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Unconventional superconductivity due to interband polarization
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We analyze in detail the superconductivity that arises in an extended Hubbard model describing a multiband
system with repulsive interactions. We show that virtual interband processes induce an effective attractive
interaction for small momentum transfers, a situation not found in most models of superconductivity from
repulsion. This attraction can be traced back, in real space, to the presence of correlated hopping terms induced by
interband polarization. We reveal this physics with both strong-coupling expansion and many-body perturbation
theory, supplemented by numerical calculations. Finally, we point out interesting similarities with the problem
of interacting electrons in twisted bilayer graphene, suggesting the importance of the interband contribution to
superconductivity.
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I. INTRODUCTION

Superconductivity in low carrier density materials, such as
WTe2 [1–3], SrTiO3 [4,5], ZrNCl [6,7], and twisted bilayer
[8–10] and trilayer graphene [11–13], is a subject of intense
interest. In conventional electron-phonon superconductors,
the vast difference between Fermi and Debye energies is
responsible for the retarded nature of the phonon-mediated
attraction. This allows mobile electrons to interact without
being close to each other at the same time, effectively reducing
their mutual Coulomb repulsion [14]. In contrast, low-density
systems lack this large separation of electron and phonon en-
ergies, which motivates the study of superconductivity due to
the electron-electron repulsion itself, instead of the electron-
phonon interaction.

A well-known electronic mechanism for superconductivity
has been introduced by Kohn and Luttinger (KL) [15], in
which an effective attraction arises from dynamical screening
of the bare repulsion by the highly polarizable electronic
Fermi sea [16,17]. The KL theory is analytically controlled
in the weak-interaction regime, and yields a superconducting
transition temperature Tc that is orders of magnitude smaller
than the Fermi temperature TF . In contrast, the experimentally
determined Tc/TF in WTe2, ZrNCl, and magic-angle graphene
is remarkably high and reaches up to ∼0.1, calling for an
electronic mechanism of strong-coupling superconductivity.

Strong-coupling superconductivity can arise from repul-
sive interactions, as a result of enhanced fluctuations near
insulating ordered phases driven by these interactions. This
picture has been extensively discussed in connection with the
superconducting cuprates [18], pnictides [19–21], and also
twisted bilayer graphene and other graphitic systems [22–32].
Superconductivity can also arise from repulsive interactions
through virtual transition of electron pairs from the Fermi
surface to distant or incipient bands [33,34].

Recently, a new mechanism for unconventional supercon-
ductivity from repulsive interactions in doped insulators has
been proposed, where the attraction between two conduction
electrons arises from virtual interband transition of a third
electron in the filled band [35–37]. The pairing interaction
obtained by integrating out high-energy interband excitations
is nonretarded and acts on all conduction electrons rather than
a small fraction near the Fermi level. As a result, the gap-Tc

ratio �/(kBTc) is significantly higher than the standard value
for electron-phonon superconductors, which clearly indi-
cates unconventional strong-coupling superconductivity. This
“three-particle mechanism” for superconductivity was rigor-
ously demonstrated with a hybridization expansion method
[35], which is nonperturbative in interaction strength and
provides an analytically controlled theory of strong-coupling
superconductivity at low carrier density.

In this work, we present a comprehensive study of the
emergence of superconductivity from repulsive interactions
in a two-band Hubbard model of spinless fermions intro-
duced by two of us in Ref. [35]. By combining a variety of
analytical and numerical methods, our study covers a wide
range of parameters and electron fillings. We show that, unlike
the Kohn-Luttinger mechanism or fluctuation-induced super-
conductivity discussed above, the screened interaction, when
projected onto the states near the Fermi surface, becomes at-
tractive for small momentum transfers. As a result, a nodeless
order parameter, similar to the the one induced by phonons,
is possible. The existence of this attractive interaction comes
from interband screening effects of the bare repulsion, and
its effect can be understood in terms of a new interaction,
correlated hopping [35] (also referred to as electron-assisted
hopping), between conduction electrons. Focus is not only
given to the physical origin for electron pairing, but also
to the methodology allowing us to controllably capture this
pairing in various parameter regimes. We finally discuss the
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connections of this type of superconductivity with the phase
diagram of twisted bilayer graphene [38–40].

II. ILLUSTRATIVE MODEL AND OUTLINE

We consider spinless fermions on the honeycomb lattice
with nearest-neighbor (NN) tunneling t , sublattice potential
difference �, and NN repulsion V ,

H = �
∑
r∈B

nr − t
∑
〈r,r′〉

(c†
r cr′ + c†

r′cr ) + V
∑
〈r,r′〉

nrnr′ , (1)

above unit filling, i.e., for n = 1 + x electrons per unit cell
on average, with 0 < x � 1. Reference [35] rigorously proved
that this model hosts a superconducting phase at low doping
above unit filling, assuming t � �. One goal of this work is to
demonstrate the emergence of attractive interaction from bare
repulsion through interband polarization in a wide range of
dopings x and model parameters t/�,V/�. Our work not only
extends the results of Ref. [35] (obtained from kinetic energy
expansion) beyond the regime t � �, but also elucidates the
origin of electron pairing from a band picture viewpoint.

To achieve this goal, we first provide, for any parameter
set (t,V,�), at least one analytically exact result establishing
the presence of attractive interactions between conduction
electrons at small doping concentrations. When t � � or
V � �, we respectively rely on the previously mentioned hy-
bridization expansion or on standard many-body perturbation
theory. Away from these perturbative regimes, we can still
obtain analytical results if we extend Eq. (1) to the case where
fermions carry an additional flavor index σ = 1, . . . , Nf :

H = �
∑
r∈B

nr − t
∑

〈r,r′〉,σ
(c†

r,σ cr′,σ + hc) + V

Nf

∑
〈r,r′〉

nrnr′ , (2)

where nr = ∑
σ nr,σ now denotes the total density at site r.

Note that we have scaled the NN interaction strength to keep
the same balance between kinetic and interaction energies at
unit filling n = 1, which now corresponds to Nf fermions
per unit cells. When the number of fermionic flavors goes
to infinity (Nf � 1), the random phase approximation (RPA)
provides exact results on the pairing of electrons in the con-
duction band, for any values of the ratios t/� or V/�.

This enterprise is the focus of Secs. III, IV, and V, where
we derive effective models for doped charges and prove the
existence of attractive interaction between them due to the
interband screening of the bare repulsion. The results obtained
in the three regimes of Fig. 1 agree in their overlapping region
of validity, which provides a stringent test of our calculations
and confirms the emergence of superconductivity in our repul-
sive model.

We then numerically study the superconducting properties
of Eq. (1) as a function of doping in Sec. VI. Our simulations
include both Hartree-Fock (HF) corrections and dynamical
screening effects within the RPA. They show a robust su-
perconducting phase with dome-shaped Tc as a function of
doping and a nodeless order parameter for x < 25%. Finally,
in Sec. VII, we highlight features that transcend our specific
model, and discuss their relevance for the superconducting
phase of twisted bilayer graphene. Section IX summarizes and
closes the discussion.

FIG. 1. Domains of validity of the different analytical methods.
The hybridization expansion (HE), interaction expansion (IE), and
random phase approximation (RPA) have overlapping regions of
validity, allowing for stringent consistency checks. The insets depict
the virtual particle-hole processes responsible for pairing, in real
space for the HE (t � �) and momentum space for the IE (V � �).

III. HYBRIDIZATION EXPANSION

We start with the weak-tunneling limit t � �, and
briefly summarize the hybridization expansion introduced in
Refs. [35,36], to which we refer for more details.

A. Effective model for doped charges

At unit filling and for t = 0, the system forms a charge den-
sity wave in which A sites are occupied with one fermion of
each flavor, while the B sites remain empty. States with holes
on A sites lie higher in energy due to the large single-particle
gap �. Due to the Pauli principle, the x charges added above
n = 1 must live on B sites. For the same reason, direct tunnel-
ing of these doped charges to filled adjacent sites is forbidden,
and the doped charges’ dynamics involves multiple tunneling
processes with a high-energy intermediate state having holes
on A sites.

