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Topological defects in open superconducting nanotubes after gradual and abrupt switching
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We analyze dynamics of the order parameter in superconductor open nanotubes under a strong transport
current in an external homogeneous magnetic field using the time-dependent Ginzburg-Landau equation. Near
the critical transport current, the dissipation processes are driven by vortex and phase-slip dynamics. A transition
between the vortex and phase-slip regimes is found to depend on the external magnetic field only weakly if
the magnetic field and/or transport current are switched on gradually. In the case of an abrupt switch-on of
the magnetic field or transport current, the system can be triggered to the stable phase-slip regime within a
certain window of parameters. Finally, a hysteresis effect in the current-voltage characteristics is predicted in

superconductor open nanotubes.
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I. INTRODUCTION

Topological objects are indestructible by smooth transfor-
mations, and thus their stability is protected by topological
considerations [1]. Topological defects in a superconduc-
tor, where the order parameter vanishes, may lead to the
emergence of a finite resistance. The well-known topological
defects are vortices in a bulk superconductor. The centerline
of a vortex is called a vortex core, where the order parameter
amplitude is zero and its phase is not defined. Encircling the
vortex core along an arbitrary path gives a quantized phase
change 2mrn with an integer winding number n € Z.

The concept of the phase slippage was introduced for the
resistive state of the narrow quasi-one-dimensional supercon-
ductor filaments in Ref. [2]. At the phase-slip event in a
one-dimensional (1D) nanowire, the order parameter vanishes
at some point, and the phase suffers a jump equal to 2. There
are various mechanisms of the phase-slip occurrence, e.g., the
Langer-Ambegaokar-McCumber-Halperin (LAMCH) mecha-
nism of thermal-dominated fluctuation-driven regime near the
critical temperature [2,3], inhomogeneity-driven phase slip
[4], and quantum phase slip [5].

Quantum phase slip in a two-dimensional (2D) super-
conductor has been recently found through magnetotransport
measurements [6]. The 2D mechanism of phase-slip emer-
gence related to unbinding of vortex-antivortex pairs below
the Berezinski-Kosterlitz-Thouless (BKT) transition was de-
veloped in Refs. [7-9]. For nanowires of 100 nm, the LAMCH
mechanism [2,10] was shown [11,12] to dominate over the
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BKT transition at a relatively low current. In the interval
of temperatures between the BKT critical temperature and
the superconducting critical temperature, thermal fluctua-
tions were sufficient to unbind vortex-antivortex pairs [13].
The BKT scenario was induced by a magnetic field in a
2D spin-dimer system with a multilayer magnet [14]. The
BKT effect was revealed in a trapped quantum degenerate
gas of rubidium atoms [15]. Another type of phase transi-
tion, a liquid-solid transition, was found experimentally in a
2D superconducting vortex system [16]. Bose-Einstein con-
densate in a three-dimensional (3D) optical lattice provided
experimental evidence for the temperature-independent dis-
sipation [17] as well as an ultracold quantum gas in 1D
optical lattice did for the velocity-dependent dissipation [18].
The crossover between thermal and quantum phase slips
controlled by velocity was detected in 1D superfluid tubes
[19].

If the transport current is strong enough, the energy bar-
rier for unbinding a vortex-antivortex pair can be overcome,
and the thermally induced resistivity becomes dominant. In
an external magnetic field, vortices move due to the Mag-
nus force induced by transport current [20] and therefore
contribute to resistivity. Even in a weak magnetic field, dissi-
pation due to vortex movement dominates over the thermally
activated phase-slip events in superconductor submicrometer
wires [11].

Novel superconducting nanoarchitectures, e.g., open nan-
otubes [21-23] and nanocoils [24-26], provide new opportu-
nities due to their complex geometry. If a nanotube is thin
enough, only the component of the magnetic field normal
to its surface plays a role in the order-parameter dynamics.
This suggests making use of geometry to manipulate the ef-
fective magnetic field profile. As a result, the distribution of
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the order parameter is highly inhomogeneous, which opens
the way to an interplay and transitions between vortex and
phase-slip regimes. Fingerprints of the vortex and phase-slip
patterns have been found in nanohelices with 100 nm diameter
experimentally, supported by numerical simulations using the
time-dependent Ginzburg-Landau (TDGL) equation [26]. In
Ref. [27], a transition between different vortex and phase-slip
patterns as a function of the transport current density and
the external magnetic field has been revealed for niobium
and tin open nanotubes with 400 nm radius. The complex
profile of the magnetic field in open nanotubes introduces
new features in the superconducting dynamics. For example,
there exists the regime with two channels of the suppressed
superconductivity along the nanotube with moving vortices,
which cannot occur in a planar nanomembrane. Vortices in the
half-cylinders move in opposite directions (while the vortex
motion is unidirectional in an unfolded planar membrane)
providing a qualitatively new feature. A planar nanostructure
with a region of suppressed superconductivity contains one or
a few chains of vortices moving in the same direction, while
in a nanotube with phase slip, there are nucleating and annihi-
lating vortex-antivortex pairs, which move towards each other
[27]. The transition between Abrikosov-Josephson vortex and
phase-slip regimes has been reported in a Josephson junc-
tion depending on the junction length and transport current
[28]. However, the mechanism of the phase-slip occurrence
is claimed to be attributed to the effective nonlocality in the
order parameter dynamics, whilst the phase-slip in nanotubes
emerges without nonlocality effects [27].

