
PHYSICAL REVIEW B 105, 094444 (2022)

Higgs and Goldstone spin-wave modes in striped magnetic texture
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Spontaneous symmetry breaking is ubiquitous in physics. Its spectroscopic signature consists in the softening
of a specific mode upon approaching the transition from the high-symmetry side and its subsequent splitting into
a zero-frequency Goldstone mode and a nonzero-frequency Higgs mode. Although they determine the whole
system dynamics, these features are difficult to address in practice because of their vanishing coupling to most
experimental probes and/or their strong interaction with other fluctuations. In this paper, we consider a periodic
magnetic modulation occurring in a ferromagnetic film with perpendicular-to-plane magnetic anisotropy and
observe its Goldstone and Higgs spin-wave modes at room temperature using microwave and optical techniques.
This simple system constitutes a particularly convenient platform for further exploring the dynamics of symmetry
breaking.

DOI: 10.1103/PhysRevB.105.094444

I. INTRODUCTION

Upon spontaneous symmetry breaking, a system organizes
itself in a state with a lower symmetry than that of its consti-
tuting entities, as exemplified by superconducting, magnetic,
or incommensurate structural phases [1,2]. According to the
Landau theory, such a transition is conveniently visualized by
defining an order parameter ψ and following the morphology
of the free-energy surface E (ψ ) [3]. This is illustrated in
Fig. 1(a) for a system with U (1) symmetry, where ψ is a com-
plex number (or, equivalently, a two-dimensional real vector).
In the high-symmetry phase, E presents a single minimum at
ψ = 0. Upon driving the system through the transition, the
curvature around this point decreases, reaches zero at the crit-
ical point, and then changes sign. In the low-symmetry phase,
the energy surface eventually takes the shape of a Mexican
hat with a degenerate minimum extending over a circle of
radius |ψ | = ψ0. The system has to “choose” a phase arg(ψ ),
which constitutes the symmetry break. This particular energy
landscape gives rise to characteristic low-frequency dynamic
modes, conveniently viewed as the oscillations of a mass
moving on such a surface [1]. Upon driving the system from
the high-symmetry phase, the oscillations around the ψ = 0
minimum [blue arrow in Fig. 1(a)] are expected to soften
gradually, reach zero frequency at the critical point, and sub-
sequently split in two, a zero-frequency mode with azimuthal
trajectory along the rim and a nonzero-frequency mode with
radial trajectory across the rim [solid and dashed red arrows
in Fig. 1(a), respectively]. These two modes, referred to as
Goldstone and Higgs modes, respectively, dominate the whole
dynamics of the low-symmetry phase, but also its coupling
to external degrees of freedom, in particular, gauge ones.
Originally explored in the context of superconductivity, the
latter is of particular importance for particle physics, as the

finite masses of the W and Z weak bosons can only be ex-
plained by their coupling to the symmetry-breaking Higgs
field [4,5].

Although these dynamics are of crucial interest, their
direct observation is a serious challenge as it requires
driving the system through the transition while keeping
experimental access to the relevant low-frequency excita-
tions, particularly prone to overdamping due to defects and
thermal/quantum microscopic fluctuations [2,6]. This diffi-
culty could be avoided in low-temperature inelastic neutron
scattering studies of very specific pressure-induced struc-
tural and magnetic transitions [7,8]. More recently, it was
proposed to use artificial systems, namely ultracold boson
lattices, which can be driven through a quantum phase transi-
tion, their excitations being characterized via real-time optical
spectroscopy [9,10].

In this paper, we show that an archetypal system of mi-
cromagnetism, the so-called magnetic weak stripes, allows
for a room-temperature observation of the Higgs/Goldstone
dynamics by inelastic light scattering and microwave spec-
troscopy. Magnetic weak stripes consist of a field-tunable
modulation at a mesoscopic scale occurring in ferromag-
netic films possessing a moderate perpendicular magnetic
anisotropy [11]. The stability of this texture was predicted in
the early days of theoretical micromagnetism [3,12–14], and
later confirmed by static magnetic imaging [15,16]. Several
studies have explored the corresponding dynamics evidencing
a complex set of vibration modes varying to a very large
extent with the magnetic parameters of the film and upon
application of a control magnetic field. Initially described
within local resonance models (domain/domain-wall reso-
nance) [17–19], this complex phenomenology has recently
been rephrased in the vocabulary of magnonics, as a complex
set of spin-wave modes localized/scattered by the periodic
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FIG. 1. (a) Sketch of the characteristic dynamic modes associated with U (1) symmetry breaking. The blue arrow shows the degenerate
modes in the high-symmetry phase (yellow potential surface). The solid and dashed red arrows show the Goldstone and Higgs modes in the
low-symmetry phase (sombrero-shaped blue potential surface). (b) Magnetization loop measured for our 180-nm Co40Fe40B20 film with a
magnetic field H in the plane. (c) Magnetic force microscopy image of the weak stripe magnetic texture existing below the critical field Hc