Using a unitary transformation, we can trace over these
high-energy excitons to obtain an effective Hamiltonian for
the doped charges on the B triangular lattice, thereby includ-
ing A-B hybridization effects perturbatively in t/�. To second
order, this hybridization expansion (HE) yields

HHE =
∑

i jk∈	,σ

[c†
i,σ T (n	)c j,σ + Pi jk] + E (n	), (3)

where the sum runs over upper triangles 	 of the B lattice
(see Appendix A). In Eq. (3), n	 = ni + n j + nk is the number
of fermions in the triangle 	, and Pi jk describes summation
over all possible permutations of the indices i jk. We have also
defined the functions

T (n) = t2

� + [3 − (2 + n)/Nf ]V
, (4a)

E (n) = −t2(3Nf − n)

� + [3 − (1 + n)/Nf ]V
, (4b)

which contain the typical energy difference denominators of
second-order perturbation theory.
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At low density, we can simplify these coefficients assuming
that no more than two doped charges simultaneously occupy
the same triangle:

T (n) 
 T (0) + n[T (1) − T (0)] + · · · , (5a)

E (n) 
 E (0) + n[E (1) − E (0)]

+ n(n − 1)

2
[E (2) − 2E (1) + E (0)] + · · · . (5b)

Defining t f = T (0), λ = T (1) − T (0), and Vf = E (2) −
2E (1) + E (0), we can rewrite the effective Hamiltonian for
moderate doping as

HHE 

∑

i jk∈	,σ

[c†
i,σ (t f + λn	)c j,σ + Pi jk]

+ 3Vf

∑
i

ni(ni − 1)

2
+ Vf

∑
〈i, j〉B

nin j . (6)

Explicit evaluation of the parameters in this Hamiltonian gives

t f = t2

� + [3 − 2/Nf ]V
, (7a)

λ

t f
= V/Nf

� + 3(1 − 1/Nf )V
, (7b)

Vf

t f
= 2(V/Nf )(� − V/Nf )

[� + (3 − 1/Nf )V ][� + 3(1 − 1/Nf )V ]
. (7c)

They agree with the expression given in Refs. [35] and [36]
for Nf = 1 and Nf = 2, respectively.

B. Dilute limit

In the dilute limit, doped electrons mostly occupy states
at the band bottom and their physics is governed by long-
wavelength properties that transcend details on the lattice
scale. To derive this continuum description, we project out
the fermionic modes with large kinetic energy and retain only
those near the band minima.

The effective band dispersion of Eq. (6) reads εk =
2t f

∑
i cos(k · a j ), with a j the three primitive lattice vectors,

and displays two degenerate minima at the K and K ′ = −K
points of the Brillouin zone. At low energy, doped electrons
therefore acquire an additional isospin degree of freedom τ ,
which distinguishes electrons near K from those close to K ′;
i.e., the resulting continuum theory involves 2Nf fermionic
fields ψq,σ,τ = cτK+q,B,σ , with |qa| � 1 and a the lattice con-
stant. Near its minima, εk is quadratic and isotropic, giving the
kinetic part of the continuum model

H̃kin =
∑
k,σ,τ

|k|2
2m

ψ
†
k,σ,τ

ψk,σ,τ , m = � + (3 − 2/Nf )V

3(at )2
. (8)

The interaction part of the continuum model is made of the
only three symmetry-allowed contact terms—intravalley and
intervalley density interactions together with valley-isospin

exchange—which can be written as

H̃int = 1

N

∑
q,σ,σ ′,τ=±K

g0ρq,σ,τ ρ−q,σ ′,τ

+ 1

N

∑
q,σ,σ ′

g1ρq,σ,Kρ−q,σ ′,K ′ + g2τq,σ · τ−q,σ ′ , (9)

where we have defined the density and valley-isospin opera-
tors

ρq,σ,τ (q) =
∑

k

ψ
†
k+q,σ,τ

ψk,σ,τ (q), (10a)

τq,σ (q) =
∑
k,α,β

ψ
†
k+q,σ,α

[τ]α,βψk,σ,β , (10b)

with τ the set of Pauli matrices. Using the interaction derived
in Eq. (6), we obtain the following g coefficients (see Ap-
pendix B):

g0 = 9(Vf − 2λ)/2, g1 = 2g0, g2 = 0. (11)

This drastically simplifies the interacting part of the effective
continuum theory, which now simply reads

H̃ =
∑
k,σ,τ

|k|2
2m

ψ
†
k,σ,τ

ψk,σ,τ + g0

N

∑
q

ρqρ−q, (12)

with ρq = ∑
τ,σ ρq,σ,τ the total density operator. We remark

that the original SU(Nf ) flavor symmetry of the model has
been promoted to an enlarged SU(2Nf ) symmetry in Eq. (12),
covering both flavor and the emergent valley degrees of free-
dom. This is due to the special form of interactions in our
model, which does not include any on-site interactions. As
shown in Ref. [36], such on-site repulsion would break the
valley isospin rotation symmetry and produce an additional
valley-ferromagnetic coupling.

C. Attraction

Remarkably, H̃ describes a dilute Fermi gas with attractive
interactions, as can be seen from the sign of the only relevant
interaction coefficient,

g0 = −27(tV )2

Nf P
< 0, P =

3∏
k=1

[� + (3 − k/Nf )V ]. (13)

We stress that this result holds for any values of Nf and is
nonperturbative in the interaction parameter V/�. Even more
importantly, this effective attractive interaction appears for
two doped electrons in a band insulator. This strikingly con-
trasts our approach to other mechanisms for superconductivity
(such as the KL mechanism) that rely on the presence of a
Fermi surface. It also lead to distinctive predictions, such as
a BEC-BCS crossover upon increasing the doping concentra-
tion, which has recently been observed in ZrNCl [7,36].

For Nf = 1, the continuum Hamiltonian for a low density
of doped electrons takes the form of a pseudospin- 1

2 Fermi
gas with local attractive interaction, which is known to exhibit
BEC-BCS crossover. On the BCS side and for low densities,
the critical temperature satisfies

kBTc ∝ √
W EF e−1/(2g), (14)
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where EF denotes the Fermi energy, W the conduction band-
width, and g = 6V 2/[π�(� + 2V )] a dimensionless coupling
constant [35]. Note that g is nonperturbative in the interaction
V , and it does not have to be small. This allows kBTc/EF

ratios as high as 10%. Even for small g, since the nonretarded
attraction spreads over the entire conduction band, the gap-Tc

ratio �/(kBTc) is 4.8, which far exceeds the standard value
1.57 for electron-phonon superconductors. Both behaviors,
obtained by exact solution in the small-t/� and low-doping
regime, clearly indicate strong-coupling superconductivity in
our model [35].

It is also worth comparing Eq. (14) with the KL result
for the two-dimensional repulsive Fermi gas [41,42]: Tc ∝
exp(−1/Ueff ), where Ueff ∝ U 3 and U is the strength of bare
repulsion. This formula only holds at small U ; hence Tc is
bound to take values orders of magnitude below the ones of
Eq. (14).

The square root dependence of Tc with respect to Fermi
energy or doping concentration, shown in Eq. (14), may seem
unusual especially given that the density of states near the
band edge is constant. It originates from the nonretarded
attraction between conduction electrons in two dimensions.
In 2D, two-particle bound states exist for arbitrarily weak
attraction, and the pair binding energy εb is proportional to the
bandwidth, the natural cutoff of the system. At finite density,
provided that the Fermi energy EF is large compared to εb (the
BCS regime), both Tc and the zero-temperature superconduct-
ing gap are proportional to

√
EF εb, as shown by mean-field

treatment detailed in Appendix C.

IV. INTERACTION EXPANSION

We now turn to the limit of weak interactions V � �,
for which electrons in the conduction band and holes in the
valence band are only mixed slightly. Their small admixture,
produced by off-diagonal interactions in the band basis (as op-
posed to sublattice basis), can be accounted for with standard
many-body perturbation theory, as detailed in this section.