The hysteresis effects in superconductor magnetization
occur due to surface currents, flux pinning, and the ex-
istence of different phases [29-31]. The hysteresis effects
in current-voltage characteristics are found theoretically
and experimentally in superconductor nanowires and micro-
bridges [3,32-35]. The explanation of the hysteresis effect
is attributed to the change of the effective temperature of
quasiparticles due to the Joule heating [36-39] or the finite
relaxation time of the order-parameter magnitude [32,40-45].
The hysteresis effect attributed to the phase-slip regime was
described in a mesoscopic superconductor square with at-
tached contacts [46] and NbN superconductor nanowires [47].
However, the hysteresis effect in these two systems appears
due to the coupling of the order-parameter dynamics with
the heat equation. When the system triggers the phase-slip
regime, the normal current becomes larger, leading to a higher
dissipation power and higher temperature of the sample. In
its turn, a higher temperature of the sample favors the phase-
slip regime, making the hysteresis effect appreciable. The
hysteresis effect found in the present paper appears purely
dynamically (due to the energy barrier between different su-
perconducting regimes) at a constant temperature.

In the present paper, we push forward the studies of tran-
sitions between superconducting regimes in open nanotubes
(Ref. [27]). While in Ref. [27], the superconductor nanotubes
have been shown to demonstrate nontrivial behavior as a
function of the external parameters (transport current density
Jir and magnetic field B), here we focus on the effect of the
way of switch-on of those parameters. The dependency of
the superconducting dynamics regime on the state preparation
can be understood as a memory effect, which emphasizes the
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FIG. 1. (a) Scheme of the open nanotube embedded into a heat
sink. (b) The coordinate system and boundaries of the open nanotube.

importance of the appropriate preparation both in experiment
and in numerical simulations.

Section II represents the model based on the TDGL equa-
tions. In Sec. III, the induced voltage is shown to increase
mainly monotonically with j,, and B if they are switched
on gradually. In Sec. IV, it is demonstrated that the abrupt
transport current switch-on can cause a transition to the stable
phase-slip regime, which is characterized by a higher induced
voltage than the vortex regime. In Sec. V, a similar effect
for the abrupt magnetic field switch-on is found. In Sec. VI,
we investigate the hysteresis effect in current-voltage char-
acteristics due to the stability of different dynamics regimes
(particularly, phase-slip and vortex regimes). Sec.tion VII
contains discussions of the obtained results and outlines their
potential application.

II. MODEL

A physical model consists of a superconductor cylinder of
a small thickness d with a small paraxial slit [Fig. 1(a)]. The
cylinder is embedded in a heat sink, and the slit banks are
connected to the contacts carrying a transport current. The
cylinder is assumed to be thin enough in order to neglect the
finite-thickness effects as discussed below. One of the prereq-
uisites for applicability of the 2D approximation is that the
induced magnetization has a negligible influence on the order
parameter at other points across the wall (approximately, it
can be expressed as d < A, where A is the penetration depth).
Another applicability condition arises from the fact that the
tangent magnetic field can lead to nucleation of vortices with
cores across the cylinder wall. Thus, the cylinder should be
thinner than the vortex diameter ~4&, where £ is the coher-
ence length. Also, we will neglect the impact of the induced
magnetization of the cylinder. The condition of the appli-
cability of this approximation is the Ginzburg-Landau (GL)
parameter « larger than some characteristic value as a function
of d. Otherwise, the coupling between the electromagnetic
field and the order parameter is strong, which modifies the
order-parameter behavior both quantitatively and qualitatively
[48,49]. The smallness of the effects of the induced magneti-
zation and the tangent component of the magnetic field for
Nb (k = 4.7) C-shaped microdevice has been demonstrated
in Ref. [50]. When all these conditions are met, the 3D equa-
tions of motion for the superconductor sample can be reduced
to purely 2D ones.

Further in the present paper, we consider an infinitely thin
superconductor cylinder D of radius R, length L with a slit
of an arc length §. The cylinder allows for a parametrization
in two Cartesian coordinates: the arc length in the azimuthal
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TABLE I. Materials and geometric parameters used for the simulations (see Ref. [27] for details; the dirty limit is used).

