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Light-modulated Josephson effect in Kekulé patterned graphene
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We theoretically study the Josephson effect in a superconductor/normal metal/superconductor junction based
on Kekulé patterned graphene. For the Kekulé-O patterned junctions, a Fermi momentum-splitting Andreev
reflection at the interface can be induced by the off-resonant circularly polarized light applied in the normal
region, which results in the possible π state. In contrast, for the Kekulé-Y patterned junctions, the Fermi
momentum-splitting Andreev reflection is strongly suppressed due to the valley-momentum locking, and the
junction always exhibits the 0 state. The dependence of the critical current on the junction length and the
illumination parameter of the light field is also presented in detail.
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I. INTRODUCTION

Kekulé (Kek) patterned graphene is a two-dimensional
superlattice consisting of periodic thin and thick atomic
bonds [1–4]. These alternating bonds form a

√
3 × √

3 su-
percell, where the K and K ′ valleys of the pristine graphene
are folded on top of each other [5–7]. Recent experiments
demonstrated that a carbon atom-centered bond texture can
be realized in the graphene sheet grown on Cu(111) [4,8],
which is known as the Kek-Y patterned graphene. The valley-
momentum locking [5] predicted in this system leads to
many peculiar properties, such as the enhanced Andreev re-
flection [9], the valley precession effect [10], the resonant
transport [11], and the tunable optical absorption [12]. How-
ever, the pattern in which the C-C bond strength is altered as
in a benzene ring is known as the Kek-O bond texture with
a gap opened at the Dirac point [5]. Recently, in the Kek-O
patterned graphene, Beenakker et al. predicted a valley switch
effect by use of the Andreev-like reflection [13] and Wang
et al. reported the valley supercurrent [14].

The Josephson effect is an example of a macroscopic quan-
tum phenomenon first predicted by Josephson in 1962 [15,16].
A Josephson junction consists of two superconductors cou-
pled by a weak link [17–21]. The current flowing continuously
across the junction without any voltage applied is called the
dc Josephson current [22–25], which is driven by the super-
conducting phase difference φ and can be expressed as I ∼
sin(φ + φ0) with φ0 representing the additional phase shift.
The ground state of the junction usually has a zero phase shift
at φ0 = 0 due to the time-reversal symmetry [26–28]. With a
ferromagnetic link, an extra π phase shift can appear in the
junction leading to the π -state junctions with the supercurrent
reversals [29–33]. As an analogy to the spin polarization,
several studies have revealed that the valley isospin polariza-
tions in graphenelike materials can also result in the π -state
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junctions, such as the irradiated graphene- and silicene-based
Josephson junctions [34,35].

However, the discussions on the Andreev reflection and the
Josephson effect in Kek patterned graphene are still insuffi-
cient in the literature. Very recently, Mojarro et al. studied the
dc conductivity of the Kek patterned graphene under the circu-
larly polarized light [36]. Motivated by this, we report a study
on the light-modulated Josephson effect in Kek patterned
graphene in this paper. For the Kek-O patterned Josephson
junctions, it is found that the valley-degenerate band is split
into two parts with opposite valley polarization in the presence
of a light field, leading to the π -state junctions. In contrast,
the π state is always absent in Kek-Y patterned junctions due
to the valley-momentum locking. The critical current depen-
dence on the junction length and the illumination parameter
of the light field is also presented.

The rest of this paper is organized as follows. The model
Hamiltonian and the scattering approach are explained in
detail in Sec. II. The numerical results and discussions are
presented in Sec. III. Finally, we conclude in Sec. IV.

II. THEORETICAL MODEL

A. Hamiltonian

We consider the light-modulated Josephson junction based
on the Kek patterned graphene as shown in Fig. 1. In our
model, the off-resonant polarized light is only applied in the
normal region and absent in the superconducting regions.
Consequently, it is assumed that the light field does not heat
up the superconducting region even though they form a junc-
tion [34,37–41]. The two superconducting regions are realized
by the superconducting proximity effect [42,43]. The low-
energy Hamiltonian of the Kek graphene reads [5]

H0 = h̄vF τ0k · σ + H′ − U, (1)

H′ =
{
COτxσz, Kek-O,

CY h̄vF k̃ · τσ0, Kek-Y.
(2)

2469-9950/2022/105(9)/094510(7) 094510-1 ©2022 American Physical Society

https://orcid.org/0000-0001-6344-247X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.094510&domain=pdf&date_stamp=2022-03-23
https://doi.org/10.1103/PhysRevB.105.094510


W. ZENG AND R. SHEN PHYSICAL REVIEW B 105, 094510 (2022)

x
y

L

S N S

Fη

FIG. 1. Schematic of the junction. The blue and the gray regions
indicate the superconducting and the normal regions, respectively.
The off-resonant polarized light applied in the normal region is
indicated by the red wavy lines.

