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Phenomenological theory of the magnetic 90◦ helical state

A. E. Koshelev
Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA

(Received 10 September 2021; revised 31 January 2022; accepted 14 March 2022; published 30 March 2022)

We explore a phenomenological phase diagram for the magnetic helical state with 90◦ turn angle between
neighboring spins in the external magnetic field. Such a state is formed by the Eu spin layers in the supercon-
ducting iron arsenide RbEuFe4As4. The peculiarity of this spin configuration is that it is not realized in the
standard Heisenberg model with bilinear exchange interactions. A minimum model allowing for such a state
requires the biquadratic nearest-neighbor interaction term. In addition, in tetragonal materials, the 90◦ helix state
may be stabilized by the in-plane fourfold anisotropy term, which also fixes helix orientation with respect to the
crystal lattice. Such a system has a very rich behavior in the external magnetic field. The magnetic field induces
the metamagnetic transition to the double-periodic state with the moment angles (α, α, −α, −α) with respect to
the field for the four subsequent spins. The transition field to this state from the deformed helix is determined
by the strength of biquadratic interaction. The transition is second-order for small biquadratic coupling and
becomes first-order when this coupling exceeds the critical value. On the other hand, the aligned state at high
magnetic field becomes unstable with respect to the formation of an incommensurate fan state, which transforms
into the double-periodic state with decreasing magnetic field. The range of this incommensurate state near the
saturation field is proportional to square of the biquadratic coupling. In addition, when the magnetic field is
applied along one of four the equilibrium moment directions, the deformed helix state experience the first-order
rotation transition at the field determined by the fourfold anisotropy.

DOI: 10.1103/PhysRevB.105.094441

I. INTRODUCTION

Several magnetic materials have noncollinear helical
ground states, in which spins ferromagnetically align within
layers but rotate from layer to layer at a finite angle around the
helix axis. In materials without inversion symmetry, such as
MnSi [1], FeGe [2], and Fe1–xCoxSi [3,4], these helical config-
urations are caused by Dzyaloshinskii-Moriya interaction and,
due to the weakness of this interaction, the structure period is
very large. Helical states are also realized in materials with
inversion symmetry, such as EuNi2As2 [5,6] and EuCo2P2

[7,8]. In this case, they emerge due to competing exchange
interactions [9–12]. The simplest case is the next-nearest-
neighbor classical Heisenberg model described by the energy
functional

E = −
∑

n

(Jz,1snsn+1 + Jz,2snsn+2)

= −
∑

n

[Jz,1 cos(φn+1 − φn) + Jz,2 cos(φn+2 − φn)], (1)

where sn = (cos φn, sin φn, 0) is the unit in-plane vector
along the spin direction in nth layer. For this model, the
ground helical state φ(0)

n = Qn is realized for the relation
between the exchange constants Jz,2 < −|Jz,1|/4 with cos Q =
−Jz,1/(4Jz,2) [9–12]. In metallic magnets, the frustration
may be caused by the oscillating interaction between spins
mediated by conduction electrons, known as Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction. A special case of
helical magnetism is predicted in superconducting ferromag-
nets [13–16], where the origin of frustration is the competition

between the normal and superconducting RKKY interactions.
Experimentally, a helical magnetic state has been established
in the nickel borocarbide HoNi2B2C [17,18]. Such a state
may also realize in superconducting compound ErRh4B4

[13,19].
Recently, the helical magnetic state has been found in the

superconducting iron pnictide RbEuFe4As4 [20,21]. In this
state, the Eu moments align ferromagnetically in Eu layers
and rotate 90◦ from layer to layer. Such 90◦ helix state is
unique, because it does not exist within the above simple
Heisenberg exchange model [11] and its stabilization requires
spin interactions beyond common bilinear terms. Indeed,
in the above framework, formally, the 90◦ helix, Q = π/2,
is supposed to realize when the nearest-neighbor constant
vanishes, Jz,1 = 0, and the next-nearest-neighbor constant is
negative, Jz,2 < 0. However, in this case, the interaction be-
tween two sublattices composed of odd and even spin layers
is absent so that the energy is degenerate with respect to
relative rotation of these sublattices [12,22]. The 90◦ helix
is only one of such states corresponding to the orthogonal
orientation of the sublattices moments. Adding interactions
with more remote layers does not resolve this issue. Therefore
the stabilization of the 90◦ helical state requires inclusions
of nonconventional spin interactions. The simplest such inter-
action is the nearest-neighbor biquadratic term Jz,b(snsn+1)2.
It breaks rotational degeneracy between two sublattices and,
when the interaction constant is positive, Jz,b > 0, favors 90◦
helix.