Denotation Value for Nb
Relative temperature T/T. 0.95/0.952/0.955
Penetration depth A = Aon/&0/12.66(1 — T/T,)] 273/278/287 nm
Coherence length £ =0.855&l/(1 —T/T.) 58/60/62 nm
GL parameter Kk =A/& 4.7
Fermi velocity vp = «/2Er/m, 6 x 107 m/s
Thickness of the film d 50 nm
Mean free electron path / 6.0 nm
Diffusion coefficient D =lvg/3 1.2 x 1073 m?/s
Normal conductivity of a thin membrane o =1/[3.72 x 1071 Qm?] 16 (u2 m)~!
Cylinder radius R 390 nm
Length L 5 um

direction x € [§/2, 2r R — §/2] and the coordinate along the
axis y € [0, L] [Fig. 1(b)]. Such a cylinder can be bent from
a flat membrane with a width W = 2w R — §. The cylinder
is placed in a homogeneous magnetic field B = Be,. The
magnetic field component tangent to the cylinder surface does
not influence superconducting dynamics. Therefore, only the
normal component B, = (B - n) (with a unit vector n normal
to the cylinder surface) should be taken into consideration.
Following Ref. [27], we use a 2D TDGL dimensionless
equation in the external magnetic field (see Tables I, II),

1
@ +ikg)pr = —(V = KAy + (1= [yPy,  Q2.1)

where ¢ is time, the vector potential A describes the magnetic
field normal to the cylinder surface B,n = [V Xx A], the scalar
potential ¢ describes the electric field E = —V¢, and the
complex scalar field ¥ is the order parameter. The continu-
ity equation of the total current density (superconducting +
normal) V - (jsc + j.) = 0 leads to the Poisson equation for
the scalar potential ¢:

| . | .
AQD ==V “Jses Jse = _[1// (V- lKA)W —c.cl,
o 2ik

jn = oE, (2.2)
where o is the normal conductivity. Absence of the induced
magnetization in our model allows us to exclude « from the
GL and Poisson equations (and the corresponding boundary
conditions) through the following transformations: x — x/«,
¢ —> ¢/k, B— kB. We will keep « in our equations for the
sake of convenience. However, it is worth noticing that all
results of the present paper are fair for other systems, which

TABLE II. Units for the dimensionless quantities.

Unit Value for Nb at 7/T, = 0.95 [27]

Time £2/D 2.8 ps
Length A 273 nm
Magnetic field Oy /2 AE 20.6 mT
Current density ~ fic?/8wA%Ee 60 GAm™
Electric potential  ~/2H.A%/ct 540 uV
Conductivity c?/4m kD 31 (u2 m)~!

can be obtained by the above transformations, if they meet the
aforementioned conditions of the model applicability.
In the boundary conditions for the GL equation [20,51]

1
n-(V—-ikAy = —th,
b — oo corresponds to an insulator, a finite b applies for
normal metals, and b approaches O for a magnetic material.
For our purposes, we assume that » — oo at free boundaries
and b = 0 at the contacts:

(0, — i"Ay)WaDy =0, Ylyp, =0,

where 0D, and 9D, are boundaries corresponding to the ends
of the intervals for x and y, respectively [Fig. 1(b)]. The trans-
port current density j,, is introduced through the boundary
conditions on the scalar potential

2.3)
2.4)

8y¢|3Dy - O, axq)lan - —j,r/U. (2.5)

Integration schemes that are not gauge invariant may intro-
duce large errors in numerical simulations. To avoid this issue,
we use the link variables [52]

X
U™ = exp (—i/c / A, y)dx’),

Vb
bea = exp (—i/(/ Ay(x, y/)dy/>’

Ya

Iy
UM = exp (il(/ (', x, y)dt’).
1,

a

(2.6)

For the purposes of the numerical calculation, the integral for
the link between two points of the spatial grid is approximated
through a middle-point value of the integrand:

Uf" A exp [—iKAx<xa ;—xb , y) Ax],
U;’“ A exp [—iKAy (x, Ya ;yb)Ay].

When solving the Poisson equation, we take into account the
fact that the speed of light is much higher than the speed of
any other process involved in the order-parameter dynamics,
such as the vortex velocity (light travels along the cylinder
axis during ~0.02 ps). This allows us to solve the elliptic
equation with the Laplace operator instead of the hyperbolic

2.7
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one with the d’Alembert operator, which is advantageous
for numerical calculation. The solution of the Poisson equa-
tion provides the value of the scalar potential ¢ exactly at the
same instant, when we know the value of the order parameter
Y and the corresponding superconducting current density. So,
we have to use this instantaneous value in the numerical link

variable
U™ = explikp(t, x, y)At] (2.8)

instead of the middle-point value. Finally, to get the finite-
difference scheme, the following rules

ab _
3y — ikA)Y =~ M,
Ax
Uab . — 2 Ucb .
(0, — ica)y ~ =Y (Af’;f e )

and similar rules for y and ¢ are used. In order to construct an
explicit numerical scheme, we use the approximations (2.9)
and solve the TDGL equation (2.1) for the next time step

Y+ AN = (U y ) + F[y. U U] A,
(2.10)

where F[yr, U, Uy“b] is the right-hand side of Eq. (2.1) ap-
proximated through the link variables.