A. Notations

We rewrite the model Eq. (2) in momentum space,

H =
∑

12
σ

c†
2,σ h2,1c1,σ + 1

2N

∑
1234
σ,σ ′

c†
4,σ c†

3,σ ′�43,21c2,σ ′c1,σ , (15)

with N the number of unit cells, and i = (ki, si ) a generalized
index gathering the single-particle momentum ki, belonging to
the Brillouin zone (BZ), and the sublattice index si ∈ {A, B}.
Due to momentum conservation, and because our model only
features density-density interactions, the parameters of the
Hamiltonian can be simplified as

h2,1 = δk1,k2 hs2,s1 (k1),

�43,21 = δs4,s1δs3,s2δk1+k2,k3+k4�s2,s1 (q),
(16)

with q = k4 − k1 = k2 − k3 the momentum exchanged, and
where we have defined the 2 × 2 matrices

h(q) =
[ −�/2 −t f (q)
−t f ∗(q) �/2

]
, �(q) = V

Nf

[
0 f (q)

f ∗(q) 0

]
.

(17)

We have used f (q) = ∑3
j=1 ei(q·u j ), with u j=1,2,3 the vec-

tors connecting B sites to their three nearest neighbors (see
Appendix A). The one-body part h gives two bands with
dispersion

εq,n = n
√

(�/2)2 + |t f (q)|2, (18)

where n = ± for the valence and conduction band, respec-
tively. As in Sec. III, the conduction band displays degenerate
minima at the K and K ′ points. The corresponding Bloch wave
functions are

�q,n = 1√
2εq,+(εq,+ + n�/2)

[ −nt f (q)
εq,+ + n�/2

]
, (19)

whose upper/lower component corresponds to the wave func-
tion’s amplitude on each sublattice �A

q,n/�
B
q,n.

B. Kohn-Luttinger diagrams

Renormalization of the two-body scattering vertex is de-
scribed, to second order in many-body perturbation theory, by
the five diagrams [15]

(20)

where curvy and straight lines respectively denote interaction
events and single-particle propagators. The evaluation of these
diagrams is detailed in Appendix D, and produces a renormal-
ized interaction vertex �IE = � + δ�, with

δ�43,21 = − 1

N

∑
abcd

χ−
dc,ba�43,ba�dc,21

+ χ+
dc,ba[�4c,2a�d3,b1 + �c3,2a�d4,b1

+ �4c,a1�d3,b2 − Nf �4c,a1�d3,2b], (21)

where the terms are ordered as in Eq. (20). We recall that
the sum over the generalized indices (a, b, c, d ) runs over
all single-particle momenta (ka, kb, kc, kd ) ∈ BZ and orbital
indices (sa, sb, sc, sd ) ∈ {A, B} that characterize the single-
particle propagators through the Bloch eigenvectors �

si
ki,n

.
Finally, we have denoted as χ− and χ+ the particle-particle
and particle-hole susceptibilities, respectively. They assume
the explicit form

χε=±
dc,ba = δ

kd
ka

δ
kc
kb

∑
n,n′=±

�
sd ∗
kd ,n�

sc ∗
kc,n′�

sb
kb,n′�

sa
ka,n

× fβ (εξka,n) − fβ (ξkb,n′ )

ξka,n − εξkb,n′
, (22)

where fβ (x) = 1/[1 + eβx] is the Fermi-Dirac distribution,
and ξi = εi − μ measures energies with respect to the chemi-
cal potential μ.

The diagrams of Eq. (20) were first used by Kohn and
Luttinger to show how attractive interactions could be pro-
duced in a fully repulsive Fermi sea, as a consequence of the
dynamical screening of the bare repulsion by the Fermi sea
[15]. This picture relies on a large particle-hole susceptibility
near 2kF , which requires a fully formed Fermi sea. At in-
finitesimal doping however, this condition is not satisfied and

094506-4



UNCONVENTIONAL SUPERCONDUCTIVITY DUE TO … PHYSICAL REVIEW B 105, 094506 (2022)

the susceptibility almost vanishes, leading to a breakdown of
the KL mechanism.

Here, in contrast, the particle-hole susceptibility remains
finite at low densities, and is dominated by interband contri-
butions. To see this, consider a situation where the chemical
potential is positioned right at the conduction band bottom,
such that n = 1 + x with x � 1. At low temperature, the
valence band is completely filled fβ (ξk,−) = 1 and the con-
duction band barely populated fβ (ξk,+) 
 0. This forces the
band indices in the particle-hole susceptibility to be opposite,
thereby highlighting the crucial role of virtual interband tran-
sitions.

C. Pairing in the dilute limit

As in Sec. III, we unveil the low-density properties of the
model with an effective continuum field theory that only re-
tains the modes near the conduction band minima. Following
lines similar to those above (see Appendix B), we end up
with the continuum model of Eqs. (8) and (9), albeit with a
new mass m = �/[3(at )2], which agrees with Eq. (8) when
V � �, and new g coefficients

g0 = �K,K (0) − �K,K (K )/2, (23a)

g1 = 2�K,K ′ (0) + �K,K (K ), (23b)

g2 = 2�K,K (K ), (23c)

where � denotes the effective interaction in the band basis

�k,k′ (q) = 1

2

∑
a,b=A/B

�b∗
k+q,+�a ∗

k′,+�IE
a,b(q)�a

k′+q,+�b
k,+. (24)

A few simple observations allow us to greatly simplify the
expressions of the g coefficients. First, electrons near the con-
duction band bottom (at K and K ′) have a strong B character
since �A

±K,+ = 0. Because all the diagrams in the g’s have
incoming/outgoing electrons with momentum ±K , this forces
all external legs in these diagrams to hold a B sublattice index.
Furthermore, the bare propagator does not have any direct
B-B interaction [�B,B(k) = 0]. Together, these observations
already rule out the presence of first-order interactions at the
conduction band bottom, requiring us to go to second order
and evaluate the diagrams of Eq. (20).

Due to the special form of interactions [Eq. (16)], the
orbital index can only change along the single-particle prop-
agators (straight lines) of these diagrams. This readily shows
that the first four KL diagrams vanish in the dilute limit. To
see this, we can draw all diagrams compatible with the above
orbital rules, using red/green for A/B indices,

(25)

They all feature at least one B-B bare interaction, reducing
them to zero. As a result, only the bubble polarization dia-
gram,

(26)

remains in the weakly interacting and low-density limit. Its
interaction vertices can, in principle, involve the momentum
exchange q = 0 or q = ±K . However, because the bare inter-
action vanishes for �A,B(±K ) = V f (±K )/Nf = 0, only the
diagram with q = 0, shown in Eq. (26), is nonvanishing. We
extend the discussion on the contributions of the five KL
diagrams in the low-density limit in Appendix E.

This shows that �K,K (K ) = 0, implying g2 = 0. Because
the bubble contribution only depends on the momentum ex-
changed q, we find �K,K (0) = �K,K ′ (0) and therefore g1 =
2g0. As a consequence, the effective continuum theory is the
same as Eq. (12). The sign of g0 = �K,K (0) = �IE

B,B(0)/2 =
δ�bbl

B,B(0)/2 determines the nature of interactions, attractive or
repulsive.

To distinguish between these two possibilities, we evaluate
the contribution of the bubble diagram in Eq. (26). We recall
that the interactions of our original model can be written as
Hint = (2N )−1 ∑

s1,s2∈{A,B} �s2,s1 (q)ns1 (q)ns2 (−q) with �s1,s2 a
2 × 2 matrix. The bubble contribution preserves this matrix
structure, yielding

δ�bbl
s2,s1

(q) = Nf

∑
sa,sb

�s2,sb (q)χ0
sb,sa

(q)�sa,s1 (q), (27)

with

χ0
s′,s(q) = 1

N

∑
k

χ+
(k,s′ )(k+q,s),(k+q,s′ )(k,s). (28)

More succinctly, it can be written as a matrix product
δ�bbl(q) = Nf �(q)χ0(q)�(q). As described above, in the
dilute limit, the bubble polarization χ0 is dominated by in-
terband contributions, which give

χ ≡ χ0
A,A(0) = −χ0

A,B(0) = − 1

N

∑
k

|t f (k)|2
4ε3

k,+
, (29)

and χ0
B,B(0) = χ0

A,A(0), χ0
A,B(0) = χ0

A,B(0).
Putting all pieces together, we find—as originally

announced—an effective attractive interaction in the dilute
limit

g0 = −9V 2|χ |
2Nf

. (30)

As a consistency check of this result, we can apply it to the
case t � � where our hybridization expansion result also
holds. In that limit, we use the identity N−1 ∑

k | f (k)|2 =
3 to get g0 
 −27(tV )2/[Nf �

3], which perfectly matches
Eq. (13) when V � � (for which P 
 �3).