(shown here at remanence). The white arrow shows the direction of the previously applied field. (d) Sketch of the three-dimensional normalized
magnetization distribution M(x, y, z)/MS within the weak stripe texture, together with its minimal description in terms of a U (1) symmetry
breaking, with associated amplitude |ψ | and phase arg(ψ ) = k δ (see details in the text).

modulation [20–22]. Moving ahead in that direction, we pro-
vide here a unified description of both statics and dynamics of
magnetic stripes based on the identification of a specific spin-
wave mode which, upon stripe nucleation, softens and then
splits into a Goldstone/Higgs pair. For this purpose, we first
formulate an elementary analytical model of the stripe statics
and related spin-wave dynamics based on the Landau theory
of phase transitions. Then, we report inelastic light scattering
measurements conducted down to spin-wave wavelength of
the order of the modulation period for different points across
the critical region. Confronting them with complementary
ferromagnetic resonance measurements and micromagnetic
simulations, we arrive at a global picture of the low-frequency
dynamics related to such symmetry breaking.

II. RESULTS

The system studied consists of an amorphous Co40Fe40B20

film of thickness D = 180 nm deposited on intrinsic silicon
and initialized by applying a saturating magnetic field H in the
film plane. Upon reducing the magnitude of the field below
about 12 mT, the average magnetization of the film starts
to decrease in a roughly linear fashion [Fig. 1(b)]. In this
regime, magnetic force microscopy allows one to identify a
modulation periodic in one dimension with a wave number of
about 2π/(300 nm) = 21 rad/μm [Fig. 1(c)] [23], identified

with the archetypical magnetic weak stripes arising in films
which possess a moderate perpendicular magnetic anisotropy
K [11]. In the following, we shall revisit this texture from the
point of view of its dynamics. For this purpose, we start by de-
scribing a minimal model for stripe nucleation, as sketched in
Fig. 1(d). The mechanism consists of a competition between
the in-plane magnetic field H , which tends to maximize the
component of the magnetization distribution M(x, y) along
its direction ẑ (the system is assumed to be invariant along
z), and the perpendicular magnetic anisotropy, which tends to
maximize its (out-of-plane) y component. The inhomogeneity
of the texture is induced by the dipolar interaction. In order
to avoid the large demagnetizing energy density that would
be associated with a uniform out-of-plane excursion of mag-
netization (μ0

2 M2
y , μ0 being the permeability of vacuum), the

latter favors an alternation of sign of My in the film interior,
along the transverse direction x, together with a closure of
the resulting magnetic flux via quadrature sign changes of the
transverse component Mx at both film surfaces. Finally, the
overall distribution is smoothed out by the exchange energy
density A∇2M, where A is the exchange stiffness constant.
For the magnetic parameters of our film (MS = 1330 kA/m,
K = 32.7 kJ/m3, A = 16.6 pJ/m) [24–27] the comparison of
the different energy scales deduced from a dimensional anal-
ysis μ0M2

S � K ∼ A
D2 suggests the use of a stray-field-free

ansatz of the magnetization distribution, which cancels the
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dominant demagnetizing energy while reducing the magnetic
anisotropy contribution with respect to an in-plane saturated
state. Following Hubert [28], we write this ansatz as a com-
bination of two sinusoidal functions in quadrature with each
other:

M
MS

(x, y) = |ψ |
{

sin [k(x − δ)] sin
(πy

D

)
x̂

+ kD

π
cos [k(x − δ)] cos

(πy

D

)
ŷ
}
. (1)

