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Supersolidity in the second layer of para-H2 adsorbed on graphite
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We calculated the phase diagram of the second layer of para-H2 adsorbed on graphite using quantum Monte
Carlo methods. The second layer shows an incommensurate triangular crystal structure. By using a symmetric
wave function, which makes possible molecule exchanges, we observed that this nearly two-dimensional crystal
shows a finite superfluid density around a total density of 0.1650 Å−2. The superfluid fraction of this supersolid
phase was found to be small, (0.41 ± 0.05)%, but still experimentally accessible.
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I. INTRODUCTION

The adsorption of quantum gases on graphite is a vener-
able area of study (see, for instance, Ref. [1] and references
therein), dating back to the 1980s and 1990s. A set of calori-
metric, torsional oscillator, and neutron diffraction works
helped to define the phase diagrams both of the first and
second helium [2–6] and, to a lesser extent, molecular hy-
drogen layers [7–14] on top of that substrate. Those studies
have recently been complemented by measurements of the
adsorption of 4He on the outer surface of carbon nanotubes
[15,16], introducing curvature effects in the layer formation.

In spite of this long period of intense study, some recent
experimental work shows that the nature of the second 4He
layer on graphite was not perfectly understood. References
[17,18] hinted at the existence of novel superhexatic and
supersolid phases, in addition to the well-established trans-
lationally invariant and triangular incommensurate solid. The
supersolidity claim was sustained both by an independent set
of torsional oscillator measurements [19] and by a theoretical
calculation on the same system [20]. Both works seem to
point to a registered two-dimensional (2D) crystal phase with
a superfluid fraction appreciably above zero. Reference [20]
proposed that phase to be a 7/12 solid, commensurate with
the triangular solid of the first layer.

Surprisingly, this is not the only work in which 4He is pro-
posed to form a supersolid phase. Reference [21] shows that
a registered

√
3 × √

3 arrangement on the first layer adsorbed
on graphite had a non-negligible but tiny superfluid fraction
of 0.67%. The same calculation repeated for H2 under the
same conditions produced a normal solid. On the other hand,
a strictly 2D H2 system was found to be supersolid in the
range between the spinodal and the equilibrium densities [22].
However, the superfluid densities were also quite small.

Para-H2 has been deeply studied both theoretically and
experimentally searching for a new superfluid. Its light mass

makes it a priori a good candidate that could sum up to the
paradigmatic case of helium. However, its molecule-molecule
interaction is much more attractive than helium, hindering the
formation of a bulk liquid. To date, there is only evidence of
superfluid signal in some spectroscopic studies of small doped
H2 droplets [23,24], in agreement with several theoretical
calculations [25–30]. It was also shown that a metastable H2

glass has a critical temperature Tc � 1 K, with a superfluid
fraction below 1% [31].

In this paper, we explore the possibility of the second layer
of H2 adsorbed on graphite to be a supersolid. By a supersolid
we mean a system that is not translationally invariant but that
has a nonzero superfluid fraction. In this way, it would join
the list of known setups with those characteristics that today
includes, besides quasi-two-dimensional 4He [18,19], some
cold gas arrangements [32–34]. To explore this possibility, we
solve the Schrödinger equation that describes the system using
the first-principles diffusion Monte Carlo (DMC) method. Our
study, restricted to the T = 0 limit, shows that the stable phase
corresponding to the second layer of H2 grown on top of the
first solid layer is an incommensurate triangular crystal for
all the coverages. Our results for the superfluid fraction of this
solid show a small density island, around the lowest density of
the second layer, where its value is different from zero. Even
if this range is small and the superfluid fraction is predicted to
be tiny, its value is in reach using modern torsional oscillator
designs [19].

II. METHOD

The DMC method is a stochastic technique that allows
us to obtain the ground state of a zero-temperature system
of bosons, such as the para-H2 molecules considered in this
paper [35]. DMC solves exactly the N-body Schrödinger
equation in imaginary time, within some statistical error. The
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Hamiltonian of the system under study is

H =
N∑

i=1

[
− h̄2

2m
∇2

i + Vext (xi, yi, zi )

]
+

N∑
i< j

VH2-H2 (ri j ). (1)

Here, xi, yi, and zi are the coordinates of each one of the
N H2 molecules with mass m located both on the first and
second layers. Since we considered a full corrugated substrate,
we have to sum up all the C-H2 interactions, represented by
Vext (xi, yi, zi ). The functional form of the C-H2 potential [36]
was the same as in a previous work for the same system on
graphene [37]. The carbon atoms were located in the graphite
crystallographic positions in the standard way, positions that
were kept fixed. The intermolecular potential VH2-H2 is the
Silvera-Goldman potential [38], a staple in these kinds of
calculations, that depends only on the distance between the
centers of mass of each pair of para-H2 molecules, ri j , and
not on their relative orientations (spherical molecules). Its
expression is, in atomic units,

V (ri j ) = exp
(
1.713 − 1.5671ri j − 0.00993r2

i j

)
−

(
12.14

r6
i j

+ 215.2

r8
i j

+ 4813.9

r10
i j

− 143.1

r9
i j

)
f (ri j ), (2)

where f (ri j ) = exp[−(1.28rm/ri j − 1)2] for ri j < 1.28rm and
1 otherwise, with rm = 3.44 Å.