V. RANDOM PHASE APPROXIMATION

The hybridization and interaction expansions, which are
real-space and momentum-space based methods, respectively,
allow us to solve our extended Hubbard model in different
parts of the parameter space. We can further bridge between
the two approaches and obtain analytical results for any values
of t , �, and V in the limit where Nf → ∞ using the random
phase approximation (RPA).
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FIG. 2. (a) �H/� and (b) the relative deviation (tF − t )/t obtained for � = 8t and V/t = 2, 3, as a function of doping.

A. Hartree-Fock and RPA diagrams

The essence of RPA lies in the possibility to exactly sum
the entire series of diagrams that dominate in the Nf � 1
limit. Such dominating diagrams maximize the number of
bubbles for a given number of interaction vertices because,
for flavor-conserving interactions, each bubble multiplies its
diagram’s contribution by Nf , while other configurations yield
smaller combinatorial factors. We have already encountered
this feature in Eq. (21), where only the bubble diagram is
multiplied by a factor Nf . Generalizing to all orders, the only
relevant diagrams in the Nf → ∞ limit are

(31)

This diagrammatic series can be recast in a geometric
form, enabling its exact summation. To see this, recall that the
one-bubble correction takes the simple matrix product form
δ�bbl(q) = Nf �(q)χ0(q)�(q). Its obtaining can be general-
ized to the m-bubble diagram, giving (Nf �χ0)m�. Summing
all these corrections yields the renormalized RPA scattering
vertex

�RPA(q) = [1 − Nf �(q)χ0(q)]−1�(q), (32)

which is valid when Nf � 1. Performing the matrix inversion
explicitly, we get

�RPA = 1

D

(
� + |V f |2

Nf

[
χ0

BB −χ0
AB

−χ0
BA χ0

AA

])
, (33)

with D = (1 − V f χ0
BA)(1 − V f ∗χ0

AB) − |V f |2χ0
AAχ0

BB. For
convenience of notation, the q dependence is not explicitly
shown.

Having described, within the RPA, the renormalization of
the interaction kernel, we now turn to the renormalization
of the single-particle Green’s function by interactions. These
corrections come from the Hartree and Fock diagrams, and
can be efficiently accounted for by a redefinition of the sub-
lattice potential difference � → �H and of the NN tunneling
amplitude t → tF, with the value of �H and tF determined

self-consistently (see Appendix F). In the large-Nf limit, the
Hartree correction dominates and we find �H 
 � + 3V and
tF 
 t . Away from this analytical limit, we obtain �H and
tF numerically. As an illustration, Fig. 2 shows these two
quantities obtained for � = 8t and V/t = 2, 3 as a function
of doping. We observe that �H approaches linearly its bare
value � as x → 1, where the Hartree-Fock corrections vanish
since both the A and B are completely filled. In addition, we
find a nonzero doping-dependent correction to the hopping
amplitude, tF, up to 20%–25% of its bare value, t , for V = 3t .

B. Pairing in dilute limit

The argument given in Sec. IV can be repeated to find that
the dilute effective model in the RPA regime also has g2 = 0
and g1 = 2g0, such that it is described by Eq. (12). Thus, the
sign of g0 determines the nature of interaction. This coefficient
takes the form

g0 = �RPA
B,B (0) = 9V 2

Nf

χ

1 + 6V χ
, (34)

and indeed describe an attractive interaction since χ < 0.
Our different analytical methods prove the presence of

an effective attraction and the formation of bound electronic
pairs in all the regimes highlighted in Fig. 1 for low enough
densities. The reliability of our approach can be demonstrated
by comparing the result of all three approaches in the joint
region of applicability. It is clear that Eq. (34) reduces to the
results of the interaction expansion when V � �, since they
include the exact same diagrams. We now compare the RPA
and HE results assuming both Nf � 1 and t � �. In that
case, the Hartree-Fock coefficients read �H 
 � + 3V and
tF 
 t (Appendix F) and the conduction band is almost flat
εk,+ 
 �H/2. Finally, using

∑
k | f (k)|2 = 3N , the RPA result

can be written as

g0 
 −27t2V 2

Nf �
3
H

= − 27t2V 2

Nf (� + 3V )3
, (35)
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which perfectly agrees with the HE result of Eq. (13), because
P 
 (� + 3V )3 when Nf � 1. This provides a stringent test
of our methods, and rigorously demonstrates the presence of
pairing between doped charges in our model.

VI. NUMERICAL RESULTS

To go beyond infinitesimal doping and reach regimes
where none of the perturbative parameters t/�, V/�, or 1/Nf

are small, we now perform extensive numerical simulations of
the original model Eq. (1). We include Hartree-Fock correc-
tions and the repulsive interaction screened by particle-hole
excitations described by �RPA(q) for Nf = 1.

The method then assumes the superconductivity to be
driven by the charge fluctuations and is analogous to the one
that two of us used recently for studying the origin of super-
conductivity in the twisted bi- and trilayer graphene [39,40],
as well in the rhombohedral trilayer graphene [43]. Within this
framework, the linearized gap equation is

�n,k = − 1

N

∑
k′,n′

V n,k
n′,k′

tanh (βξn′,k′/2)

2ξn′,k′
�n′,k′ ,

V n,k
n′,k′ =

∑
a,b=A,B

�RPA
a,b (k − k′)�a,∗

k,n �a
k′,n′�

b
k,n�

b,∗
k′,n′ . (36)

For convenience, we rewrite Eq. (36) in terms of a Hermitian
operator, as

�̃n,k = −
∑
k′,n′

�̃(n,k),(n′,k′ )�̃n′,k′ , (37)

where

�̃n,k ≡ �n,k ×
√

tanh (βξn,k/2)

2ξn,k
,

�̃(n,k),(n′,k′ ) = 1

N

√
tanh (βξn,k/2) tanh (βξn′,k′/2)

4ξn,kξn′,k′
V n,k

n′,k′ . (38)

The critical temperature, Tc, is defined as the largest value
of T such that the kernel �̃ has the eigenvalue 1, in order
for Eq. (37) to have solutions. The corresponding eigenvector
provides the symmetry of the superconducting order param-
eter. In general, Eq. (37) admits both symmetric (A1 irrep
of the lattice point group symmetry) and antisymmetric (A2

irrep) solutions upon exchanging k → −k. However, only the
latter satisfies the Pauli principle imposed by the statistics
of spinless fermions. The A1 solutions being unphysical, we
discard them by projecting Eq. (37) on the A2 subspace:

�̃n,k = −
∑
k′,n′

�̃
A2
(n,k),(n′,k′ )�̃n′,k′ , (39)

with

�̃
A2
(n,k),(n′,k′ ) ≡ �̃(n,k),(n′,k′ ) − �̃(n,k),(n′,−k′ )

2
. (40)

We now present our numerical solutions of Eq. (39), with
the band structure and the eigenfunctions accounting for the
HF corrections (see Fig. 2). We sample the BZ with N =
2700 points, set � = 8t , and consider different values of V
upon varying the doping x. Figure 3 shows Tc as function of

FIG. 3. Values of the critical temperature as a function of doping,
obtained by solving numerically Eq. (39), for � = 8t and V/t =
2, 2.5, 3. We use N = 2700 unit cells and include the HF corrections
to the band structure and the eigenfunctions.

x for V/t = 2, 2.5, 3. The critical temperature displays a non-
monotonic behavior, and reaches a maximum at an optimal
doping x 
 0.25. As expected when the superconductivity is
driven by electronic interactions, Tc increases with the interac-
tion’s strength V , reaching values up to ∼(3–3.5) × 10−2t for
V/t = 3.

Figure 4 shows the symmetry of the superconducting order
parameter in the BZ, obtained for � = 8t , V = 3t , and four
different values of the doping. The continuum black lines
represent the Fermi surface. Comparing Figs. 4 and 3, we note

FIG. 4. Symmetry of the superconducting order parameter in
the BZ, obtained for � = 8t , V = 3t , and four different values of
doping. The continuum black lines represent the Fermi surface.
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that Tc increases with the size of the Fermi surface. The latter
is a nonmonotonic function of the doping, increasing with x up
to x ∼ 0.26 and then shrinking around the center of the BZ.
We also remark that Tc falls down abruptly when x � 0.26,
which can be understood from the emergence of nodes in the
superconducting order parameter, as can be seen in Fig. 4.