The voltage between the contacts is estimated as an aver-
aged difference of the scalar potentials

1

fo+h L
= df/ dyle,W,y) —¢(,0,y)] (2.11)
Ltl to 0

starting from some time #; during an interval 7;, which is much
larger than any characteristic time of the dynamic processes in
the system, such as the vortex nucleation period and its time
of flight along the cylinder. The evolution is considered sta-
tionary and stable if the system demonstrates a quasiperiodic
behavior (in terms of free energy, voltage as well as visual
patterns of ||, argy, and potential) for the time much longer
than the aforementioned characteristic times. For numerical
calculations, we exploit the finite-difference method with a
grid containing 192 (along the x axis) x 384 (along the y axis)
points and a time step Ar = 0.03 ps. A set of calculations
performed with a finer grid and a shorter time step guarantees
that the resulting evolution of the order parameter is stable.

We solve the Poisson equation using the iterative method
after each step of the numerical solution for the order pa-
rameter. The stopping criterion for the iterative solver is the
given smallness of the residual: max, , |A¢ — ﬁV sl < e
The expression inside the modulus is a difference between
the left-hand and right-hand sides of Eq. (2.2). The iterative
method solves the Poisson equation until the absolute value
of this difference is smaller than a chosen ¢ for all points of
the grid. In addition, the solver performs at least ten iterations
even if the stopping criterion has already been satisfied. In
order to optimize the calculations, we choose ¢ = 0.02 since a
further increase of the precision does not change the resulting
evolution quantitatively. We use the previous solution for ¢
as a seed solution for the next time step to accelerate the
calculations.

The iterative method for the Poisson equation works like
that for the heat equation: the residual blurs out in the numer-
ical solution with each iteration. As a result, if the boundary
conditions are changed, one should perform as many iterations
as needed to spread numerical corrections from one side of
the grid to the opposite. In this case, the number of required
iterations is of the order of the number of the grid points along
the x axis (~200). Since this number is large, we make use of
the standard methods of the partial differential equations to
simplify the problem analytically (similarly to Ref. [53]). We
represent the sought solution for the scalar potential as a
sum ¢ = @g; + @ing of two parts, ¢4 and @ing, satisfying the
following equations:

Aga =0,  dpalyp =0, palop, = —jur/o, (2.12)

1o .
A@ing = ;V “Jse» M- Vinglyp = 0. (2.13)
The first part, ¢,4;, represents the nondivergent normal current
density, and the second part, ¢ing, is the potential induced by
the superconducting current density. The analytical expression

for the first part is

Qa1 = —Jjux —R)/0, (2.14)
and only the second part, ¢;,q, remains to be calculated nu-
merically.

The numerical algorithm is implemented in CUDA C + +
[54] (with a wrapper written in Rust language [55]) in order
to exploit the advantages of the high parallelism of graphical
processing units.

III. GRADUAL CURRENT RAMPING

A naive expectation that the voltage between the contacts
of the cylinder grows monotonically as a function of the
magnetic field and transport current density turns out to be
false. It has been shown [27] that a peak of the induced
voltage U (B, j,;r) emerges over a narrow interval of the exter-
nal parameters due to the topological transitions between the
vortex and phase-slip regimes. Those numerical experiments
have been performed following these steps: prepare an initial
random state of the order parameter, switch on the magnetic
field, and after a relaxation (typically, ~80 ps) switch on
the transport current instantly. When the transport current is
switched on, the vortex pattern, which has occurred in the
external magnetic field, undergoes changes and adapts to the
new conditions. If the transport current is switched on fast
enough, the order parameter may suffer the impact of a high
normal current density and come up with a metastable state
containing a phase-slip line. It will be shown hereinafter, that
the voltage peaks may occur due to the relaxation of the
superconducting system to a metastable state in the regime of
an abrupt switch-on of the transport current. An energy barrier
between the phase-slip and vortex regimes can prevent the
superconducting system from returning to the vortex regime.
A similar effect can be achieved when the magnetic field
is switched on abruptly after the transport current has been
switched on.
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FIG. 2. Examples of the regimes depicted for the order parameter (upper panels) and total screening current density (lower panels) at
T/T. = 0.952. Each panel represents the unfolded open nanotube with height L = 5 um and the membrane width W = 2.39 um. From left

to right: vortex lattice [(a), (f) j,, = 18 GA/m?, B =

12.5 mT], dense vortex chain [(b), (g) j;» = 20 GA/m?, B = 20 mT], dense vortex chain

decaying into separate vortices [(c)(h) j,, = 18 GA/m?, B = 35 mT], a weak phase slip [(d),(1) j,» = 21 GA/m?*, B=2.5mT],a strong phase

Shp [(e)’ (]) jtr =22 GA/lle, B =

10 mT] . Current flows are obtained by numerical integration of the total screening current density. Green

(blue) flows are clockwise (counterclockwise). Orange vectors stand for the vector field of the total screening current density. Color map of

complex values is defined in Fig. 3.