In order to reduce the statistical variance of the simulations
and to fix the system phase, DMC uses an initial approxima-
tion to the many-body wave function which acts as a guiding
drive along the diffusion process. In this paper we use

�(r1, . . . , rN ) = �J (r1, . . . , rN )�1
(
r1, . . . , rN1

)
×�2

(
rN1+1, . . . , rN

)
, (3)

with

�J (r1, . . . , rN ) =
N∏

i< j

exp

[
−1

2

(
b

ri j

)5]
, (4)

which is a Bijl-Jastrow wave function that depends on b, a
variationally optimized parameter whose value was found to
be 3.195 Å, in agreement with a previous calculation in a
similar system [37]. The expression for �1 is

�1
(
r1, r2, . . . , rN1

) =
N1∏
i

NC∏
J

exp

[
−1

2

(
bC

riJ

)5]∏
i

exp{−c1[(xi − xsite,i )
2 + (yi − ysite,i )

2]}
N1∏
i

exp[−a1(zi − z1)2], (5)

where N1 is the number of molecules in the first layer and riJ represents the distance between the center or mass of each molecule,
i, and each of the NC carbon atoms, J , in the graphite crystal. The coordinates (xsite, ysite ) are the crystallographic positions of
the 2D triangular first-layer lattice. The variational parameters in Eq. (5) were optimized and found to be the same as the ones in
Ref. [37], i.e., a1 = 3.06 Å−2, bC = 2.3 Å, and z1 = 2.9 Å. The parameter c1 was obtained from linear interpolation between the
values corresponding to densities in the range 0.08 Å−2 (c1 = 0.61 Å−2) and 0.10 Å−2 (c1 = 1.38 Å−2) obtained in a previous
calculation including only the first layer [39]. If in Eq. (3) we assume �2 = 1, we are dealing only with the first layer.

On the other hand, the study of the second layer is carried out by taking �2 as

�2
(
rN1+1, . . . , rN

) =
N2∏
i

NC∏
J

exp

[
−1

2

(
bC

riJ

)5] N2∏
i=1

[
N∑

I=N1+1

exp{−c2[(xi − xsite,I )2 + (yi − ysite,I )2]}
]

N1∏
i

exp[−a2(zi − z2)2],

(6)

where N2 is the number of molecules in the second layer
(N = N1 + N2), a2 = 1.52 Å−2, and z2 = 6 Å. The parameter
c2 was interpolated as in �1. The points (xsite, ysite ) are again
the crystallographic positions of a 2D lattice, but now for
the second layer. This symmetrized Nosanow wave function
allows for possible exchanges in the crystal [20], something
essential to have superfluidity. When we wanted to have a
second-layer liquid, we fixed c2 to zero. The use of an un-
symmetrized trial function similar to Eq. (5) to describe the
second layer produces always higher energies than the ones
obtained by using the above equation.

All the data presented in this paper are the result of the
average of ten independent Monte Carlo histories for each
density and for all of the simulation cells used. A history is
a set of 1.2 × 105 Monte Carlo steps, each step involving the
change in the positions, according to the prescription of the
diffusion Monte Carlo algorithm [35], of all the molecules
in each of the 300 walkers (configurations) needed to de-

scribe the systems under consideration. Neither increasing the
number of Monte Carlo steps, nor increasing the number of
walkers, nor increasing the number of independent histories
varies the results shown. Of those 1.2 × 105 Monte Carlo
steps, the first 2 × 104 were ignored in the calculation of
averages. Further increases in the length of the stories did
not improve either the values or the error bars of the aver-
ages obtained. The number of molecules per configuration
oscillated between 216 and 356, depending on the size of the
simulation cell. That meant 144 and 224 molecules in the first
layer, respectively. In the solid or supersolid arrangements,
no vacancies were included. To avoid mismatch problems
with the incommensurate arrangements in the second and first
layers, both were considered to be at the center a nine-cell
structure created by replication of the original cell by the
vectors defined by their length and width. Only the interac-
tions within a given distance of the molecules in the original
simulation cell were considered in the Monte Carlo averages.
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FIG. 1. Energy per H2 molecule as a function of the inverse of
the total density of H2 on graphite. The short-dashed line represents
the Maxwell construction to determine the transition densities from
a one-layer system to a two-layer arrangement. The curves are poly-
nomial fits to the data and are intended only as guides to the eye. The
inset is a zoom on the two-layer solid energies.

