstone’s
theorem [5,6], the spontaneous breaking of this U (1) symme-
try is associated to the existence of a zero-energy (massless)
collective excitation, the so-called Goldstone mode. In princi-
ple, this is in apparent contradiction with the BCS prediction
of a gapped ground state. However, Anderson argued [3]
that for clean superconductors, later [7] shown to also hold
for weakly disordered superconductors, the Goldstone mode
is not observable because long-range Coulomb interactions
shift its natural frequency to the plasmon frequency which is
typically much higher than the spectroscopic gap.

Therefore, it came as a relative surprise that recent numer-
ical results for the conductivity of two-dimensional strongly
disordered and strongly coupled superconductors [8–15] have
shown the existence of collective excitations below the spec-
tral gap. The absorption of the incoming electromagnetic
radiation occurs [8] in disorder-induced isolated supercon-
ducting islands that act as nanoantennas. The combination
of strong disorder and strong coupling mixes zero and finite
momentum modes so that collective modes contribute to the
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optical response even in the long-wavelength limit. Moreover,
it was argued [7,8] that long-range Coulomb interactions do
not change this conclusion qualitatively. Although these [8]
numerical results provide rather conclusive evidence on the
existence of subgap collective excitations, they were obtained
in the strong-coupling limit, which is not strictly applicable
in most metallic superconductors such as Sn, Nb, Al, or Pb
whose electron-phonon coupling is weak or intermediate. We
note that the combined effect of phase and amplitude fluctua-
tions was investigated in detail in Ref. [16] by quantum Monte
Carlo techniques, though the focus was on the evolution of
the gap across the superconductor-insulator transition at both
zero and finite temperature rather than collective excitation
and transport properties.

On the experimental front, there are also recent ob-
servations of a subgap structure in the optical conductiv-
ity of several disordered weakly coupled superconductors
[12,17–20] (see also Refs. [21–30] for related developments).
In NbN and InO [12,31] close to the superconductor-insulator
transition, subgap weight has been related to amplitude fluc-
tuations, the Higgs mode [32]. In granular aluminum [33], the
observation of spectral weight below the gap at a relatively
high temperature was associated with the Goldstone mode,
though the agreement with the theoretical predictions was
only qualitative. Another experiment [34] involving granular
aluminum, performed at lower temperatures, reported a broad
subgap peak whose origin remains unexplained. The conclu-
sion is that, despite promising advances, there is no conclusive
evidence yet that the different subgap excitations observed
experimentally are the sought Goldstone and Higgs modes
due to both the qualitative nature of the theoretical predictions
and the difficulty in ruling out other experimental causes,
such as the effect of the substrate or competing quantum
orders.
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FIG. 1. Summary of the subgap optical conductivity as a func-
tion of disorder V and the electron-phonon coupling strength
parametrized by the clean coherence length ξ0. I (red): Region of very
weak disorder where no collective excitations are expected either
due to Coulomb interactions or because the collective mode is still
gapless. II (green): Collective excitations can be observed and only
require a sufficiently inhomogeneous order parameter. We illustrate
it with a miniplot of the site dependence of the order parameter for
U = 1, V = 1.5. The dashed red line separates the weak-coupling
(above) and strong-coupling (below) regions. Numerically, we ex-
plore the range ξ0 � 500 nm that includes most weakly coupled
metallic superconductors (above the dashed line). III (blue): Collec-
tive excitations are related to isolated superconducting islands. Here,
the miniplot is for U = 5, V = 3. The strong-coupling limit was
previously studied in Ref. [8]. IV: Anderson insulator region. The
top gray dotted region ξ0 → ∞ is not accessible numerically. The
employed color code aims only to differentiate the different regions.
It is not related to the value of any observable.