The time of the linear switching on (ramping) of the trans-
port current Af. or magnetic field Az, will be called the ramp
time of the corresponding external parameter.

The numerical experiment with a gradual ramping of the
current consists of the following steps.

(S1) Initialize the system with ¥ = 1 +5 x 1073(a + ib)
and ¢ = 0, where a, b are random real numbers distributed
normally as N0, 1).

(S2) Switch on the magnetic field linearly from O to B
during 10 ps.

(S3) Let the system relax during 100 ps.

(S4) Switch on the transport current density linearly from
0 to j; during Az, = 500 ps (in some calculations, we took
even longer transport current ramp time Az, up to 10 ns in
order to achieve a better convergence to the stationary state or
to provide necessary gradualness of the ramping). Parameter
values achieved at this step will be called “final.”

(S5) Let the system come to the final (quasi-)stationary
regime during 6-9 ns (for some calculations—up to 60 ns,
if the state does not converge to a stationary one for a long
time).

Under a low magnetic field and a weak transport current
density, there are no vortices and phase slips in the open
nanotube. However, the current injected from the contacts

is normal, which generates the contact voltage (the contact
resistance can be estimated from the results at B =0 for
a superconducting state without topological defects U/ j,, ~
11 k2 m?). When the transport current density approaches its
critical value, and the magnetic field is high enough to lead
to nucleation of vortices, dynamics of the topological defects
become qualitatively richer. There are three main regimes in
addition to their intermediate states. For weak current density
and/or low magnetic fields, the first regime reveals a fragment
of the vortex lattice with clearly manifested separate vortex
cores in each half-cylinder [Figs. 2(a) and 2(f)]. The second
regime occurs for stronger current density and higher mag-
netic fields. It is characterized by two channels of suppressed
superconductivity in each half-cylinder with vortices, which
travel in each channel and form dense vortex chains [Figs. 2(b)
and 2(g)]. In order to distinguish two of these regimes, we
introduce the definitions of sparse and dense vortex patterns.
The vortex pattern is sparse if vortices are distinctly separated
from each other and the amplitude |¢| forms a vortex core
with the radius of the order of £. The vortex pattern is dense
if vortices move inside the region of suppressed superconduc-
tivity. If the magnetic field is further increased, such channels
with vortex chains can decay into separate vortices traveling
in the half-cylinders [Figs. 2(c) and 2(h)]. The third regime is
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FIG. 3. Color map of the complex plane used for the presenta-
tion of the complex order parameter. The white color stands for a
superconducting state || ~ 1 and more saturated colors stand for
suppressed superconductivity. The color encodes the order-parameter
phase.

distinguished by a phase-slip line in the region of the cylinder
opposite to the slit, where vortex-antivortex pairs quickly nu-
cleate, move, and annihilate/denucleate [Figs. 2(d) and 2(i);
see [27] for details]. For the still higher values of the transport
current density, the region of the suppressed superconductivity
expands practically over the entire cylinder and contains a
phase slip [Figs. 2(e) and 2(j)]. According to the results of
the numerical calculations, a transition from the vortex to the
phase-slip regime is accompanied by a voltage jump, since
the latter regime is characterized by a higher voltage than the
former one.

The results for different relative temperatures 7' /T, are de-
picted in Fig. 4. The transition between the vortex regime with
a lower voltage and a phase-slip regime with a higher voltage
occurs at some value of j;,, which decreases with rising tem-
perature. The approximate boundary between the vortex and
phase-slip regimes is at around 2 mV, except for the case of
low magnetic fields, when the phase-slip regime is character-
ized by a lower voltage (e.g., 1 mV for T/T. = 0.955, j;, =
19.5 GA/m?, B = 0). The transition to the phase-slip regime
does not depend on the magnetic field B, except one peak at
T/T. = 0.952, j, =21 GA/m?, B = 2.5 mT, which will be
discussed at the end of the present section.