We checked that the averages for all the magnitudes presented
here were independent of the size and shape of the simulation
cell, which implies that this replicating procedure avoids any
problems derived from the incommensurability of the first and
second layers.

III. RESULTS

The first relevant issue is establishing the stability limits
of the different phases of H2 adsorbed on graphite. This was
done to ascertain whether there was any substantial difference
compared with the phase diagram of the second layer of H2

on graphene dealt with in Ref. [37]. To do so, we calculated
the energies per molecule for the different arrangements we
have considered, i.e., a first-layer triangular crystal and a
second-layer with two possibilities: liquid and a triangular
incommensurate solid on top of another triangular incom-
mensurate solid in the first layer. As indicated above, those
results are the average of at least ten Monte Carlo histories
for each density. To avoid spurious correlations, only values
located 100 Monte Carlo steps away were used to obtain
the mean energies. Our DMC results are shown in Fig. 1.
The double-tangent Maxwell construction line indicates that
a one-layer incommensurate solid of 0.097 ± 0.002 Å−2 is
in equilibrium with two stacked triangular incommensurate
crystals of total density 0.1650 ± 0.0025 Å−2, as can be bet-
ter seen in the inset of that figure. The density of the first
layer was 0.100 Å−2, a density at which the total energy of
the entire arrangement was found to be the lowest one. This
density translates to a H2-H2 lattice constant of 3.4 Å. These
results are in good agreement with the ones for graphene [37].
Apart from the values of the equilibrium densities, the main
features of Fig. 1 coincide with both the graphene calculation
and available experimental data [11], i.e., there are no stable
second-layer liquid or registered commensurate solids of the
second layer with respect to the first one (either 4/7 or 7/12)
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FIG. 2. Estimator of the superfluid density for a total density
ρ = 0.1650 Å−2 for different sizes of the simulation cell expressed
as multiplets of a single unit cell in the first layer. Curves represent
simulation results, and open squares represent the average of all the
estimators for the three cells displayed. The straight line represents
a linear least-squares fit to the symbols displayed in the range (3 <

τ < 8 K−1). The slope of that line implies a superfluid density of
(0.41 ± 0.05)%.

since, in both cases, the energies are above the Maxwell line.
A picture of those commensurate arrangements can be found
in Refs. [40,41], respectively.

The low mass of the H2 molecule makes it a good candidate
to exhibit macroscopic quantum behavior. To explore this
possibility, we studied whether we could find a supersolid
phase within the stability range of the second-layer triangular
solid. We chose H2 on top of H2, on top of graphite, be-
cause the supersolidity of the first layer had been ruled out
in a previous calculation [21]. Following the same procedure
as in Ref. [18] for 4He adsorbed on graphite, we estimated
the superfluid fraction in two dimensions ρs/ρ of H2 in the
second layer by using the zero-temperature winding number
estimator,

ρs

ρ
= lim

τ→∞ α

(
Ds(τ )

τ

)
, (7)

with τ being the imaginary time used in the quantum Monte
Carlo simulation. Here, α = N2/(4D0), D0 = h̄2/(2m), and
Ds(τ ) = 〈[RCM(τ ) − RCM(0)]2〉. RCM is the position of the
center of mass of the N2 H2 molecules located in the second
layer. To perform those calculations, we took into account
only their x and y coordinates, where periodic boundary con-
ditions apply. The results obtained for a system with a total
density of 0.1650 Å−2 are displayed in Fig. 2. There, we show
αDs(τ ) vs τ , the superfluid fraction being the slope of the
curve for τ → ∞. As one can see in Fig. 2, ρs/ρ is noticeably
different from zero, i.e., the system is a supersolid at that
density.

To be sure that this result did not depend on our choosing
any particular setup, and to be sure that there was no influence
of any possible sluggishness in the superfluid estimator, we
performed DMC simulations using three different simulation
cells. For instance, a 14 × 8 simulation cell is made of
14 first-layer unit cells in the x direction and 8 first-layer
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unit cells in the y direction. Since, as mentioned before, the
distance between H2 molecules in that first layer is 3.4 Å,
this means a 47.6 × 47.11-Å2 simulation cell. Conversely, the
dimensions of a 12 × 6 cell are 40.8 × 35.33 Å2. This implies
a surface ratio between both setups of ∼1.55. The superfluid
estimator (7) was calculated as the average of ten statistically
independent simulations and is displayed in Fig. 2 as the thin
curves. No obvious size trend was found, the values for the
three simulation cells being remarkably close to each other. In
fact, the open squares in that figure represent the average of
the three of them for each τ , the error bars corresponding to
two standard deviations of that average and including all the
values obtained in the simulations.