This ensures the vanishing of both surface magnetic
charges [My(y = ±D/2) = 0] and volume magnetic charges
( ∂Mx

∂x + ∂My

∂y = 0). Here, k is the wave number of the mod-
ulation (k = 2π/λ for which we will select later the value
minimizing the total energy). With the two other parameters
defining the modulation, namely its amplitude |ψ | (taken as
the maximum in-plane excursion of the magnetization) and
its lateral positioning δ [measured with respect to an arbi-
trary reference point—see Fig. 1(d)], we build a complex
number ψ = |ψ |eikδ that we identify with the order parame-
ter of the stripe texture. Then, following Landau theory [3],
we develop the spatially averaged magnetic energy density
〈E〉 = E0 + a(k, H )|ψ |2 + b(k, H )|ψ |4 + O(|ψ |6), the terms
with odd powers being zero by symmetry (see Supplemen-
tal Material [24] and Refs. [29,30] therein for details). This
simple form allows us to derive an analytical estimate of the
field and wave number at the critical point (μ0Hc = 2 K

MS
−

4 π
√

A K
D Ms

= 10.5 mT, kc = π
D

√
2 K+μ0MSHc

2 K−μ0 MS Hc
= 21.6 rad/μm, re-

spectively, as deduced from the conditions a = ∂a
∂k = 0), and

the modulation amplitude below nucleation ψ0 =
√

−a(kc,H )
2 b(kc,H ) .

Despite its simplicity, this explicit model captures most of the
physics of the weak stripes observed experimentally. Despite
a small underestimate of critical field of 1.3 mT, it is also in
good agreement with micromagnetic simulations [24].

Our minimal model of stripe nucleation forms the skeleton
of a description of the spin-wave dynamics in this regime:
We place ourselves in the saturated state and consider a plane
wave of angular frequency ω and wave number k propagating
along x̂, m(y) ei(ωt−kx) [spin-wave configuration referred to as
Damon-Eshbach, Fig. 2(a)] [34]. Its complex amplitude distri-
bution m(y) is written as a linear combination of four vector
functions: the two functions sin(πy/D)x̂ and cos(πy/D)ŷ ap-
pearing in the static ansatz of Eq. (1) and two extra ones
sin(πy/D)ŷ and cos(πy/D)x̂ obtained through a local 90◦
rotation and necessary for describing the precession of the
magnetization. Unlike the former, the latter pair of functions
carries magnetic pseudocharges [Fig. 2(a)], so that the preces-
sion will lead to sizable stray fields. We identify the associated
demagnetizing energy with a kinetic energy, which, combined
with the potential energy 〈E〉 described above, will determine
the mode frequency, in analogy with the Döring mass term
of magnetic domain-wall dynamics [11]. More specifically,
we shall project the linearized equation of motion of the
magnetization, iωm = γ MS ẑ × ∂E

∂m , where γ is the gyromag-
netic ratio, onto this basis set and diagonalize the resulting
4 × 4 matrix [Eq. (S9)] to obtain eigenfrequencies and eigen-
modes [35]. The spin-wave dispersion relation ω(k)/(2 π )
obtained for the lowest-frequency mode is shown in the top

FIG. 2. (a) Sketch of the Damon-Eshbach geometry, magne-
tization precession (black ellipses), and basis functions used for
modeling (red and blue bars). The thin bars can be combined to
form the stray-field-free ansatz of Eq. (1), while the thick bars, or-
thogonal to them, carry nonzero magnetic pseudocharges, as shown
at the bottom of the film. (b) Spin-wave dispersion relations calcu-
lated analytically using the basis of (a) (see details in the text and
Refs. [24,31–33]), for an external field of 30, 20, 14, 11, 9, and
7 mT. For the last two values, the saturated state is unstable, and
the spin-wave frequency becomes imaginary over a certain range of
wave numbers (see the distinct vertical scale at the bottom of the
graph). (c), (d) Color maps of the Brillouin light scattering intensity
measured as function of the transferred wave vector [scattering ge-
ometry shown by the green arrows in (a)] and transferred frequency
f under an external field of μ0H = 30 and 14 mT, respectively. The
lines show the calculated soft mode frequency [same as in (b)].

panel of Fig. 2(b) for different values of the applied field.
Far above nucleation, one distinguishes clearly a nonmono-
tonic wave-vector dependence with a minimum frequency at
a nonzero wave vector of about 21 rad/μm. This minimum
constitutes the dynamic precursor of stripe nucleation: Its
wave number is the critical one kc of the stripe modulation and
its frequency tends to zero as H approaches Hc. This allows us
to reinterpret stripe domain nucleation as the freezing of the
lowest-frequency spin wave of the system [36].