When the system implements the regime with vortex
chains inside a band of suppressed superconductivity, this
band appears in a region with a maximal normal magnetic
field. We suggest a simple model by considering that a point of
the cylinder is in a perfect superconducting state if the normal
magnetic field is lower than some conventional characteristic
value B,. Otherwise, it conducts normal current and possesses
normal conductivity o. In this case, the fraction of the cylin-
drical surface, where the normal magnetic field is smaller than
By, is arccos(B;/B). Consequently, the induced voltage can be

3 e22. w21 4205420 N

~ | r19s5019.018, ~
> 22
z £
o 1 =

o= (b) T/T.=0952

0 10 20 30 40

B (mT) B (mT)
3

2 (c) T/T.,=0.955
0 10 20 30 40
B (mT)

FIG. 4. Average voltage induced in Nb open nanotubes with
R = 390 nm and slit § = 60 nm in the external magnetic field B at a
gradually switched on transport current density j;,. Different curves
correspond to different values of j,. (in GA/m?). The transport
current ramp time is Az, = 500 ps (and longer, for some points up
to 10 ns). The pink bold line that separates vortex and phase-slip
regimes is drawn manually.

estimated as

4jR B
Uest = Larccos—l, (3.15)
o B
and the function
U\~
by = (cos a_) (3.16)
4jR

applied to the numerical results should behave linearly as a
function of B in this regime. Generally, the plots for 7/7, =
0.95, 0.952 are indeed piecewise linear (Fig. 5). Besides that,
the plots contain kinks, indicating changes of the regime.
For example, in the plot for j,, = 19 GA/mz, T/T. =0.95,
there are two kinks, at B =15 and 30 mT. The supercon-
ducting state contains fragments of a vortex lattice—below
15 mT, two narrow dense vortex chains in bands with sup-
pressed superconductivity—from 15 to 30 mT, and dense
vortex chains, decaying into separate vortices—above 30 mT.

A transition between the vortex and phase-slip regimes
does not occur when raising the magnetic field (at a con-
stant transport current density), except for the voltage peak at
T/T. =0.952, j;,, =21 GA/m?, and B = 2.5 mT. This peak
survives even if the transport current is switched on with the
ramp time Af, = 100 ns. It disappears at a slightly weaker
transport current density j,, = 20.95 GA/m?, and the phase
slip is manifested over the whole analyzed range of the mag-
netic fields at j,, = 21.5 GA/m?. Therefore, the transition to
the phase-slip regime under a gradually switched on transport
current occurs only in a narrow window of parameters around
the above-mentioned values. In order to describe the mech-
anism leading to this peak, notice that the 2.5 mT magnetic
field is strong enough for nucleation of vortices (which have
different vorticity in two half-cylinders). On one hand, the
magnetic field makes the state with vortices arranged in the
regions with a maximal magnitude of the magnetic field more
preferable. On the other hand, the interaction between vortices
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FIG. 5. Function by of Eq. (3.16) constructed for plots in Fig. 4.

with different vorticity forces them to attract each other. If
the latter attraction is energetically dominant over the above-
described arrangement, then vortices are pushed toward the
line opposite to the slit and form a phase slip, which results in
a voltage peak.

In the vortex regime, the nucleation and denucleation
of moving vortices give rise to voltage oscillations (typi-
cally ranging from 10 to 30 GHz). In low magnetic fields
(~2mT), only several vortices are present at every instant.
This results in a lower frequency and higher amplitude of
the voltage oscillations with respect to the average voltage (a
larger modulation depth). For example, the system at 7/T, =
0.952, j,, =20 GA/m?, B =2 mT generates a nonharmonic
periodic 8.7 GHz signal oscillating with ~10% modulation
depth.

IV. METASTABLE STATES INDUCED BY AN ABRUPT
TRANSPORT CURRENT RAMPING

Depending on the transport current ramping, the super-
conducting nanotube can arrive at either phase-slip or vortex
regime, demonstrating a stable and (quasi-)periodic stationary
evolution. In the present section, we analyze the abrupt trans-
port current ramping.

Reduction of the transport current ramp time to Az, =
10 ps leads to the occurrence of new peaks in the mag-
netic field—voltage diagrams (Fig. 6). The narrowness of
the ramping, which is needed to get a phase-slip regime,
decreases if one approaches the critical current density (see,
e.g., T/T. =0.95, B=10mT in Fig. 7). These peaks cor-
respond to the phase-slip regime induced by an abrupt
transport current ramping, while in the case of a gradual
current switch-on, there are two vortex chains. Temporal
stability of the phase-slip regime triggered by the abrupt
transport current ramping is confirmed by obtaining it
for the T/T, = 0.952, B =10 mT, j,, =20 GA/m?, At. =
20 ps during 60 ns.