VII. DISCUSSION

A. Interband polarization

Our analytic arguments establishing the presence of at-
traction and the formation of bound pairs in the low carrier
density limit (see Sec. III) offer a new perspective from many-
body perturbation theory on the fully electronic mechanism
for superconductivity introduced in Ref. [35]. More precisely,
the pairing interaction emerges from the polarization bubble
Eq. (26), which is dominated by interband contributions (see
Sec. IV). Therefore the emergence of superconductivity in our
model is due to interband polarization. We further substantiate
this statement in Appendix E, where we analyze the diagrams
leading to attractive interaction at small momenta in more
detail.

The interband process leading to pairing interaction cor-
responds to a virtual state having one hole in the valence
band and one additional conduction electron. This perfectly
connects to the “three-particle mechanism” introduced in
Refs. [35,36], where the pairing between two conduction
electrons is mediated by a third electron in the valence band
undergoing a virtual interband transition. Importantly, this
mechanism differs from other interband mechanisms of super-
conductivity relying on virtual pair scattering of two electrons
from the Fermi surface to distant or incipient bands [33,34],
as described by the ladder diagram of Eq. (20) rather than the
bubble diagram.

To get more insights into the effective attraction between
electrons leading to the formation of the Cooper pairs, we
study in more the details the effective Cooper interaction
V n,k

n′,k′ in the upper band n = n′ = + obtained within RPA; see
Eq. (36). For illustration purposes, we fix the incoming vector
k′ = K at the center of the Fermi sea, and plot the interaction
strength as a function of k in Fig. 5 in the dilute limit x 
 0%,
obtained by fixing μ at the valence band bottom, and for a sub-
stantial doping concentration x = 10%. First and foremost,
we observe that the effective interactions in the upper band
are attractive, as expected from our analytical and numerical
results of Sec. III–VI. At infinitesimal doping x 
 0%, ob-
tained by fixing μ at the valence band bottom, we observe
that this attraction is entirely due to interband polarization
effects. Indeed, it almost perfectly agrees with our analytical
prediction for g0 in Eq. (35) when the momentum transfer
|k′ − k| → 0 (squares in Fig. 5). On the other hand, for larger
doping concentrations, exemplified here with x = 10%, the
intraband susceptibilities become non-negligible and start to
strongly renormalize the effective RPA interactions. These
intraband contributions are similar to those appearing in the
standard Kohn-Luttinger mechanism. For the values chosen
here, they increase the strength of the attractive potential by
up to 30% compared to the pure interband polarization effects.
The increase of Tc for x = 0.1–0.25 observed in Fig. 3 is

FIG. 5. The effective Cooper interaction V n,k
n′,k′ [see Eq. (36)] in

the upper band n = n′ = + is attractive, as shown here using the
incoming momentum k′ = K as reference, with � = 8t and two dif-
ferent doping concentrations. Squares show the analytical prediction
g0 [Eq. (35)] obtained by neglecting intraband contributions.

thus due to a combined effects of the interband and intraband
polarization.

B. Contrast with Kohn-Luttinger mechanism

It is worthwhile to compare the mechanism for super-
conductivity studied here with the traditional Kohn-Luttinger
mechanism. From a technical viewpoint, we highlighted in
Sec. IV that the susceptibilities consist of two different con-
tributions: intraband, covered by the standard Kohn-Luttinger
theory, and interband, which greatly dominates at low doping
(see Fig. 5). The nonzero interband polarization has important
physical consequences.

First, our screened interaction, once projected near the
Fermi energy, is attractive for small momentum transfers q �
kF . This is not the case in the KL mechanism, which relies
on screening processes near q = 2kF . These high-momentum
oscillations of the screened Coulomb potential can, at suffi-
ciently large distances, reach negative values. This produces
an effective attraction at momentum transfer close to 2kF and
pairing in high orbital angular channels, which often leads
to nodal superconducting order parameters. Here, in contrast,
the interband polarization bubble is already attractive at small
q (see also Appendix E), which enables a nodeless order
parameter at small densities.

Second, the KL mechanism requires a finite carrier density
leading to a Fermi surface [16,17,44–48] to produce screened
interaction. To put it another way, the Kohn-Luttinger mech-
anism does not produce any bound state when only two
electrons are present and subject to mutual repulsion. In
contrast, our system consists of a completely filled band of
“core” electrons, which induces the pairing interaction be-
tween doped electrons in the conduction band. Remarkably,
we find that two doped electrons already attract and form
a bound state, and this attractive interaction is the result
of the interband electronic effect in a band insulator with
repulsive bare interaction. This novel interband mechanism
distinguishes our work from the Kohn-Luttinger mechanism,
and produces robust pairing at infinitesimal doping.
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C. Role of correlated hopping

In the real-space picture offered by the hybridization
expansion (Sec. III), the emergence of superconductivity
crucially relies on correlated hopping processes of doped
electrons—the λ term Eq. (6). Historically, correlated hopping
was discussed in connection with superconductivity in the
cuprates [49,50] (see also [51,52]). However, the correlated
hopping term discussed for cuprates differs from the λ term
that emerges in the low-energy limit of our model. The for-
mer describes electrons hopping between two sites, one of
which being already occupied by another electron of opposite
spin. This process necessarily involves double occupation and
therefore is strongly suppressed by large on-site repulsion U .
In contrast, our λ term describes electron hopping between
two sites in the presence of another electron occupying a
third site nearby, a process that remains active and leads to
attractive interactions even at large U [36].

These density-dependent hopping terms manifest them-
selves as an increase of the effective tunneling strength for
doped charges as a function of their density. This behavior
is also captured by the sublattice potential in the Hartree
approximation �H ≈ � + 3V (1 − x) (see Fig. 2). Notably,
the interaction-induced renormalization of �H makes the ef-
fective hopping amplitude doping dependent:

teff = t2

�H
≈ t2

� + 3V
+ 3t2V x

(� + 3V )2
. (41)

This effect is captured by the correlated hopping term in the
effective Hamiltonian after downfolding, and it is essential for
the emergence of superconductivity in our model.

VIII. RELEVANCE FOR TWISTED BILAYER GRAPHENE

Throughout this paper, we have highlighted that super-
conductivity at low doping above integer filling can arise
from repulsive interactions in multiband systems due to a
nonzero virtual interband polarization. The cause of the attrac-
tive interactions is the presence of correlated hopping terms
for doped electrons, which can be identified by a filling-
dependent Hartree potential �H.

Similar correlated hopping terms have also been observed
in twisted bilayer graphene (TBG), where the Hartree cor-
rection experiences significant changes as a function of band
filling [38]. Drawing an analogy between the two systems,
we expect the correlated hopping terms to emerge in the
low-energy theory of twisted bilayer graphene and to be re-
sponsible for superconductivity.

To place this analogy on firmer grounds, we now examine
and compare effective interactions in TBG and in our model
using the RPA of Sec. V, and show the evident similarity
between the two.

Let us first briefly summarize our results for the spinless
model Eq. (1). The renormalization of the sublattice potential
difference is the only inhomogeneous on-site potential that
respects the translational symmetry of the system. It takes the
form VH(r) = �H[ρA(r) − ρB(r)]/2, with ρA/B(r) the density
on each orbital in the unit cell located at r. Because of this
orbital structure, all quantities involved in the renormalization

FIG. 6. Some matrix elements �RPA
G,G′ (q → 0) of the screened po-

tential for twisted bilayer graphene, obtained for the twist angle
θ = 1.05◦ and for x = −1 electrons per moiré unit cell. The index
G denotes moiré reciprocal lattice vectors, as defined on the right.

of the scattering vertex, such as the polarizability χa,b, are
promoted to matrix form with orbital indices [see Eq. (28)].

In TBG, the Hartree term contains all possible inhomoge-
neous on-site potentials with the periodicity of the moiré unit
cell. Its Fourier components are

VH(r) =
∑

G

2πe2

|G| ρG(r), (42)

where G �= 0 is a moiré reciprocal lattice vector, and ρG is a
Fourier component of the total charge density. The latter can
be written as

ρG(r) =
∑

k,n∈occ

〈k, n|eiGr |k, n〉, (43)

where contraction over the layer and sublattice indices is
implied in the expectation value of the single-particle wave
functions |k, n〉, which are now four component spinors.