In this paper, we investigate collective excitations in a
fermionic model of two-dimensional disordered supercon-
ductors focusing on the optical response captured by the
low-frequency ac conductivity. Our analysis is based on the
Bogoliubov–de Gennes (BdG) mean-field formalism which
leads to the so-called bare bubble diagram in the calculation of
the conductivity, plus its vertex corrections [35] which include
fluctuations around the mean-field order parameter (namely
amplitude, phase, and density fluctuations) evaluated within
the random phase approximation [3,36]. This is the minimal
calculation scheme that restores gauge invariance and there-
fore can describe collective excitations. We reach a maximum
size of L = 30 while the maximum size in previous works
was L = 20 [8,9]. This allows us to explore the weak-coupling
limit. Since we show that already for L = 26 finite size effects
are not important, results in the paper are mostly restricted to
this size.

In Fig. 1, we sketch the pattern of subgap excitations in
the ac conductivity as a function of the strength of disorder
and electron-phonon coupling. The main results of the paper
correspond to region II (green), especially above the dashed
red line, where we identify the Goldstone mode in weakly
coupled superconductors whose detectability only requires a
sufficiently inhomogeneous [37–45] order parameter. Region
III (blue) corresponds to the region where the subgap optical
response is related to isolated islands [8]. The strong-coupling
region was previously studied in Ref. [8].
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FIG. 2. Amplitude of the order parameter �(ri ) resulting from
the solution of the BdG equations, normalized by its value �0 in
the clean limit. The spatial maps are plotted on a square lattice of
size N = 52 × 52, with 〈n〉 = 0.875. Upper: U = 1. Lower: U = 5.
Disorder strength, from left to right, is V = 0.5, 1.5, and 3.

II. THEORETICAL FORMALISM

We initiate our analysis with a brief summary of the
employed theoretical framework leading to the calculation
of the ac conductivity (see Supplemental Material [36] for
details). We start from the two-dimensional Bogoliubov–de
Gennes equations [38,39,46,47] in the presence of a uniformly
distributed random potential Vi ∈ [−V,V ] and an electron-
phonon coupling U ,

(
K̂ �̂

�̂∗ −K̂∗

)(
un(i)
vn(i)

)
= En

(
un(i)
vn(i)

)
, (1)

where K̂un(i) = −t
∑

δ un(i + δ) + (Vi − μi )un(i), in which
δ means the four nearest-neighboring sites, and μi = μ +
Un(i)/2 is the chemical potential that incorporates a site-
dependent Hartree shift. The BdG equations are completed
by self-consistency conditions for the site-dependent order
parameter amplitude �(i) = U

∑
n un(i)v∗

n (i) and the density
n(i) = 2

∑
n |vn(i)|2, that are also outputs of the numerical

calculation. All the presented results are for a square lattice
(N = L × L) with periodic or Dirichlet boundary conditions.
We fix the averaged density 〈n〉 = ∑

i n(i)/N and let the
chemical potential μ vary. As an example of the BdG so-
lution, that illustrates the differences between weak U = 1
and strong U = 5 coupling, in Fig. 2, we depict �(i) in
these two regimes. For strong disorder, the order parameter
is distributed in small islands, while for weak coupling we
observe an intricate, highly inhomogeneous spatial structure
with no visible islands. This stark difference will be important
in the following analysis of the conductivity.

The second step of the calculation is the eval-
uation of the response function [8], χi j ( jx, jx ) =
−i

∫
dteiωt 〈[ jx

i (t ), jx
j (0)]〉 in the presence of fluctuations

of the order parameter, amplitude Ai and phase �i, and
density δni where jx stands for the current along the x
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direction and i, j are site indices. These corrections to the
BdG results, evaluated using the random phase approximation
[8,36], that includes vertex corrections required to restore
gauge invariance, leads to

χi j ( jx, jx ) = χ0
i j ( jx, jx ) + �ipVpl (I3N×3N − χBV )−1

ls �̄s j .