The excitation energy E of the system can be obtained
by solving the secular equation H0� = E�, where
� = (ψAK , ψBK ,−ψBK ′ , ψAK ′ )T is the four-component
spinor [5,44] with A, B, and K, K ′ indicating the sublattices
and the valleys, respectively. vF is the Fermi velocity, and
σ and τ are the Pauli matrices acting on the sublattice and
the valley space, respectively. The momentum is defined
as k(k̃) = (k̂x,±k̂y ) with k̂x(y) = −i∂x(y). The electrostatic
potential U is zero in the normal region and U0 in the
superconducting region, which can be adjusted by doping or
by a gate voltage. The coupling amplitude CO(Y ) is introduced
by the Kek-O (Kek-Y) bond density wave, which can be
adopted as a real number under an appropriate unitary
transformation [5]. We note that the Kek-Y Hamiltonian H′
in Eq. (2) is valid in small-CY regime (CY � 1), otherwise
the renormalization effect of the Fermi velocities should be
considered [5].

When a beam of off-resonant circularly polarized light
is uniformly launched into the normal region, the elec-
trons could feel a time-dependent vector potential A =
A(η sin ωt, cos ωt ), where η = ±1 denotes the right (left)
circularly polarized light, A and ω are the amplitude and the
frequency of the light, respectively. By substituting k with
k + eA/h̄, the Floquet Hamiltonian under the short time pe-
riod condition h̄ω � eAvF is obtained as [45,46]

HF (k) � H0(k) + [H−1,H+1]

h̄ω
, (3)

with

Hm(k) = 1

T

∫ T

0
dt eimωtH0(k, t ) (m = 0,±1), (4)

and T = 2π/ω is the time period. By substituting Eq. (1) into
Eq. (3), one obtains

HF =
{

Fητ0σz, Kek-O,

Fητ0σz − C2
YFητzσ0, Kek-Y,

(5)

where Fη = 8παηP/ω3 is the illumination parameter and P =
(eAω)2/(8πα) is the laser intensity with α � 1/137 being the
fine-structure constant, respectively. The total Hamiltonian in

the normal region is given by

H = H0 + HF . (6)

The electron transport properties are studied under
the Dirac-Bogoliubov–de Gennes (DBdG) approach
[17,44,47–49]. The DBdG equation reads(

H − μ �(x)
�∗(x) μ − T HT −1

)(
ψe

ψh

)
= ε

(
ψe

ψh

)
, (7)

where ε is the excitation energy measured from the Fermi
level μ, ψe (ψh) is the electron- (hole-) component of the
quasiparticle wave function, and T = −τyσyK is the time-
reversal operator with K being the complex conjugation
operator, respectively. Since the superconductor region is also
Kek graphene based, the lattice mismatch is minimal and
the interface barrier is omitted in our model. The pairing
symmetry is assumed to be the s wave where the Cooper
pairs are composed of the spin-up (-down) electrons in the K
valley and the spin-down (-up) electrons in the K ′ valley. It has
been known that the s-wave superconducting pairing and the
Kek patterns can be coexisting in principle [50]. We assume
the heavily doping condition μ + U0 � �(x) [44,48,51,52]
and the short-junction limit L � ξ0 = h̄vF /�0 with ξ0 being
the superconducting coherence length [17,18,33], which have
been widely adopted in the literature. Due to the heavily
doping condition, the Fermi wave vector in the superconduc-
tor is much larger than that in the normal metal so that the
s-wave pair potential �(x) can be approximated as a step-
like function [44,48,53], i.e., �(x) = �eiφ/2 for x < 0 and
�(x) = �e−iφ/2 for x > L with φ being the phase difference
across the junction. The temperature dependence of the gap
function is � = �0 tanh(1.74

√
Tc/T − 1) [54], where �0 is

the gap at the zero temperature and Tc is the superconducting
transition temperature, respectively. Since the two spin chan-
nels are decoupled, there is no spin indices in DBdG Eq. (7)
and the single-particle Hamiltonian takes a 4 × 4 form with
the indices of the sublattice pseudospin and the valley isospin.