Hence, the Hartree potential can be written in terms of the
ρG, in the same manner in which the Hartree potential of the
model discussed in Sec. II can be written in terms of ρA/B,
the role of the sublattice index being replaced by the recipro-
cal lattice vectors. The analog goes deeper. In the honeycomb
model the two sublattices are connected by electron tunneling
t , and similarly, electron states of graphene at wave vectors k
and k + G are connected by the interlayer tunneling. In both
cases, single-particle bands are formed by the hybridization
between multiple components within a unit cell.

Furthermore, as the number of flavors is larger in TBG
(spin, layer, sublattice), the RPA treatment becomes more and
more justified. Following the reasoning of Sec. V, we find that
the susceptibility and RPA vertex are now promoted to matri-
ces, χG,G′ (q) and �RPA

G,G′ (q), indexed by the moiré reciprocal
lattice vectors, in the same way that the repulsive potential
and the susceptibility of the model in Sec. II can be written as
a matrix using sublattice indices.

To compare the physics of the two models, we plot in
Fig. 6 the RPA vertex �RPA

G,G′ (q → 0) obtained for TBG near
the magic angle, at filling x = −1 (measured with respect to
charge neutrality). We observe that the off-diagonal elements
of this kernel, not initially present in the interaction, are now
negative, signaling attractive interactions.

The analogy between the spinless model Eq. (1) and the
interacting model of TBG consolidates. In both cases, the
matrix which defines the screened RPA vertex acquires new
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FIG. 7. On the left, primitive lattice vectors aj=1,2,3 and nearest-neighbor vectors uj=1,2,3 on the honeycomb lattice. Highlighted in blue is
the triangular B lattice and the upper triangle centered on an A site summed over in the effective HE model [see Eq. (6)]. On the right, first
Brillouin zone and high-symmetry points �, K , and K ′.

elements, which are not present in the bare interaction, but
emerge from interband polarization. Furthermore, the order
parameter for TBG induced by these new attractive terms
shows few or no sign changes throughout the miniature Bril-
louin zone of the moiré structure [39], as in the spinless model
described here [35,36].

We emphasize that the attractive part of the interaction in
TBG, shown in Fig. 6, is largely due to interband processes.
The essential role of the interband contribution to supercon-
ductivity is further testified by considering an approximation
method that discards it. This approximation, known as the
“flat-metric condition,” is convenient for the analytical study
of the effect of interactions in TBG, and has been extensively
applied in Refs. [53–58]. As described in Appendix G, we
show that this approximation however leads to a purely repul-
sive interaction V c,k

c,k′ in both TBG and our honeycomb model,
thus failing to capture the emergence of superconductivity.

IX. CONCLUSION

In this article, we comprehensively studied one of the sim-
plest electronic mechanisms for superconductivity in doped
band insulators. Using a minimal two-band model for il-
lustration, we firmly established the emergence of attractive
interactions between doped charges with the help of three
analytically controlled methods, whose results perfectly agree
in their overlapping domains of validity. All three methods
convey a common understanding for the origin of the effective
attraction: it arises from the coupling of conduction electrons
pairs to virtual excitons. In hybridization expansion in the
real-space picture, this effective attraction is described by
a correlated hopping term in the effective Hamiltonian for
doped electrons, while in the RPA framework based on the
k-space band picture, it arises from interband contribution to
the particle-hole polarization bubble.

The pairing interaction described here shows a feature not
commonly found in models of superconductivity from bare
repulsive interactions: the screened interaction, projected onto

the states near the Fermi energy, is attractive for small momen-
tum transfer [59], |q| � kF .

We have characterized the superconducting order param-
eter using full-fledged numerical calculations. The small
momentum attraction mentioned above translates into a node-
less order parameter at the Fermi surface pockets at the
corners of the Brillouin zone, the points K and K ′. We found
that the critical temperature Tc exhibits a dome as a function
of doping, whose maximum reaches up to 3% of the nearest-
neighbor hopping amplitude. For a realistic value t = 0.1 eV,
this already leads to a substantial Tc 
 35 K. This maximum
appears near x = 1/4, above which the superconducting gap
acquires nodes, leading to a reduction of Tc.

Finally, we highlighted some consequences of our work
regarding the theoretical modeling of interactions in twisted
bilayer graphene. In particular, we showed the crucial role
of correlated hopping terms arising from interband polariza-
tion in the understanding of superconductivity. This hints that
approximation schemes discarding their effects will probably
also underestimate the strength of attractive interaction—if
they find any. Remarkably, the structures of the interaction
matrix in our simple model and in twisted bilayer graphene are
analogous, with the attractive off-diagonal driving the transi-
tion to a superconducting state. This shows the importance of
the electronic mechanism of superconductivity studied in this
article for the understanding of more complex systems.
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APPENDIX A: CONVENTIONS FOR THE LATTICE

For completeness, we provide in this Appendix one possible parametrization of the honeycomb lattice and of its first Brillouin
zone. The explicit expressions given below ease the analytical evaluation of the g coefficients appearing in the continuum model
of Sec. III, for instance.
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We define, as shown in Fig. 7, the following: (a1, a2) the two primary lattice basis vectors; a3 = −a2 − a1 the third primitive
lattice vector; a = |a1| = |a2| = |a3| the lattice constant; (u1, u2, u3) the three nearest-neighbor vectors pointing toward A sites;
(b1, b2) the reciprocal lattice basis vectors; � the center of the Brillouin zone; and (K, K ′) its two nonequivalent corners. Their
expression and properties can be straightforwardly obtained from Fig. 7. We also gather for convenience some useful relations,

v a1 a2 a2 u1 u2 u3

K · v −2π/3 4π/3 −2π/3 0 2π/3 −2π/3
K ′ · v 2π/3 −4π/3 2π/3 0 −2π/3 2π/3

, (A1)

which show—for instance—that f (K ) = f (K ′) = 0, or
�HE

K,K (0) = �HE
K,K ′ (0) = 7Vf /2 − 9λ and �HE

K,K (K ) = −Vf us-
ing Eq. (6).

APPENDIX B: PROJECTION OF INTERACTION

We now detail the projection of the interaction terms of
the HE effective model near the band bottom, used to derive
the continuum model Eq. (9) of the main text. We express the

interacting part of our effective Hamiltonian as

Hint = 1

N

∑
k,k′,q
σ,σ ′

�HE
k,k′ (q)c†

k+q,B,σ
c†

k′,B,σ ′ck′+q,B,σ ′ck,B,σ , (B1)

and Fourier-transform Eq. (6) to get the interaction coeffi-
cients in the HE regime (t � �),

�HE
k,k′ (q) = Vf

[
3

2
+

3∑
j=1

cos(q · a j )

]
+ λ

3∑
j=1

2 cos(k · a j ) + 2 cos[(q + k) · aj] + [ei(q·a j−k·a j+1 ) + e−i(q·a j−k·a j−1 )]. (B2)

The projection restricts the sum to contributions where the
four fermionic operators lie close to the K and K ′ valleys.
Among these contributions, we can also discard the ones that
cannot satisfy momentum conservation, which either involve
three electrons in the same valley (e.g., ψ

†
Kψ

†
KψKψK ′ ) or scat-

ter pairs between the two valleys (e.g., ψ
†
Kψ

†
KψK ′ψK ′). We get

Hint 
 1

N

∑
k,k′,q
σ,σ ′

[
�HE

K,K (0)ψ†
k+q,σ,Kψ

†
k′,σ ′,Kψk′+q,σ ′,Kψk,σ,K

+ �HE
K ′,K ′ (0)ψ†

k+q,σ,K ′ψ
†
k′,σ ′,K ′ψk′+q,σ ′,K ′ψk,σ,K ′

+ �HE
K,K ′ (0)ψ†

k+q,σ,Kψ
†
k′,σ ′,K ′ψk′+q,σ ′,K ′ψk,σ,K

+ �HE
K ′,K (0)ψ†

k+q,σ,K ′ψ
†
k′,σ ′,Kψk′+q,σ ′,Kψk,σ,K ′

+ �HE
K,K (K )ψ†

k+q,σ,K ′ψ
†
k′,σ ′,Kψk′+q,σ ′,K ′ψk,σ,K

+ �HE
K ′,K ′ (K ′)ψ†

k+q,σ,Kψ
†
k′,σ ′,K ′ψk′+q,σ ′,Kψk,σ,K ′

]
. (B3)