To obtain the superfluid fraction, we performed a proce-
dure of least-squares linear fitting to the average of αDs(τ )
vs τ for the three simulation cells considered. The τ values
we fitted were in the range 3 < τ < 8 K−1. The result is
displayed as the thick solid line in Fig. 2. The procedure
produces a slope, corresponding to the superfluid fraction, of
(0.41 ± 0.05)%. If instead of using the average of αDs(τ ) as
an input in the fitting procedure, we consider the values for
each simulation cell separately, we get superfluid fractions of
(0.36 ± 0.05)% for the 12 × 6 cell, (0.48 ± 0.05)% for the
12 × 7 cell, and (0.39 ± 0.05)% for the 14 × 8 cell. Larger
cells are beyond our calculating capabilities. These values are
of the same order as the superfluid fraction obtained for the
metastable, strictly 2D, systems considered in Ref. [22]. Ac-
cording to the results displayed in Fig. 1, the arrangement with
a total density of 0.1650 Å−2 is stable, and thus we can con-
clude that this supersolid could be observed. We can also see
that the least-squares fit also describes well the interval τ >

8 K−1, indicating that no further lengthening of the simulation
series is necessary to obtain an accurate value of the superfluid
fraction.

To check the density range in which that supersolid phase
could be stable, we calculated the superfluid fraction [Eq. (7)]
for total densities of 0.1625 Å−2 (metastable) and 0.1675
Å−2. We did not consider the 4/7 and 7/12 unstable phases
since their corresponding densities (0.157 and 0.158 Å−2,
respectively) are too far away from the stability region. The
results are shown in Fig. 3 for a 14 × 8 simulation cell. We
observe that, for the lower density, there is an appreciable
superfluid fraction of (0.96 ± 0.05)%. However, in the other
case corresponding to the higher density, the slope of the
estimator is zero, implying that the second layer of H2 at that
density is a normal solid.

IV. CONCLUSIONS

Summarizing, our microscopic quantum Monte Carlo ap-
proach shows that there is a narrow density slice around
0.1650 Å−2 in which an incommensurate triangular second-
layer H2 supersolid is stable. We can try to understand the
reasons behind this somehow unexpected result. The first
ingredient is undoubtedly the low density of the crystal con-
sidered. That second-layer density is 0.0650 Å−2. However,
this is larger than the 0.060 Å−2 upper density limit for which
you can see a superfluid fraction in a pure 2D crystal [22] and
also larger than the 0.0636 Å−2 first-layer density for which
no superfluid was found in Ref. [21]. Therefore an additional
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FIG. 3. Same as in Fig. 2, but for different total densities and a
fixed 14 × 8 simulation cell. The slope for the density ρ = 0.1625
Å−2 implies a superfluid fraction of (0.96 ± 0.05)%. Error bars are
only shown for the lower density to make the figure more clear; for
the other two densities they are of the same size.

factor is needed. That factor can be understood with the help
of Fig. 4. There, we show the density profile of a

√
3 × √

3
first-layer registered phase, together with the double-layer
supersolid arrangement in a direction perpendicular (z) to the
graphite plane. What we can see is that there is an appreciable
difference between the z width of the first (bare or with H2

on top) and second H2 layers. In particular, the ratio between
their widths, estimated considering the first- and second-layer
profiles as Gaussians, is about 1.5. This implies considerably
larger leeway for the molecules in the second layer to move,
and to allow for the exchanges needed to create a superfluid.
That is corroborated by the superfluidity fraction of (0.58 ±
0.05)% obtained for a second layer of H2 of the same density
adsorbed on top of a first layer of D2. The second-layer density
profile in this case is virtually identical to the one presented in
Fig. 4 and is not shown for simplicity. This means that the
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FIG. 4. Density profile in the direction perpendicular to the
graphite plane. Open squares represent the density corresponding to
a first-layer commensurate
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3 structure; full squares represent
a two-layer system of total density ρ = 0.1650 Å−2.
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origin of this feature is in the transverse displacement of the
molecules in the second layer.

The only remaining and crucial issue would be about the
possibility of detecting such a small superfluid fraction. In
a very recent experimental work [19], this is shown to be
feasible for a double layer of 4He on top of graphite, since
they were able to detect fractions as small as 0.9%. Impor-
tantly, the temperatures at which that behavior was seen in
4He are well below 0.5 K, which makes us confident that our
zero-temperature DMC results for H2 would hold in future ex-
periments. Incidentally, we should say that a very recent cal-
culation [42] points to the existence of a supersolid in a quite
different, but related system, bulk D2 at very high pressures.
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