It is noteworthy that the frequency of the off-resonant
light applied in the normal region can cause heating effect at
sufficiently long times, which may destroy the supercurrent.
However, the generation of the heating effect depends on the
driving period of the light [55]. Under the short time period
condition h̄ω � eAvF , the light field does not directly ex-
cite quasiparticles and instead effectively modifies the energy
bands by the virtual photon absorption and emission pro-
cesses. The Josephson current is dominated by the Andreev
bound states confined in the normal region of the junction and
can be obtained by the scattering approach.

B. Scattering approach

1. Andreev reflection matrix U
Following the approach in Refs. [17,18], we derive the

Andreev reflection matrix at x = 0. Under the heavily doping
condition, the eigenstates of Eq. (7) in the region x < 0 can be
obtained as

ψO
aξ (x) = (ei(φ/2) ξei(φ/2) 0 0 eiξβ ξeiξβ 0 0)

T
eiξkOx+κOx, (8)

ψO
bξ (x) = (0 0 ei(φ/2) ξei(φ/2) 0 0 eiξβ ξeiξβ )

T
eiξkOx+κOx (9)
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for the Kek-O junctions and

ψY
aξ (x) = (ξei(φ/2) ei(φ/2) ei(φ/2) ξei(φ/2) ξeiξβ eiξβ eiξβ ξeiξβ )

T
eiξkY

a x+κY
a x, (10)

ψY
bξ (x) = (−ξei(φ/2) −ei(φ/2) ei(φ/2) ξei(φ/2) −ξeiξβ −eiξβ eiξβ ξeiξβ )

T
eiξkY

b x+κY
b x (11)

for the Kek-Y junctions, where ξ = ±1, kO = U/(h̄vF ),
kY

a(b) = U/[h̄vF (1 ∓ CY )], κO = �0 sin β/(h̄vF ), κY
a(b) =

�0 sin β/[h̄vF (1 ∓ CY )], β = arccos(ε/�0) for ε < �0 and
β = −i arcosh(ε/�0) for ε > �0, respectively.

At x = 0, the electron component ψe(0) and the hole
component ψh(0) of the superconducting wave function are
connected by the Andreev reflection matrix U as

ψh(0) = Uψe(0), (12)

where ψe(0) and ψh(0) are the 4 × 1 vectors and U is a 4 × 4
matrix. With the help of the four wave functions in Eqs. (8)
and (9), the Andreev reflection matrix for the Kek-O junction
can be obtained. Similarly, the Andreev reflection matrix for
the Kek-Y junction can be obtained by substituting Eqs. (10)
and (11) into Eq. (12). Finally, one obtains

UO = UY = U = e−i(φ/2)

�0
I2×2

⊗ (
ε i

√
1 − ε2

i
√

1 − ε2 ε

)
,

(13)

where I2×2 is the 2 × 2 identity matrix acting on the valley
space.

2. Normal transfer matrices Me and Mh

The transfer matrix in the normal region can be obtained by
matching the normal-state wave functions [13,49,56,57]. Tak-
ing the Kek-O junction as an example, the single-particle wave
function with the fixed transverse wave-vector q and the ex-
citation energy ε is expressed as �(x, y) = �q(x)eiqy, which
satisfies the Schrödinger equation H�(x, y) = ε�(x, y). With
the help of Eq. (6), one obtains

∂�q(x)

∂x
= i

h̄vF
(τ0σx )−1[ε − H(0, q)]�q(x). (14)

The electron wave functions at x = 0 and that at x = L are
connected by

�q(L) = Me�q(0). (15)

By integrating Eq. (14), the electron transfer matrix Me is
obtained as

Me = e�e(ε,q)L, (16)

�e(ε, q) = i

h̄vF

(
1

ε − H(0, q)
τ0σx

)−1

. (17)

Similarly, the hole transfer matrix is obtained as

Mh = e�h (ε,q)L, (18)

�h(ε, q) = i

h̄vF

(
1

ε − T H(0,−q)T −1
τ0σx

)−1

. (19)

3. Josephson current

The Josephson current at finite temperature is given by [58]