Using the Hamiltonian’s Hermiticity and time-reversal invari-
ance (or the explicit expression above), we get the relations
[�k,k′ (q)]∗ = �k+q,k′+q(−q) = �−k,−k′ (−q) allowing us to
equate some of the coefficients above, and to find

Hint 
 1

N

∑
q,τ
σ,σ ′

�HE
K,K (0)ρq,σ,τ ρ−q,σ ′,τ

+ 1

N

∑
q,σ,σ ′

2�HE
K,K ′ (0)ρq,σ,Kρ−q,σ ′,K ′

+ 1

N

∑
q,σ,σ ′

�HE
K,K (K )[τ+

q,σ τ−
−q,σ ′ + τ−

q,σ τ−
−q,σ ]. (B4)

Using τ+
σ τ−

σ ′ + τ−
σ τ+

σ ′ = [2τσ · τσ ′ − (ρK,σ − ρK ′,σ )(ρK,σ ′ −
ρK ′,σ ′ )/2], we end up with the continuum model of Eq. (9)
where the g coefficients take the explicit form

g0 = �HE
K,K (0) − �HE

K,K (K )/2, (B5a)

g1 = 2�HE
K,K ′ (0) + �HE

K,K (K ), (B5b)

g2 = 2�HE
K,K (K ), (B5c)

which has been reproduced in Eq. (23) concerning the inter-
action expansion—the derivation being identical in that case.
Using the explicit form of �HE, we find

g2 = 0, g1 = 2g0 = 9(Vf − 2λ), (B6)

as announced in the main text.

APPENDIX C: FORMULA FOR Tc

We briefly reproduce the calculation of Refs. [60,61] lead-
ing to the explicit expression of Tc in Eq. (14). When Nf = 1,
the continuum model of Eq. (12) is a two-component Fermi
gas in two dimensions with attractive interactions g0 < 0, and
a quadratic band dispersion with effective mass m. This theory
hosts a bound state of energy −εb determined as a pole of the
two-body scattering T matrix

1

|g0| = D0

∫
dε

1

εb + 2ε
, (C1)

with D0 = Am/(π h̄2) the constant density of state in two
dimensions and A the area of the unit cell in real space. Its
solution gives εb ∝ We−1/g when g, given below Eq. (14), is
large [35].
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We then solve the gap and number equations

1

|g0| = D0

∫ ∞

0
dε

tanh(βE/2)

2E
, (C2a)

2EF =
∫ ∞

0
dε

[
1 − ε − μ

E
tanh

(
βE

2

)]
, (C2b)

where E =
√

(ε − μ)2 + �2 for T = 0 and T = Tc by direct
evaluation of the integrals above. At T = 0, the number equa-
tion gives √

μ2 + �2 + μ = 2EF , (C3)

where μ is the chemical potential, while the gap equation can
be recast as ∫ ∞

0
dε

[
1

2Ek
− 1

2ε + εb

]
= 0, (C4)

which is convergent and yields a second relation between μ

and �: √
μ2 + �2 − μ = εb. (C5)

Together, they give

μ = EF − ε/2, � =
√

2EF εb. (C6)

Because the two-dimensional density of states is constant,
we can reproduce the standard BCS integrals without assum-
ing any separation of scale between the UV cutoff ε� and the
Fermi energy. This yields

kBTc = K� ∝ √
EF εb ∝ √

EFW e−1/(2g), (C7)

as announced in the main text. Note that this equation applies
to the dilute limit of all regimes considered (HE, KL, and
RPA), with the g0 respectively given by Eqs. (13), (30), and
(34).

For instance, let us highlight how the RPA linearized
gap equation Eq. (36) gets mapped onto Eq. (C2) in the
dilute limit. In this regime electrons mostly live near ±K ,
and interact through small momentum transfers q 
 0 since
�RPA(±K ) = 0. The kernel in Eq. (36) then becomes

�̃k,k′ 
 �RPA
BB (0)

εk,+εk′,+ + [�/2]2

2εk,+εk′,+

+ �RPA
AB (0)

Re [t2
F f ∗(k′) f (k)]

2εk,+εk′,+
, (C8)

which holds up to q2 corrections. Then, expanding the func-
tions of k and k′ near the ±K points, we find

�̃k,k′ 
 �RPA
BB (0) + 0, (C9)

which also holds up to quadratic corrections of the form
|k ± K|2 or |k′ ± K|2. This gives the effective attractive inter-
action �̃k,k′ 
 −g0 between the two valleys. Finally, we need
to expand the dispersion relation near the ±K points to find
the effective mass

εK+k,+ 
 �

2
+ |k|2

2m
, m = �H/[3(atF)2], (C10)

which makes the connection with Eq. (C2) complete. Note
that we focus on intervalley pairing as intravalley in s-wave is
forbidden for our spinless model (Nf = 1).

APPENDIX D: EVALUATION OF KL DIAGRAMS

The two-body vertex corrections δ� obtained from many-
body perturbation theory are described by the diagrams in
Eq. (20), where we have used curvy lines for interaction events

(ka, sa) = a

(kb, sb) = b c = (kc, sc)

d = (kd, sd)

q = kd − ka
≡ Γdc,ba, (D1)

and straight lines for the bare HF propagators

a, b ≡ G
(0)
b,a(iωm) = δka,kb

n=

Ψsb ∗
kb,nΨsa

ka,n

ξka,n iωm
, (D2)

with ωm a Matsubara frequency, and where ξka,n = εka,n − μ

measures energies with respect to the chemical potential μ.
They are both expressed in the orbitals basis, leading to
the important conservation sa = sd , sb = sc in �, and to the
single-particle dressing �

sb ∗
kb,n

�
sa
ka,n

in G(0).
The five diagrams of Eq. (20)—referred to as ladder (ldr),

cross (crs), up and down wine glasses (uwg/dwg), and bubble
(bbl) diagrams due to their form—contribute to the renormal-
ization of the two-body scattering vertex [15–17]:

(D3a)

(D3b)

(D3c)

(D3d)

(D3e)

where we recall that the sums labeled by the generalized in-
dices abcd run over all sublattice indices sa, sb, sc, sd ∈ {A, B}
and all momenta ka, kb, kc, kd ∈ BZ. The particle-particle and
particle-hole susceptibilities are computed by the Matsubara
sums

χε=±
dc,ba = 1

β

∑
ωm

G(0)
d,a(iεωm)G(0)

c,b(iωm), (D4)
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FIG. 8. Some diagrams which describe the scattering of Cooper
pairs, and appear in the superconducting kernel in Eq. (38). The
band labels A and B stand for the sublattice where the band is
mostly localized. States |k, A〉, |k′, A〉 lie near the Fermi surface of
one valley, and states | − k, A〉,−|k′, A〉 lie near the Fermi surface of
the other valley. The states within the bubbles in diagrams (b) and
(d) belong to the same valley, either K or K ′. The overall momentum
transfer is such that |q| = |k − k′| � kF .

which gives the result of Eq. (22). The resulting vertex correc-
tions

δ� = δ�ldr + δ�crs + δ�uwg + δ�dwg + δ�bbl (D5)

appear in Eq. (21) of the main text.

APPENDIX E: DIAGRAMMATIC DESCRIPTION OF THE
ORIGIN OF AN ATTRACTIVE INTERACTION

In the following, we give a simplified description of the
origin of attractive terms at small momentum transfer, |q| �
kF , in the superconducting kernel of the model Eq. (38). We
assume, for simplicity, a small hole doping, which leads to
two isotropic bands, one per valley, with the filling determined
by the Fermi wave vector, kF . The partially occupied bands
are mostly localized in sublattice B, and there are two empty
bands at energies of order �.

Some low-order ladder and bubble diagrams which de-
scribe interaction-induced scattering of Cooper pairs and
which contribute to the superconducting kernel in Eq. (38)
are shown in Fig. 8. The bare interaction at small momenta is
lim|q|→0 V (q) = 3V , where the factor 3 arises from the num-
ber of nearest neighbors. The interaction is between electrons
residing at A and B sites, so that the vertices involve form
factors describing the amplitude of the wave functions of the
A and B bands at the A and B sites. The amplitude of a wave
function of the A band at the A sublattice is ≈1, and the

amplitude on the B sublattice is, on average, of order t/�,
and of order (t/�) × (kF a) ∼ (t/�) × √

n for states near the
points K and K ′ [kF is the Fermi wavelength, a is the lattice
constant, and n ∼ (kF a)2 � 1 is the number of electrons per
unit cell in the partially occupied band]. The reverse holds for
wave functions in the B band.