(2)

Here, χ0 is the bare current-current correlation function, �

is the correlation function between current and one of the
fluctuation components, χB is the bare mean-field suscepti-
bility, and V is the effective local interaction, defined by a
3 × 3 matrix in the fluctuation basis. Importantly, all these
quantities [36] can be expressed in terms of the parameters
of the model and the output of the previous BdG calcula-
tion. Before we embark in the calculation of the conductivity,
we aim to characterize collective excitations by investigat-
ing the spatial structure of these susceptibilities, Cab(r, ω) =
〈χ̃ab(r, ω)〉/〈χ̃ab(0, ω)〉, where r = |ri − r j |, 〈· · · 〉 stands for
spatial and disorder average, a, b label the fluctuation channel,
χ̃ab is the block matrix of χ̃B(see Supplemental Material [36]
for details), and

χ̃B = (I3N×3N − χBV )−1χB. (3)

In order to facilitate the interpretation and derivation of
Eqs. (2) and (3), we provide an explicit representation of
the Feynman’s diagrams leading to these expressions in the
Supplemental Material [36]. In the weak-coupling limit, we
shall see that in most cases, subgap weight in the conductivity
is dominated by phase fluctuations a = b = �, so we restrict
to this channel,

C(r, ω) ≡ C��(r, ω). (4)

Physically, it describes phase correlations in points of the
sample separated by a distance r after a perturbation of energy
ω. If C(r, ω) > 0 for r → ∞, phase coherence holds. For
our purposes, we define a dephasing length 	 as the typical
distance between a local maximum and a local minimum in
C(r, ω). A necessary condition for the existence of phase col-
lective excitations, the Goldstone mode, at a given energy ω, is
that 	 < L, otherwise phases are not sufficiently uncorrelated
to become optically active. For clean or weak disorder, and a
small ω 	 two-particle spectral gap (ωg), C(r, ω) � 0 decays
monotonously so phase fluctuations are still too correlated for
a Goldstone mode to be observed. For very strong disorder,
C(r, ω) → 0 quickly so no collective excitations can occur.
For intermediate disorder, we expect that phases become suf-
ficiently uncorrelated but still phase coherence can hold. This
behavior is naturally related to oscillations in C(r, ω) that
can become negative, signaling phase fluctuations are strong
enough that phases in distant points become anticorrelated.
Qualitatively, the number of optically active regions is given
by the number of times that C(r, ω) switches sign (see Sup-
plemental Material [36] for more details). If these features
occur for ω < ωg, the Goldstone mode is observed as a subgap
excitation of the ac conductivity.

Numerical results largely confirm this picture. In the clean
or weak disorder region V � 0.5 [Figs. 3(a) and 3(b)], oscil-
lations around 0 only occur in a narrow window of energies
above ωg (ω ∼ ωg when V = 0.5) and therefore are not
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FIG. 3. C(r, ω) [Eq. (4)] for different ω in units of the two-
particle spectral gap ωg, U = 1, L = 26 (except for V = 0), 〈n〉 =
0.875, and (a) V = 0 (L = 30), (b) V = 0.5, (c) V = 1.5, and
(d) V = 3.0. The observed oscillations, with C(r, ω) alternating sign,
is a defining feature of collective modes.

relevant for the observation of the Goldstone mode in the
conductivity that requires a well-formed subgap peak. Phase
coherence [C(r, ω) > 0 for r = L] holds unless ω is not too
large.

For sufficiently strong disorder V = 1.5 [Fig. 3(c)], and
small ω, C(r, ω) decays rapidly to a constant positive value
that indicates no optical activity. As ω approaches ωg from
below, we observe a much slower decay to a negative value,
that defines the dephasing length 	, and indicates the presence
of the subgap Goldstone mode. For even stronger disorder
V = 3 [Fig. 3(d)], already in the insulating region, we observe
similar features around ω ∼ 0.2ωg, inducing a negative value
in C(r, ω).