I = −kBT
4e

h̄

d

dφ

∫ ∞

0
dε �(ε) ln

[
2 cosh

(
ε

2kBT

)]
, (20)

where �(ε) = ∑
i δ(ε − εi ) is the density of states of the An-

dreev levels. The discrete Andreev level εi is determined by
the secular equation [17],

det
(
1 − M−1

e UMhU
) = 0, (21)

which comes from the fact that the Andreev process between
the two normal metal/superconductor boundaries forms a
closed loop. By an analytic continuation, the integration in
Eq. (20) can be transformed into a summation over the Mat-
subara frequencies and one obtains

I = −4e

h̄
kBT

∑
n,q

d

dφ
ln det

(
1 − M−1

e UMhU
)
, (22)

where the energy variable in the determinant is replaced by
iωn with ωn = (2n + 1)πkBT .

III. RESULTS

In the following calculations, we set �0 = 1 meV as the
energy unit. The superconducting coherence length is ξ0 =
h̄vF /�0 ≈ 360 nm, which is set as the length unit. The cou-
pling amplitudes of the Kek-Y and Kek-O graphene in the
regime CY < 1 and CO < 3t0 [5], respectively, where t0 =
3 eV is the hopping energy for the pristine graphene [44].
The Josephson current I is renormalized by the current in the
normal state I0 = eμ�0W/(h̄2πvF ) with W being the junction
width.

A. Kek-O patterned junction

With the help of Eq. (22), the current phase relation of the
Kek-O Josephson junctions is shown in Figs. 2(a) and 2(b)
with different junction lengths L and different illumination
parameters Fη, respectively. One can easily find that a 0-π
transition can occur with either increasing L or increasing Fη.

The signals of the 0-π transitions can also be found in the
L dependence of the critical current as shown in Fig. 3(a).
When there is no light field applied, the critical current ex-
hibits a smooth oscillation behavior as the junction length
increases. The smooth oscillation is attributed to the normal
multireflection at the normal metal/superconductor interfaces
and indicates that the junction is always in the 0 state [59].
When the light field is on, the critical current curve shows
some cuspidal dips, which indicate the 0-π transition. The 0-π
transition can also be implied by the dips in the Fη dependence
of the critical current as shown in Fig. 3(b).

The 0-π transition in the Kek-O Josephson junction can
be understood by a quasiclassical approach employing the
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FIG. 2. Josephson current in Kek-O junctions with the parame-
ters μ = 42, CO = 30, T/Tc = 0.1. (a) Current phase relation with
Fη = 10. (b) Current phase relation with L = 0.1.

Bohr-Sommerfeld quantization condition [60]. By solving the
eigenequation of H in Eq. (6), one finds that the degenerate
conduction band is split into two parts,

εO
± =

√
k2

x + k2
y + (Fη ± CO)2 − μ, (23)

where kx(y) is the longitudinal (transverse) wave vector. For a
fixed ky, the scattering states in band ε± at the Fermi surface
are given by

ϕ+ = e±ik+x(−ieiγ+ ζ−1
+ − ieiγ+ ζ−1

+ )T , (24)

ϕ− = e±ik−x(ieiγ− − ζ−1
− − ieiγ− ζ−1

− )T , (25)

with ζ± = √
(μ + Fη ± CO)/(μ − Fη ∓ CO). The longitudinal

wave vectors k± are expressed as k± = P± sin γ± with γ± =
arccos(ky/P±) and P± = √

μ2 − (Fη ± CO)2.

FIG. 3. Critical current in Kek-O junctions with the parameters
μ = 42, CO = 30, T/Tc = 0.1. (a) Critical current as a function of L.
(b) Critical current as a function of Fη.

FIG. 4. Schematic of the valley isospin texture for the irradiated
Kek graphene at the Fermi surface. Two concentric circles denoted
by blue and red lines are the equienergy surfaces for ε±, respectively.
The arrows denote the orientation of the valley polarization. The
wave-vector kx(y) is normalized by kF .