To observe this characteristic mode softening, we now
resort to Brillouin light scattering (BLS), an inelastic light
scattering technique capable of probing thermally excited spin
waves over a broad range of wave vectors. The measurement
geometry is sketched in Fig. 2(a): The film is illuminated
with a laser beam under an angle of incidence θi in the pres-
ence of a magnetic field H perpendicular to the incidence
plane. The backscattered light is collected and frequency an-
alyzed with a high finesse Fabry-Pérot interferometer. Due to
the conservation of energy and in-plane linear momentum,
the frequency shift of the scattered light and the transferred
wave vector [k = 4π/λlaser sin(θi )] are to be identified with
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those of the quasiparticles absorbed/emitted during the scat-
tering process. In our case, these are the spin waves which
couple to light via magneto-optical effects [37].

Figure 2(c) shows a color plot of the spectra recorded in the
saturated state with μ0H = 30 mT for different transferred
wave vectors, thus providing a direct picture of the spin-wave
dispersions, up to a wave vector of about k = 18 rad/μm.
One recognizes clearly three spin-wave branches. The two
highest ones with nearly constant frequency can be assigned
to perpendicular standing spin waves with an increasing num-
ber of nodal planes across the film thickness [24,38]. On
the other hand, the lowest-frequency branch clearly shows
a negative group velocity (frequency decreases as the wave
vector increases) for a wave vector above a few rad/m,
which fits very well with the dispersion relation calculated
for the stripe precursor mode (red line). This negative ve-
locity can appear surprising at first glance since spin waves
in the Damon-Eshbach configuration normally have positive
group velocity [34]. However, it was already observed in the
presence of a perpendicular magnetic anisotropy [20] and it
finds a natural explanation here: The perpendicular magnetic
anisotropy favors the out-of-plane component of the magne-
tization precession with respect to the in-plane one, which
allows for a certain degree of dipolar field cancellation at
sufficiently short length scale. Decreasing the field to 14 mT,
i.e., about 2 mT above stripe nucleation, leads to a clear fre-
quency decrease [Fig. 2(d)], which can be extrapolated to a
perfect softening at (kc, Hc). Let us now examine the spin-
wave dispersion below nucleation. Symbols in Fig. 3(a) show
the positions of the Brillouin light scattering peaks measured
at 7 mT (see raw data in Fig. S5 in the Supplemental Ma-
terial). We distinguish clearly two branches. The frequency
of the bottom one decreases rapidly as a function of wave
number down to an extrapolate f ∼ 0 at kc. The frequency of
the top one decreases much slower and extrapolates to a value
of about 3.5 GHz at kc. To help interpret these observations,
we have performed MUMAX3 finite-difference micromagnetic
simulations [39] of spin-wave propagation. Figures 3(a)–3(c)
show color plots of the amplitude spectral density obtained
upon Fourier transforming the spatiotemporal evolution of the
surface magnetization following a localized pulse excitation
(see Supplemental Material [24]) for field values of 7, 10, and
11.7 mT, respectively. Right below nucleation [Fig. 3(c)], one
distinguishes a secondary branch with a nonzero minimum
frequency emerging from the characteristic (k, f ) = (kc, 0)
cusp. Upon reducing further the field, the minimum frequency
of this secondary branch gradually increases, while the main
branch remains soft [Fig. 3(b)]. These two branches account
very well for the measured inelastic peak positions [Fig. 3(a)].
This phenomenology can be understood as the mesoscopic
counterpart of the one occurring at the microscopic level
for charge density waves [40] and incommensurate dis-
placive phases [7] whose nucleation is also described by
the softening of a dynamic mode which splits into ampli-
tude and phase modes upon symmetry breaking. Figures 3(d)
and 3(e) show maps of the out-of-plane component of the
dynamic magnetization my(x, y) at kc for these two branches,
together with the distribution of the transverse static magneti-
zation, sketched as a vector plot. One clearly recognizes two
similar patterns phase shifted by π/2. For the zero-frequency
mode, the antinodes of the dynamic magnetization are aligned