III. GOLDSTONE MODE IN THE AC CONDUCTIVITY

In order to find out whether these modes are measurable,
we now turn to the calculation of the ac conductivity. The real
part of the optical conductivity is closely related [8–10] to the
susceptibility computed previously,

σ (ω) = πDsδ(ω) + e2 Im
χ (ω)

ω
, (5)

where Im stands for the imaginary part of χ (ω) =
1/N

∑
i j χi j ( jx, jx ), e is the elementary charge, Ds =

e2[〈−kx〉 + Re χ (ω = 0)] is the superfluid stiffness, and
〈−kx〉 = 4〈∑n,i vn(i)vn(i + x̂)〉/N is the kinetic energy along
the x direction. In Fig. 4, we depict the conductivity in the
weak-coupling region U = 1 for different disorder strengths
V . For 〈n〉 = 0.4 and 0.6, size effects could be important
when V � 1, so for V = 0.5 we restrict ourselves to 〈n〉 =
0.875 [see the inset of Fig. 4(a)], where this problem does
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FIG. 4. Optical conductivity σ (ω) in units of σ0 = e2

h̄ for U = 1,
L = 26 and different V and 〈n〉. Left: (a) V = 1.5, where the sub-
gap excitation (Goldstone mode) starts to be observed. Inset: U =
1, 〈n〉 = 0.875, V = 0.5. No subgap collective excitation. Right:
(b) V = 3, the subgap spectral weight broadens, reaching very low
frequencies.

not arise. Results are consistent with the previous calculation
of C(r, ω). For weak disorder, we do not observe any clear
subgap structure despite the fact that for V ∼ 1 the order pa-
rameter is already strongly inhomogeneous. This is in contrast
with the strong-coupling limit [8,36] where a subgap spectral
weight is observed even for V < 1. Superficially, this seems
surprising because strong coupling means a much larger or-
der parameter. However, note that the existence of collective
excitations depends on how correlated in space is the order
parameter. In weakly coupled superconductors, due to a larger
coherence length, neighboring sites are more likely to be cor-
related, which makes them more difficult to become optically
active.

We do observe a clear subgap weight related to collective
excitations only for V � 1.5. For V ∼ 1.5, the subgap mode
is peaked close to ωg with no spectral weight elsewhere, also
in agreement with C(r, ω) [see Fig. 3(c)]. This indicates that
only one or very few large domains become optically active.
As V increases, the typical length 	 that controls the decay
of C(r, ω) becomes smaller and more domains become op-
tically active, resulting in a broader spectrum [see Fig. 4(b)
for V = 3]. The region V > 3 (not shown) is similar to the
disordered strong-coupling limit where no phase coherence
holds and only isolated islands act as nanoantennas for the par-
tial absorption of the electromagnetic radiation. As a further
confirmation of the relation between collective excitations and
the existence of a dephasing length 	, not related to isolated
islands, we compute the conductivity for different sizes L
using Dirichlet boundary conditions that enhance finite-size
effects as it is imposed that the order parameter vanishes at
the boundary. The idea is that for a given disorder strength,
we will observe collective excitations around ωg only if 	 < L.
For smaller sizes, phases are not sufficiently uncorrelated for
collective excitations to occur below ωg. Results depicted in
Figs. 5(b) and 5(c) confirm that for not too large V , a subgap
peak requires a minimum system size. Moreover, σ (ω) and
C(r, ω) [see Fig. 5(a)] are not qualitatively altered by the
change in boundary conditions but, as was expected, finite-
size effects are enhanced so the minimum disorder V ∼ 0.5 at
which collective excitation occurs is weaker than for periodic
boundary conditions V ∼ 1.5. This could help the experimen-

FIG. 5. Conductivity and C(r, ω) [Eq. (4)] for Dirichlet boundary
conditions. (a) C(r, ω) for U = 1, L = 26, 〈n〉 = 0.875. Upper: V =
0.5. Lower: V = 2. (b) σ (ω) for different sizes L, with parameters of
(d). We observe a subgap collective excitation only for L � 18. This
is the typical length 	 for some substantial dephasing to occur so that
the region becomes optically active. (c) σ (ω) for different sizes L,
with parameters of (a). We observe subgap weight at similar energies
for all sizes. This is fully consistent with C(r, ω) in (a). (d) σ (ω)
for U = 1, V = 0.5, L = 26, and 〈n〉 = 0.875. Phase fluctuations
control the subgap weight which is interpreted as the Goldstone
mode.

tal observation of collective excitations in submicron flakes
[43] of disordered superconductors.