The matrix structure of the wave functions ϕ± can be
rewritten in the tensor product form

ϕ± ∝ ϕK ± ϕK ′√
2

⊗ s±
σ , (26)

where ϕK = (1, 0)T and ϕK ′ = (0, 1)T are the eigenvectors
of τz and s±

σ = (∓ieiγ± , ζ−1
± )T represents the sublattice pseu-

dospin component of the wave functions, respectively. The
valley isospin texture at the Fermi surface is shown in
Fig. 4(a). It is shown that the ε+ band is fully valley polar-
ized along the +x direction, and the ε− band is fully valley
polarized along the −x direction. This is because the Kek-O
bond texture couples the valley isospin and the sublattice
pseudospin. A light field directly modifying the sublat-
tice pseudospin texture can, subsequently, change the valley
isospin texture as well.

The Josephson current is determined by the Andreev bound
states confined in the normal region, which arise from the
closed trajectories of the incident electrons and the Andreev
reflected holes at the Fermi surface. The ε+ and ε− bands are
fully isospin polarized with opposite orientations as shown in
Fig. 4(a). In order to form a valley-singlet Cooper pair [35] in
the superconducting regions, an incident electron from the ε+
band can only be interband reflected to a hole in the ε− band
so that the intraband Andreev process is totally blockaded.
The phase shift can be estimated by the quasiclassical Bohr-
Sommerfeld quantization condition, requiring∮

k dx + � = 2π l, l ∈ Z, (27)

where � = φ − 2 arccos(ε/�0) is the total Andreev reflec-
tion phase acquired at the normal metal/superconductor
interfaces. The extra phase accumulated between two inter-
faces is given by∮

k dx = ±|k− − k+|L

≈ ±|
√

μ2 − (Fη + CO)2 −
√

μ2 − (Fη − CO)2|L
= ±φk, (28)

where the contour integration is along the closed path formed
by the classical trajectory of the Andreev reflected particles.

094510-4



LIGHT-MODULATED JOSEPHSON EFFECT IN KEKULÉ … PHYSICAL REVIEW B 105, 094510 (2022)

The extra phase φk is nonzero in the coexistence of Fη and CO.
The total Josephson current can be estimated as

I = I+ sin(φ + φk ) + I− sin(φ − φk ). (29)

With the assumption that I+ ≈ I−, Eq. (29) becomes I ∝
cos φk sin φ, indicating that the Josephson current can be
reversed by the extra phase φk with π/2 < φk < 3π/2. Thus,
the 0-π transition can be realized by tuning the junction length
or the illumination parameter as shown in Fig. 2.

From Eq. (29), one can also find that the critical current Ic is
proportional to cos φk = cos(k+ − k−)L, which is a periodic
function of L with the oscillation period TL = 2π/|k+ − k−|.
Choosing the same parameters as those in Fig. 3 (μ = 42,
CO = 30, and Fη = 10), the oscillation period can be esti-
mated as

TL =
∣∣∣∣ 2π√

μ2 − (Fη + CO)2 − √
μ2 − (Fη − CO)2

∣∣∣∣ ≈ 0.26,

(30)

which is in coincidence with the red solid line in Fig. 3(a).

B. Kek-Y patterned junction

1. Small-CY regime

In the small CY regime, i.e., CY � 0.1, the term of O(C2
Y ) in

the Floquet Hamiltonian (5) is negligible. The energy disper-
sion is given by

εY
± =

√
F 2

η + k2 ± CY k − μ. (31)

For simplicity, we consider the normal incidence first. At the
Fermi surface, the scattering modes for the εY

± bands are given
by

χ±
+ = e±ik′

+x

(CY Fη + A
Fη − μ

± 1 ± CY Fη + A
Fη − μ

1

)T

, (32)

χ±
− = e±ik′

−x

(−CY Fη + A
Fη − μ

∓ 1 ∓ −CY Fη + A
Fη − μ

1

)T

,

(33)

where k′
± = (CY μ ∓ A)/(1 − C2

Y ), A =
√

μ2 − (1 − C2
Y )F 2

η

and the subscript ± of the wave-function χ denotes the εY
±

band and the superscript ± denotes the right and left propa-
gating directions, respectively.

From Eqs. (32) and (33), one finds that the valley polar-
ization of the right- and left-moving electrons in the ε+ band
is 〈χ±

+ |τσ0|χ±
+ 〉/〈χ±

+ |χ±
+ 〉 = (±1, 0, 0)T , respectively. Simi-

larly, the valley polarization for the ε− band is (∓1, 0, 0)T .
This valley polarization mismatch in band ε± prohibits the
interband Andreev reflection. Since there is no Fermi mo-
mentum splitting as well as the extra phase in the intraband
Andreev reflection, the Kek-Y junction always exhibits the 0
state.