Diagram (a) in Fig. 8 is due to the bare interaction. It is
repulsive, of order ∼3V × (t/�)2 × n. It has a multiplicity of
2, as the two interaction vortices can be exchanged. Diagram
(c) describes interband transitions; see [34]. It gives a contri-
bution also of order ∼3V × (t/�)2 × n. It has a multiplicity
of 2.

The bubble diagrams, (b) and (d), describe the screening
of the bare interactions. Both are second-order processes in
perturbation theory, and lead to an attractive interaction. Dia-
gram (b) describes the contribution of the polarizability of the
partially occupied valence band, modulated by the weight of
the the wave functions of this band on the B sublattice. Its con-
tribution is ∼ − (3V )2 × (t/�)4 × (�/t2), where the factor
�/t2 describes approximately the polarization of the valence
band for |q| → 0. The contribution of diagram (d) is ∼ −
(3V )2 × (t/�)2 × (1/�), where the factor 1/� describes the
energy cost of making a transition to the conduction band.
The multiplicity of these diagrams is the number of electron
flavors times 4, from the all possible exchanges of vertices.

The analysis of the diagrams in Fig. 8 suggests that the
superconducting kernel, for |q| � kF , becomes attractive for
3V ∼ �, in agreement with the results in the main text. For
n � 1, the leading diagram is (b), leading to a pairing inter-
action of order (V 2t2)/�3, as in Eq. (35).

APPENDIX F: HARTREE AND FOCK CORRECTIONS

The Hartree and Fock diagrams are graphically repres-
ented as

(F1)

Up to a global shift of chemical potential, the Hartree contri-
bution reads

hH(q) = 3V

2

[−δ 0
0 δ

]
, (F2)

where δ = (NNf )−1〈∑r∈A nr − ∑
r∈B nr〉 is the sublattice po-

larization. The Hartree contribution can thus be simply taken
into account through a redefinition of the sublattice potential
difference �H = � + 3V δ. The Fock term is purely off-
diagonal and assumes the form

hF(q) = −V
3∑

j=1

[
0 ei(q·u j )t j

e−i(q·u j )t∗
j 0

]
, (F3)

with t j = (NN2
f )−1 ∑

r∈B〈c†
r cr+u j 〉. As long as the system does

not spontaneously break the C3 symmetry of the original
model, the Fock correction can be accounted for by a re-
definition of the NN tunneling amplitude tF = t + V t0, with
t0 = (t1 + t2 + t3)/3.
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Note that these contributions could have equivalently been
derived by performing the standard Hartree-Fock substitution,

nr,σ nr′,σ ′ = 〈nr′,σ ′ 〉ni,σ + 〈nr,σ 〉n j,σ ′

− 〈c†
r,σ cr′,σ ′ 〉c†

r′,σ ′cr,σ − 〈c†
r′,σ ′cr,σ 〉c†

r,σ cr′,σ ′

− 〈nr,σ 〉〈nr′,σ ′ 〉 + |〈c†
r,σ cr′,σ ′ 〉|2, (F4)

in the interaction term of Eq. (2), and then discarding constant
terms.

In conclusion, the Hartree-Fock corrections to the single-
particle Hamiltonian can be simply accounted for by a
redefinition of the sublattice potential difference � → �H

and of the NN tunneling amplitude t → tF. These new param-
eters should be self-consistently computed from

�H = � + 3V
〈∑

r∈A nr − ∑
r∈B nr

〉
NNf

, (F5a)

tF = t + V
∑3

j=1

〈 ∑
r∈B c†

r cr+u j

〉
3NN2

f

. (F5b)

The renormalized band dispersion and Bloch vectors follow
from performing this substitution in Eqs. (18) and (19).

In the weakly doped regime x � 1, the conduction band is
almost empty, such that the expectation values in Eq. (F5) are
dominated by valence band contributions. This simplifies the
self-consistent equations as

�H − �

�H
= 3V

2N

∑
q

1

εq,+
,

tF − t

tF
= V

6NNf

∑
q

| f (q)|2
εq,+

.

(F6)

They allow us to obtain approximate solutions for the Hartree
and Fock corrections in the perturbative regimes studied in
the main text. For instance, we observe that |tF − t | → 0
when Nf → ∞, as expected by inspection of the diagrams
of Eq. (F1). Indeed, the Hartree bubble can hold any of the
Nf fermionic flavors, while the flavor of the intermediate line
in the Fock diagram is fixed. The other interesting limit is
t � � used for the HE. In that regime, we find that elec-
trons of the n = 1 insulating state mostly live on A sites, as
expected from Sec. III and described by �H = � + 3V and
tF = t[1 + V/(Nf �H)].

APPENDIX G: OVERSIMPLIFYING APPROXIMATION

We now detail the “flat-metric condition” introduced in the main text, and show that it leads to purely repulsive interaction,
both in the spinless model Eq. (1) and in the interaction model for TBG.

In more detail, we assume that the form factors appearing in the definition of the susceptibility are diagonal in the band basis
and do not vary over the BZ, as they would if correlated hopping terms were present. For the spinless model Eq. (1) and twisted
bilayer graphene, this respectively corresponds to

� i ∗
k,m� i

k,n ≈ δn,m� i ∗
k,n�k,n

∣∣
k∈BZ = δn,m f i

n,

〈k, m|eiGr |k, n〉 ≈ δn,m〈k, n|eiGr |k, n〉∣∣
k∈BZ = δn,m f G

n . (G1)

Focusing on the conduction band, the static susceptibility coefficients can be written as

χ c
α,β (q) = χ̄ (q) f α

c f β
c , χ̄ (q) =

∑
k∈BZ

fβ (ξk+q,n) − fβ (ξk,n)

ξk+q,n − ξk,n
, (G2)

with c referring to the conduction band, and where, depending on the model, α and β either denote orbital indices (A/B) or moiré
reciprocal lattice vectors (G).

In the spinless model of Eq. (1), this approximation leads to a screened RPA vertex

�RPA(q) ≈ 1

1 − 2V Re [ f (q)] f A
c f B

c χ̄ (q)

[ |V f (q) f B
c |2χ̄ (q) V f (q)[1 − V f ∗(q) f A

c f B
c χ̄ (q)]

V f ∗(q)[1 − V f (q) f A
c f B

c χ̄ (q)] |V f (q) f A
c |2χ̄

]
. (G3)

In turn, this vertex produces an effective Cooper interaction [defined in Eq. (36)]

V c,k
c,k′ ≈ 2V Re [ f (k′ − k)] f A

c f B
c

1 − 2χ̄ (k′ − k)V Re [ f (k′ − k)] f A
c f B

c

, (G4)

which is positive, i.e., repulsive, for small momentum difference since χ̄ (q → 0) < 0, f (q = 0) = 3 and f A
c , f B

c > 0. As a
result, washing out the interband contributions and the correlated hopping terms is too restrictive to explain the results obtained
throughout this paper.

Similarly, for twisted bilayer graphene, following similar steps, we find that the approximation of Eq. (G1) leads to

�RPA
G,G′ (q) ≈ V 0

G (q)δG,G′ + V 0
G (q)V 0

G′ (q)χ̄ (q) fG fG′

1 − χ̄ (q)
∑

G′′ V 0
G′′ (q) f 2

G′′
, (G5)
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where V 0 denotes the bare Coulomb repulsion, and χ̄ (q) is given by an approximation similar to that in Eq. (G2). Projecting the
latter in the conduction band, we find an effective Cooper potential

V c,k
c,k′ ≈ g2(k, k′)

∑
G V 0

G (k′ − k) f 2
G

1 − χ̄ (k′ − k)
∑

G V 0
G (k′ − k) f 2

G

, (G6)

where g(k, k′) is a band structure dependent coefficient (see Ref. [39] for more details). Because χ̃ (q) < 0, all the matrix elements
of this potential are positive, describing a net repulsion.
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