We have referred to the subgap spectral weight as the
Goldstone mode in several occasions but, so far, we have
not provided explicit evidence that this is the case. This is
remedied in Fig. 5(d), where it is shown that the conductiv-
ity, including full vertex corrections and still using Dirichlet
boundary conditions, is qualitatively similar if only phase
fluctuations are considered.

IV. RELATION TO EXPERIMENTS

For the experimental confirmation of these results, it is
important that the explored parameters U = 1, 〈n〉 = 0.4, 0.6,
and 0.875 describe weakly coupled materials such as Al, Sn,
Pb, or Nb. A simple calculation of the coherence length ξ0

based on �0, and standard BCS relations, yields that our
results apply to materials with ξ0 � 500 nm which, though
short for Al, cover most weakly coupled materials. We stress
that in the relevant V � 1 region, finite-size effects for all
〈n〉 are negligible. Another important issue is whether the
Coulomb interactions, neglected here, alter qualitatively our
main findings. In Ref. [8] it was argued that, at least for the
conductivity, this is not the case. We also believe that, at least
for not very strong disorder, the long-range Coulomb inter-
action is heavily suppressed and therefore it should not alter
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substantially the Goldstone mode typical frequency. It is an
open question to what extent other features are quantitatively
influenced by residual Coulomb interactions.

V. CONCLUSIONS

In summary, we have shown that subgap excitations in the
optical conductivity can be observed in weakly coupled disor-
dered superconductors provided that spatial inhomogeneities
of the order parameter are sufficiently strong so that the typical
length of decay of phase fluctuations is smaller than the sys-
tem size. Therefore, unlike strongly coupled superconductors
[8], collective excitations can coexist with a finite supercurrent
and do not require the existence of isolated superconducting

islands acting as nanoantennas. We expect our results will
stimulate experimental interest in this problem that could lead
to a full characterization of collective modes in disordered
metallic superconductors.
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[19] M. Žemlička, P. Neilinger, M. Trgala, M. Rehák, D. Manca,
M. Grajcar, P. Szabó, P. Samuely, S. Gaži, U. Hübner, V. M.
Vinokur, and E. Il’ichev, Finite quasiparticle lifetime in disor-
dered superconductors, Phys. Rev. B 92, 224506 (2015).

[20] U. S. Pracht, N. Bachar, L. Benfatto, G. Deutscher, E. Farber,
M. Dressel, and M. Scheffler, Enhanced Cooper pairing versus
suppressed phase coherence shaping the superconducting dome
in coupled aluminum nanograins, Phys. Rev. B 93, 100503(R)
(2016).

[21] M. Mondal, A. Kamlapure, M. Chand, G. Saraswat, S. Kumar,
J. Jesudasan, L. Benfatto, V. Tripathi, and P. Raychaudhuri,
Phase Fluctuations in a Strongly Disordered s-Wave NbN Su-
perconductor Close to the Metal-Insulator Transition, Phys.
Rev. Lett. 106, 047001 (2011).

[22] M. Chand, G. Saraswat, A. Kamlapure, M. Mondal, S. Kumar,
J. Jesudasan, V. Bagwe, L. Benfatto, V. Tripathi, and P.
Raychaudhuri, Phase diagram of the strongly disordered s-wave
superconductor NbN close to the metal-insulator transition,
Phys. Rev. B 85, 014508 (2012).

[23] M. Mondal, A. Kamlapure, S. C. Ganguli, J. Jesudasan, V.
Bagwe, L. Benfatto, and P. Raychaudhuri, Enhancement of the
finite-frequency superfluid response in the pseudogap regime
of strongly disordered superconducting films, Sci. Rep. 3, 1357
(2013).