FIG. 3. (a)–(c) Color plot of the simulated spin-wave spectrum
amplitude density as a function of wave vector and frequency, for
a field of 7, 10, and 11.7 mT, respectively. In (a), the positions of
the measured Brillouin light scattering peaks are reported as circles
and squares and the Higgs mode frequency determined analytically is
shown as a star. (d) Color plot of the distribution of the out-of-plane
component of the dynamic magnetization for the Goldstone mode
[k = kc, f = 0.1 GHz in (b)]. The vector plot shows the distribution
of the transverse magnetization of the underlying static stripe mod-
ulation. (e) Same for the Higgs mode [k = kc, f = 3.5 GHz in (b)].
The green arrows sketch the motion of the stripe structure, namely
a rigid displacement and an amplitude oscillation in (d) and (e),
respectively. (f) Color plot of the microwave absorption measured
in the stripe phase as a function of field and frequency, for the longi-
tudinal pumping geometry sketched in the inset. (g) Color plot of the
Brillouin light scattering intensity measured in the saturated phase
as a function of field and frequency for a transferred wave vector
kc = 21 rad/μm. The solid and dashed lines in (f) and (g) show the
soft/Higgs mode frequency extracted from our analytical approach
(see details in the Supplemental Material [24] and Ref. [41] therein)
and from micromagnetic simulations, respectively. The (min, max)
values for color plots are (4,20), (−1, −18) × 10−3, and (100,300)
for (a)–(c), (f), and (g), respectively.

with the nodes of the static distribution [Fig. 3(d)]. In contrast,
for the nonzero-frequency mode, dynamic and static antinodes
are aligned with each other [Fig. 3(e)]. The evolution with re-
spect to the spectrum above saturation is explained as follows:
The phase transition being second order, the overall spin-wave
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spectrum changes smoothly upon stripe nucleation. The soft
spin waves actually adapt in the form of intensity modulations
in phase or in quadrature with respect to the nucleated texture.

We shall now identify these two types of modulations
with the Goldstone and Higgs modes of the stripe texture.
According to Fig. 1(a), in the low-symmetry phase, one
should distinguish phase oscillations δ = δ0 + δ1 cos(ωt ) and
amplitude oscillations |ψ | = ψ0 + ψ1 cos(ωt ). As these time
oscillations occur around an equilibrium which is oscillating
in space (e.g., My(x, 0) ∝ cos[kc(x − δ0)]), they correspond
to nonzero wave-number spin waves. More precisely, the dy-
namic magnetization profiles (e.g., δ1

∂My

∂x (x, 0) ∝ sin[kc(x −
δ0)] and ψ1My(x, 0) ∝ cos[kc(x − δ0)]) can be interpreted as
two standing-wave patterns formed by the interference be-
tween counterpropagating spin waves with k = ±kc and a
well-defined phase difference of 0 or π/2 with respect to
the equilibrium modulation. This corresponds exactly to the
modal distributions of Figs. 3(d) and 3(e), to be identified
with the Goldstone and Higgs modes, respectively. The zero
frequency of the former is associated with the translation
invariance of the whole stripe texture: The total energy is
exactly the same whatever the value of the lateral shift δ

in Fig. 1(d), as already noticed by Ref. [20]. The nonzero
frequency of the Higgs mode arises from the finite curvature
of the energy potential along the radial direction. We can eval-
uate this frequency via a suitable extension of the description
of the dynamics above saturation [7,10]. From the expression
of the Landau potential, it can be shown that the positive

curvature around the stable equilibrium value ψ0 =
√

−a
2 b is

related to the negative curvature around the unstable equi-
librium value ψ = 0, namely ( ∂2E

∂|ψ |2 )ψ0 = −2( ∂2E
∂|ψ |2 )0. Then,

we can write the frequency of the amplitude mode as ω ∝√
∂2E
∂|ψ |2

∂2E
∂τ 2 , where ∂2E

∂τ 2 is a “kinetic” term accounting for the

extra energy generated by magnetization precession (Fig. S3
in the Supplemental Material [24]). This is essentially a strong
demagnetizing contribution [Fig. 2(a)] which does not depend
on the subtle energy balance that governs nucleation. It can
therefore be assumed to be the same at |ψ | = 0 and ψ0.
Accordingly, we obtain ω|ψ0 = −i

√
2ω|0, which allows us to

relate the frequency of the Higgs mode in the low-symmetry
phase to the growth rate of the unstable mode in a ficti-
tious high-symmetry state below nucleation. Using the growth
rate calculated from our spin-wave ansatz [bottom panel in
Fig. 2(b)], we obtain the value shown as a star in Fig. 3(a), in
good agreement with the numerical simulations.