Biquadratic spin interactions between local magnetic mo-
ments were considered before in different situations. Such
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interaction was first introduced in Ref. [23] to describe the in-
teraction between Mn2+ moments inside MgO crystal. Later,
the presence of the biquadratic interaction has been exper-
imentally established in the Fe-Cr-Fe sandwiches [24,25].
In particular, for certain thicknesses of interlayer Cr, this
interaction leads to the perpendicular orientation of the mag-
netization in two Fe films. After this discovery, the presence
of the biquadratic interaction has been demonstrated in many
other sandwich structures, see review [25] and references
therein. More recently, the biquadratic term was introduced
to explain unusual “up-up-down-down” magnetic structure in
several manganites, such as HoMnO3 [26]. Contrary to 90◦
helix, such double-periodic state is realized for negative Jz,b.
The most straightforward intrinsic origin of the biquadratic
coupling between magnetic moments in metallic systems is
the higher-order expansion terms of the energy with respect
to the exchange interaction between the moments and con-
duction electrons, see, e.g., Refs. [27,28]. Other mechanisms
for this coupling were also theoretically proposed for different
physical systems [26,29,30].

Biquadratic interactions are also likely are relevant for
the magnetic properties of iron pnictides. For example, the
biquadratic coupling between the Fe spins has to be taken

into account to explain the domain-wall structure and the
spin-wave spectrum in the stripe antiferromagnetic state in
FeAs layers [31]. The biquadratic coupling between Eu and Fe
spins in EuFe2As2 has been also introduced in Refs. [32,33]
to model magnetic detwinning. Therefore the assumption of
a noticeable biquadratic interaction between Eu spin lay-
ers in RbEuFe4As4 does not look too exotic. The vanishing
of nearest-neighbor exchange in this material may be the
result of an accidental compensation of the normal and su-
perconducting contributions to the RKKY interaction [34].
The biquadratic term is most likely caused by the interaction
between spins mediated by superconducting electrons.1

In the model with only bilinear and biquadratic exchange
interactions, the energy is degenerate with respect to helix
rotation. This continuous degeneracy is eliminated by the
fourfold crystal anisotropy term, −K4(s4

x,i,n + s4
y,i,n). In addi-

tion, such anisotropy term locks Q = π/2 state within a finite
range of the small next-neighbor exchange constant Jz,1, see
Appendix A. Nevertheless, since the 90◦ helix only exists if
Jz,1 is small, for simplicity, we assume that Jz,1 = 0 in the
main text. Therefore the 90◦ helical state in the magnetic field
applied perpendicular to the helix axis can be described by the
following energy functional

E =
∑

n

[
|Jz,2|snsn+2 + Jz,b(snsn+1)2 + K4

(
s4

x,n + s4
y,n − 3

4

)
− μHsn

]

=
∑

n

[
|Jz,2| cos(φn+2 − φn) + Jz,b cos2(φn+1 − φn) + K4

4
cos(4φn) − μH cos(φn − θ )

]
, (2)

where μ = gμBS is the magnetic moment, S is the spin, and
θ is the in-plane angle of the external magnetic field H =
H (cos θ, sin θ, 0). At zero field, the ground state of this model
is given by the 90◦ helix with one of the spins oriented at 45◦
with respect to the x axis. As other spirals, the ground state is
chiral and degenerate with respect to the direction of rotation,
i.e., the spiral can be either right or left hand.

The goal of this paper is to investigate the magnetic phase
diagram following from the energy functional in Eq. (2). The
overall behavior for this model is fully determined by the two
dimensionless parameters, rb = Jz,b/|Jz,2| and k4 ≡ K4/|Jz,2|,
both of which are expected to be small. We also introduce the
reduced magnetic field h̃ = μH/|Jz,2|. The equilibrium spin
angles φn determine the magnetization per spin, m = 〈cos φn〉.
In real units, it determines the bulk magnetization normalized
to its saturation value, m = M/Msat, with Msat = μnM , where
nM is the bulk density of the moments.