[24] B. Cheng, L. Wu, N. J. Laurita, H. Singh, M. Chand,
P. Raychaudhuri, and N. P. Armitage, Anomalous gap-edge

094515-5

https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRev.112.1900
https://doi.org/10.1103/PhysRev.130.439
https://doi.org/10.1103/PhysRev.117.648
https://doi.org/10.1007/BF02812722
https://doi.org/10.1103/PhysRevB.39.2072
https://doi.org/10.1103/PhysRevB.89.174506
https://doi.org/10.1103/PhysRevLett.115.157002
https://doi.org/10.1103/PhysRevB.92.064512
https://doi.org/10.1103/PhysRevB.67.144506
https://doi.org/10.1038/nphys3227
https://doi.org/10.1103/PhysRevX.4.021007
https://doi.org/10.1103/PhysRevB.96.144507
https://doi.org/10.1103/PhysRevB.101.024507
https://doi.org/10.1038/nphys2037
https://doi.org/10.1103/PhysRevB.75.094506
https://doi.org/10.1103/PhysRevLett.109.107003
https://doi.org/10.1103/PhysRevB.92.224506
https://doi.org/10.1103/PhysRevB.93.100503
https://doi.org/10.1103/PhysRevLett.106.047001
https://doi.org/10.1103/PhysRevB.85.014508
https://doi.org/10.1038/srep01357


FAN, SAMANTA, AND GARCÍA-GARCÍA PHYSICAL REVIEW B 105, 094515 (2022)

dissipation in disordered superconductors on the brink of lo-
calization, Phys. Rev. B 93, 180511(R) (2016).

[25] B. G. Orr, H. M. Jaeger, and A. M. Goldman, Local supercon-
ductivity in ultrathin Sn films, Phys. Rev. B 32, 7586 (1985).

[26] H. M. Jaeger, D. B. Haviland, B. G. Orr, and A. M. Goldman,
Onset of superconductivity in ultrathin granular metal films,
Phys. Rev. B 40, 182 (1989).

[27] Y. Liu, D. B. Haviland, B. Nease, and A. M. Goldman,
Insulator-to-superconductor transition in ultrathin films, Phys.
Rev. B 47, 5931 (1993).

[28] M. Thiemann, M. Dressel, and M. Scheffler, Complete elec-
trodynamics of a BCS superconductor with μeV energy scales:
Microwave spectroscopy on titanium at mK temperatures, Phys.
Rev. B 97, 214516 (2018).

[29] J. M. Graybeal and M. R. Beasley, Localization and interac-
tion effects in ultrathin amorphous superconducting films, Phys.
Rev. B 29, 4167 (1984).

[30] D. Shahar and Z. Ovadyahu, Superconductivity near the mobil-
ity edge, Phys. Rev. B 46, 10917 (1992).

[31] R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise,
Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano,
Light-induced collective pseudospin precession resonating
with Higgs mode in a superconductor, Science 345, 1145
(2014).

[32] R. Shimano and N. Tsuji, Higgs mode in supercon-
ductors, Annu. Rev. Condens. Matter Phys. 11, 103
(2020).

[33] U. S. Pracht, T. Cea, N. Bachar, G. Deutscher, E. Farber, M.
Dressel, M. Scheffler, C. Castellani, A. M. García-García, and
L. Benfatto, Optical signatures of the superconducting gold-
stone mode in granular aluminum: Experiments and theory,
Phys. Rev. B 96, 094514 (2017).

[34] F. Levy-Bertrand, T. Klein, T. Grenet, O. Dupré, A. Benoît, A.
Bideaud, O. Bourrion, M. Calvo, A. Catalano, A. Gomez, J.
Goupy, L. Grünhaupt, U. v. Luepke, N. Maleeva, F. Valenti,
I. M. Pop, and A. Monfardini, Electrodynamics of granular
aluminum from superconductor to insulator: Observation of
collective superconducting modes, Phys. Rev. B 99, 094506
(2019).