The difference between the order-parameter evolution
types at gradual and abrupt transport current ramping is
represented in Fig. 8. For the gradual current ramping, the
superconducting system has enough time to adapt to a higher
transport current density, so that new vortices nucleate in both
half-cylinders [Figs. 8(a)-8(e)]. This ends up with two dense
vortex patterns [Fig. 8(e)]. For the abrupt current ramping
[Figs. 8(f)-8(j)], the system does not manage to nucleate
new vortices fast enough in response to the transport current
growth. This promotes suppression of superconductivity in the
region opposite to the cylinder slit [Fig. 8(h)]. The region with
suppressed superconductivity grows and captures the vortices

3 ©22 m2].+20.5420. 3
v19.5019.018. -« ]

S
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. ) 1/1,=0952
o ) 1/
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3

(© T/T.=0.955
0 10 20 30
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FIG. 6. Average voltage induced in Nb open nanotubes with R =
390 nm and slit § = 60 nm in the external magnetic field B and at
a transport current density j,,, which is switched on abruptly during
At,. = 10 ps. Different curves correspond to different values of j,,
(given in GA/m? next to the corresponding symbols). The pink bold
line is drawn manually and separates vortex and phase-slip regimes
schematically.

from the half-cylinders [Fig. 8(i)]. Vortex chains from both
half-cylinders begin moving toward the line opposite to the
cylinder slit, and finally, they come up with a vortex-antivortex
chain constituting the phase-slip line [Fig. 8(j)]. For the in-
termediate ramping, if the narrowness of the ramping is not
enough to promote formation of a phase slip, the region of
suppressed superconductivity does not grow, but rather decays
into several vortex-antivortex pairs, which join the vortex
chains in both half-cylinders.

V. METASTABLE STATES INDUCED BY ABRUPT
MAGNETIC FIELD RAMPING

A similar effect can be achieved if first the transport current
and then the magnetic field are switched on. Our calculations
with a gradual ramping of both the magnetic field and trans-
port current exhibit the superconducting behavior similar to
that discussed in Sec. III. An abrupt magnetic field ramping
with the magnetic field—ramp time Az; = 10 ps gives rise to a

*20.75 = 20.5 + 20.25
+20.v19.75°19.5

U (mV)

5 10 20 50
At. (ns)

100 200

FIG. 7. Average voltage induced in Nb open nanotubes with R =
390 nm, § = 60 nm, T/T. = 0.95, B =10 mT as a function of the
transport current ramp time Af. at different values of j,, (given in
GA/m? next to the corresponding symbols).
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FIG. 8. Order-parameter snapshots for R = 390 nm, 7/7, = 0.952, B = 10 mT, j;, = 20.5 GA/ m? for two transport current ramp times
At,: gradual ramping Az, = 500 ps (upper) and abrupt ramping Az, = 10 ps (lower). Each panel represents the unfolded open nanotube with
height L = 5 pum and the membrane width W = 2.39 pum. Time ¢ is counted from the moment when the transport current begins to switch on
and indicated in the frames. The asterisk denotes the frames (c) and (g), when the transport current density achieves its final values.

transition from the vortex to the phase-slip regime as reflected
in the magnetic field—voltage characteristics (Fig. 9).

3| e22.s21.+205420. 3
v19.5019.018.
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FIG. 9. Average voltage induced in Nb open nanotubes with
R =390 nm and slit § = 60 nm, when first the transport current is
switched on, and then the magnetic field is switched on abruptly.
The magnetic field ramp time is At; = 10 ps. Different curves corre-
spond to different values of the transport current density j,, (given in
GA/m? near the corresponding symbols). The pink bold line is drawn
manually and separates vortex and phase-slip regimes schematically.

If the transport current is switched on first, a grad-
ual magnetic field ramping leads to the vortex regime
[Figs. 10(a)-10(e)], and an abrupt magnetic field ramping
leads to the phase-slip regime [Figs. 10(f)-10(j)] in the order-
parameter evolution as depicted in Fig. 10. As the current
density is subcritical, the state before the magnetic field is
switched on does not contain any topological defects. For a
gradual magnetic field ramping, a vortex chain nucleates in
response to the magnetic field change [Figs. 10(a)-10(e)].
For an abrupt magnetic field ramping, the superconducting
system does not manage to nucleate vortices as quickly as
required by the rising magnetic flux, and the superconduc-
tivity is suppressed in the region opposite to the slit [in the
middle of the panel, Fig. 10(h)]. In the region of suppressed
superconductivity, vortices and antivortices nucleate, move,
and annihilate/denucleate—a behavior typical of the phase-
slip regime [Fig. 10(j)].

VI. HYSTERESIS IN THE CURRENT-VOLTAGE
CHARACTERISTIC CONTROLLED BY THE
MAGNETIC FIELD

As demonstrated in the previous sections, depending on the
way in which the current or magnetic field is switched on, the
system can arrive at different regimes for the same set of final
parameters. This means that there is an appreciable energy
barrier between those regimes of superconducting dynamics.
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FIG. 10. Order-parameter snapshots for R = 390 nm, 7 /7T, = 0.952, B = 10 mT, j,, = 20.5 GA/m? for different magnetic field ramp
times Aty: gradual Aty = 500 ps (upper) and abrupt At = 10 ps (lower). Each panel represents the unfolded open nanotube with height
L =5 pm and the membrane width W = 2.39 um. Time ¢ is counted from the moment when the magnetic field begins to switch on. The
asterisk denotes the frame, when the magnetic field achieves its final value [at Figs. 10(d) and 10(g)].