To characterize directly the approach towards the critical
point from both sides, we finally combine two techniques
[Figs. 3(f) and 3(g)]. The mode softening in the saturated
phase (H > Hc) is followed by Brillouin light scattering,
placing ourselves exactly at kc [Fig. 3(g)]. There, one dis-
tinguishes clearly a gradual drop which follows precisely
the characteristic softening predicted for the precursor mode
by our analytical approach (solid line) or by micromagnetic
simulations (dashed line). This technique becomes less effi-
cient in the stripe phase because of the dephasing induced
by inhomogeneities of the stripe phase across the several
tens of μm of the focal spot of the laser. This results in a
sizable drop of the light scattering signal at high wave num-
bers [Fig. S5(b) in the Supplemental Material [24]]. Rather,

we resort to another technique able to probe the stripe tex-
ture in a scalar way [42] (i.e., regardless of the phase of
the nucleated texture [6]), namely ferromagnetic resonance
under longitudinal pumping. The measurement configuration
is shown in the inset of Fig. 3(f). The film is placed on
top of a broadband transmission line [see Fig. S6(a) in the
Supplemental Material [24] and Ref. [43] within it for de-
tails], which generates a (mostly in-plane and homogeneous)
microwave magnetic field h1, the static field H being oriented
parallel to it. This can be viewed as an analog of the lattice
depth modulation technique used in cold atom systems [9]:
During a microwave cycle, the pumping field alternatively
increases and decreases the total external field, which trans-
lates into an oscillation of the Zeeman energy and, in turn,
into an oscillation of the amplitude of the order parameter.
Figure 3(f) shows the imaginary part of the effective magnetic
susceptibility χeff of the loaded transmission line (which is
proportional to the microwave absorption coefficient) as a
function of both the microwave frequency and the static field
intensity. One recognizes clearly a strong absorption feature
below Hc, with a frequency increasing from about 1.5 GHz,
in good agreement with the frequency upturn predicted by
our analytical approach (solid line) and simulations (dashed
line) [44]. This absorption is associated to the excitation
torque M(x, y) × h1 which is zero in the saturated state but in-
creases gradually below nucleation due to the transverse static
components of the stripe modulation (M ⊥ h1). This allows
us to shed light onto previous experiments of ferromagnetic
resonance in stripe domains, traditionally interpreted in terms
of distinct domain and domain-wall resonances [17–19,21].
Our analysis indicates that the mode probed by longitudinal
pumping corresponds to a spin wave already present in the
saturated state at k = kc and made accessible to a k = 0 exper-
iment by a Bragg scattering process induced by the nucleated
texture.

III. CONCLUSION

To conclude, we show that both the close-to-nucleation
statics and the low-frequency dynamics of magnetic stripe
domains are entirely determined by the specific behavior of
flux-closure Damon-Eshbach spin waves around a certain
wave vector kc. The evolution of the whole spin-wave dis-
persion upon the high- to low-symmetry transition can be
analyzed in universal terms invoking the softening of the
low-frequency spin-wave branch, its freezing in the form of
the translation-symmetry-breaking static stripe modulation,
and its subsequent splitting into a Goldstone and a Higgs
branch. The identified intimate relationship between the stat-
ics and the dynamics of a magnetic texture is a generic feature
that could be taken advantage of in future developments
of magnonics [22,45–48]. More importantly, the described
system constitutes a particularly simple and explicit imple-
mentation of the dynamics around symmetry-breaking phase
transitions, paving the way for further exploration, includ-
ing time-resolved imaging studies, extension to the nonlinear
regime, or the quest for a possible Higgs-Anderson mecha-
nism for magnons.
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