[35] J. R. Schrieffer, Theory of Superconductivity (CRC Press, Boca
Raton, FL, 2018).

[36] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.105.094515 for further technical details
about the calculation of full gauge-invariant current-current cor-
relators and also includes results on both phase and amplitude
spectral functions and the optical conductivity in the strong
coupling limit.

[37] M. Ma and P. A. Lee, Localized superconductors, Phys. Rev. B
32, 5658 (1985).

[38] A. Ghosal, M. Randeria, and N. Trivedi, Role of Spatial
Amplitude Fluctuations in Highly Disordered s-Wave Super-
conductors, Phys. Rev. Lett. 81, 3940 (1998).

[39] A. Ghosal, M. Randeria, and N. Trivedi, Inhomogeneous pair-
ing in highly disordered s-wave superconductors, Phys. Rev. B
65, 014501 (2001).

[40] J. Mayoh and A. M. García-García, Global critical tempera-
ture in disordered superconductors with weak multifractality,
Phys. Rev. B 92, 174526 (2015).

[41] B. Fan and A. M. García-García, Enhanced phase-coherent
multifractal two-dimensional superconductivity, Phys. Rev. B
101, 104509 (2020).

[42] B. Fan and A. M. García-García, Superconductivity at the three-
dimensional Anderson metal-insulator transition, Phys. Rev. B
102, 184507 (2020).

[43] C. Rubio-Verdu, A. M. Garcia-Garcia, H. Ryu, D.-J. Choi, J.
Zaldivar, S. Tang, B. Fan, Z.-X. Shen, S.-K. Mo, J. I. Pascual,
and M. M. Ugeda, Visualization of multifractal superconductiv-
ity in a two-dimensional transition metal dichalcogenide in the
weak-disorder regime, Nano Lett. 20, 5111 (2020).

[44] I. S. Burmistrov, I. V. Gornyi, and A. D. Mirlin, Enhancement
of the Critical Temperature of Superconductors by Anderson
Localization, Phys. Rev. Lett. 108, 017002 (2012).

[45] M. N. Gastiasoro and B. M. Andersen, Enhancing superconduc-
tivity by disorder, Phys. Rev. B 98, 184510 (2018).

[46] P. de Gennes, Boundary effects in superconductors, Rev. Mod.
Phys. 36, 225 (1964).

[47] P. de Gennes, Superconductivity of Metals and Alloys (W. A.
Benjamin, New York, 1966).

094515-6

https://doi.org/10.1103/PhysRevB.93.180511
https://doi.org/10.1103/PhysRevB.32.7586
https://doi.org/10.1103/PhysRevB.40.182
https://doi.org/10.1103/PhysRevB.47.5931
https://doi.org/10.1103/PhysRevB.97.214516
https://doi.org/10.1103/PhysRevB.29.4167
https://doi.org/10.1103/PhysRevB.46.10917
https://doi.org/10.1126/science.1254697
https://doi.org/10.1146/annurev-conmatphys-031119-050813
https://doi.org/10.1103/PhysRevB.96.094514
https://doi.org/10.1103/PhysRevB.99.094506
http://link.aps.org/supplemental/10.1103/PhysRevB.105.094515
https://doi.org/10.1103/PhysRevB.32.5658
https://doi.org/10.1103/PhysRevLett.81.3940
https://doi.org/10.1103/PhysRevB.65.014501
https://doi.org/10.1103/PhysRevB.92.174526
https://doi.org/10.1103/PhysRevB.101.104509
https://doi.org/10.1103/PhysRevB.102.184507
https://doi.org/10.1021/acs.nanolett.0c01288
https://doi.org/10.1103/PhysRevLett.108.017002
https://doi.org/10.1103/PhysRevB.98.184510
https://doi.org/10.1103/RevModPhys.36.225