As a result, a hysteresis can occur. To analyze this effect, the
following steps are performed:

(H1) Prepare an initial random state [in the same way as in
(SD].

(H2) Switch on the magnetic field linearly from O to its
final value B during 10 ps and let the system relax during
100 ps.

(H3) Switch on the transport current density linearly from
0 to 14 GA/m? during 100 ps and let the system relax during
400 ps.

(H4) Increase j;, by 0.129 GA/m? during 100 ps and let
the system relax during 400 ps. Repeat this stage until j;,
reaches the value of 23 GA/m?.

(H5) Repeat (H4) in the opposite direction,
namely, decrease the transport current density from 23
to 14 GA/m?.

The results of calculations conducted for 7 /7, = 0.952 at
different values of B are represented in Fig. 11. The hystere-
sis is practically negligible at B = 0, 2.5 mT. Actually, the
apparent hysteresis for these values appears due to the short
relaxation time (which is a computational restriction). Hence,
there is no energy barrier between the phase-slip and the vor-
tex regimes for the weak magnetic field. Starting from ~5 mT,
the hysteresis is distinctly manifested. The hysteresis loop is
wider along j;, and narrower along U for higher magnetic
fields. As a result, the hysteresis loop area has a maximum at
some value of the magnetic field B between 10 and 20 mT.

The hysteresis loop area can be interpreted as a power of
excessive dissipation attributed to the existence of the higher
branch of the loop in comparison with the process if only
the lower branch would exist. In addition to the hysteresis,
which is the result of transitions between the vortex and the
phase-slip regimes, we have found a smaller hysteresis loop
(see the burgundy frame in Fig. 11) for the transition between
a sparse vortex lattice [Fig. 4(a)] and a dense vortex chain
[Fig. 4(b)].

98]

10020940

5

S
§, 2
o1
0 16 18 20 22
Ji (GA/m?)

FIG. 11. Hysteresis in the current-voltage characteristic of Nb
open nanotubes with R = 390 nm, § = 60 nm, 7 /7. = 0.952 for
different values of the magnetic field (indicated in mT near the
corresponding symbols). The scheme in the inset shows the sequence
of the voltage changes during steps (H4) and (H5) described in the
text.
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VII. DISCUSSIONS

We have shown that for the gradual switch-on of the
magnetic field and/or transport current in the superconduc-
tor open nanotubes, the transition between the vortex and
the phase-slip regimes depends on the magnetic field only
weakly. Depending on the way of ramping, the superconduct-
ing nanotube can arrive at different regimes for the same final
external parameters: the transport current density and mag-
netic field. Abrupt magnetic field or transport-current ramping
can lead to the transition to the phase-slip regime. Therefore,
the ramp time of the external stimuli can be used to control
the vortex/phase-slip transition in the superconducting nan-
otubes. Consequently, we emphasize the importance of taking
into account the realistic ramping of the external stimuli (e.g.,
transport current and external magnetic field) in numerical
calculations.

The energy barrier between phase-slip and vortex regimes
becomes bigger in higher magnetic fields. This barrier leads to
the occurrence of appreciable hysteresis in the current-voltage
characteristics controlled by the magnetic field. The super-
conducting state near the critical transport current density
depends on the way by which the final external parameters are
achieved, constituting a memory effect. Within our analysis,
dependency of the superconducting regime on the ramping
and the hysteresis appear dynamically, due to the energy
barrier between different superconducting regimes, with no
contribution of the heat-related effects.

The numerical simulation of superconducting dynamics
demonstrates the voltage peak even for the gradual ramping
in a narrow window of parameters near 7 /T, = 0.952, B =
2.5mT, j,, =21 GA/m?. We conjecture that it appears when
the magnetic field is strong enough to begin nucleating
vortices, but the current-induced attraction between vortices

in two half-cylinders is still energetically more preferable than
the arrangement of vortices in the regions with a maximal
magnitude of the magnetic field. Moreover, in the range of
parameters where there are only a few vortices, 8.7 GHz alter-
nating voltage is generated with a relatively large modulation
depth ~10%.

The presented results shed light on the interplay between
different regimes of the superconducting dynamics in open
nanotubes with clear perspectives for application in various
fields of nanotechnology. An understanding of the transition
between the vortex and phase-slip regimes helps manufacture
nanosensors of the magnetic field as well as quantum-
interference-based filters and switchers. The existence of the
metastable states is promising to boost the progress in fluxon-
based devices for quantum computing and to improve the
performance of the nanostructured bolometers and terahertz
detectors.
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