For the oblique incidence, the valley isospin is pinned to
the kx-ky plane due to the valley-momentum locking. The
isospin texture at the Fermi surface is plotted in Fig. 4(b). With
a finite ky, the valley isospins in band ε± are not exactly oppo-
site, leading to a finite interband Andreev reflection. However
the main contribution of the Andreev reflection comes from

FIG. 5. Andreev reflection probabilities versus the transverse
wave-vector ky for Kek-Y junctions. The solid lines indicate the
intraband Andreev reflection probabilities. The dashed lines indicate
the interband Andreev reflection probabilities.

the normal incidence. The interband Andreev reflection ac-
tivated by the oblique incidence is actually negligible. The
interband and the intraband Andreev reflection probabilities
are plotted in Fig. 5 for different transverse wave vectors.
It is shown that the probability of the interband Andreev
reflection is much less than one-tenth of the probability of
the intraband one. Consequently, the Andreev bound state
is dominated by the intraband Andreev reflection without
any Fermi-momentum splitting and no 0-π transition can be
expected. In fact, the Josephson current and the critical current
in the Kek-Y junctions can be numerically calculated from

FIG. 6. Current phase relation and critical current in Kek-Y junc-
tions with the parameters μ = 42, CY = 0.1, T/Tc = 0.1. (a) Current
phase relation with Fη = 10. (b) Current phase relation with L = 0.1.
(c) Critical current as a function of L. (d) Critical current as a function
of Fη.
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Eq. (22) and are plotted in Fig. 6 as functions of the phase dif-
ference, the junction length, and the illumination parameter,
respectively. From Figs. 6(a) and 6(b), one always finds the 0-
state current phase relation whether or not there is a light field
applying. The critical current in Figs. 6(c) and 6(d) always
varies smoothly as a function of L and Fη, still indicating the
absence of the 0-π transition.

2. Beyond small-CY regime

Finally, we examine the influence of the Fermi velocity
renormalization on the Kek-Y junction when we go beyond
the small-CY regime. The low-energy Hamiltonian reads [5]

H0 = h̄vF (τ0k · σ + CY k̃ · τσ0). (34)

Here the renormalized coupling amplitude CY and the Fermi
velocity vF are given by

CY =
∣∣∣∣∣∣
1 + 2CY −

√
1 + 2C2

Y

1 + 2CY +
√

1 + 2C2
Y

∣∣∣∣∣∣, (35)

vF = vF

√
1 + 3C2

Y + D
(
1 − 3C2

Y

) + 2C3
Y (D − 2)

2D2
, (36)

where D =
√

1 + 2C2
Y .

The renormalized parameters vF and CY as a function of
CY are shown in Fig. 7(a). The renormalized Fermi velocity
vF decreases with the increasing of CY , which only modi-
fies the normal-state current with the substitution I0 → I0 =
eμ�0W/(h̄2πvF ). In the regime 0 < CY � 0.1, one finds that
the renormalized coupling amplitude CY is approximately the
same as CY . When CY > 0.1, CY increases monotonously and
reaches a nearly saturated value. In this regime, the valley
isospin is rotated to the kz axis with a small rotation angle due

to the additional term C2
Y Fητzσ0 in the Floquet Hamiltonian.

This small rotation of the isospin only modifies the magnitude
of the Josephson current but cannot change its phase. As a
result, the current phase relation and the critical current in the
large CY regime is qualitatively the same as those in the small
CY regime as shown in Fig. 7.

FIG. 7. (a) Renormalized velocities and renormalized coupling
ampiltude as a function of CY . (b) Current phase relation with μ =
42, Fη = 10, and L = 0.2. (c) Critical current as a function of L with
μ = 42, Fη = 10. (d) Critical current as a function of Fη with μ = 42,
L = 0.2.

IV. CONCLUSIONS

To conclude, we investigate the dc Josephson effect in
Kek patterned graphene. Both the Kek-O and Kek-Y bond
texture are considered. It is shown that a light field applied
in the normal region provokes entirely different valley isospin
texture for the two patterns. The light field and the Kek-O
texture together produce a fully valley polarization, leading
to the possible π state. However, in the Kek-Y graphene, the
valley polarization induced by the light field is k dependent
and the Josephson junction always exhibits the 0 state.
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