A detailed investigation of helical magnetic structures with
different commensurate modulation wave vectors Q within the
Heisenberg model in Eq. (1) has been performed in Ref. [12].

1One can expect that the superconducting subsystem enhances
the higher-order interactions between the local moments, since
Cooper pairing is sensitive to the exchange field. For the super-
conducting energy, the expansion parameter is the ratio exchange
field/superconducting gap.

A small magnetic field applied perpendicular to the helix
axis distorts the helix. With further increase of the field,
the distorted helix transforms into the fanlike structure with
φn = φmax sin[(n + α)Q] first proposed in Ref. [9]. The nature
of this transformation is determined by the modulation wave
vectors Q and several different scenarios may be realized [12].
For long-wave structures with Q < 4π/9, the first-order tran-
sition takes place at a certain transition field Ht , at which the
magnetization jumps. In the range 4π/9 < Q < π , the behav-
ior is not universal. Typically, the transformation occurs as a
smooth crossover but at several commensurate values of Q
either first- or second-order phase transitions take place. The
fan state exists until the magnetic field reaches the saturation
field, at which the fan angle φmax vanishes.

We will see that the phase diagram of 90◦ helix following
from Eq. (2) is very rich and has both similarities with and
differences from other magnetic spiral structures. The main
findings of this paper can be summarized as follows. (i) Small
magnetic field distorts the helix and induces phase transition
into the double-periodic state, in which the four subsequent
spins form the angles (α, α, −α, −α) with respect to the
field. This state is actually a particular case of a commensu-
rate fan [12]. At small biquadratic coupling, this transition is
continuous and it becomes first order when the biquadratic
coupling exceeds a certain critical value. (ii) The saturated
state at high magnetic fields becomes unstable with respect to
the incommensurate-fan state with decreasing field. This state
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occupies the field range proportional to the biquadratic cou-
pling squared and transforms into the double-periodic state
when magnetic field decreases below certain level. (iii) For
the finite in-plane fourfold anisotropy and the magnetic field
applied along one of the four easy-axis directions, there is an
additional small-field first-order phase transition correspond-
ing to 45◦ rotation of the helix.

The paper is organized as follows. In Sec. II, we investi-
gate the phase diagram of the rotationally-degenerate model
with k4 = 0, which is determined by only one parameter rb.
We find the transition field to the double-periodic state as
a function of this parameter and evaluate the value of rb

above which the transition becomes first order. Analyzing
the same system at high magnetic fields, we find that the
incommensurate-fan state emerges below the saturation field.
We evaluate the transition field between this state and the
double-periodic state. We also compute the field dependences
of the magnetization for different rb and find its features at the
transition points. In Sec. III, we study the model with finite
fourfold anisotropy which fixes helix orientation and sets four
easy-axis directions. We investigate the phase diagrams and
the magnetization for the magnetic field applied along the
two symmetry directions, along the equilibrium spin orien-
tation and at 45◦ with respect to this direction. In particular,
for the former field orientation, we investigate the first-order
helix-rotation transition. Finally, we summarize and discuss
the obtained results in Sec. IV.

II. ROTATIONALLY-DEGENERATE SYSTEM
WITHOUT FOURFOLD ANISOTROPY

Before the investigation of the full model described
by Eq. (2), we consider a simpler model without four-
fold anisotropy, K4 = 0, corresponding to a rotationally-
degenerate helix. In this case, the magnetic response is
controlled by one reduced parameter rb. In general, the
equilibrium configuration of the spin angles φn obeys the
equations

sin(φn+2 − φn) + sin(φn−2 − φn)

+ rb(sin[2(φn+1 − φn)] + sin[2(φn−1 − φn)])

+ h̃ sin(φn − θ ) = 0. (3)

If we assume that the four-spin periodicity is maintained in
the magnetic field, φn+4 = φn then Eq. (3) gives four nonlinear
equations for the four phases with n = 0, 1, 2, and 3. Further
analysis shows that for small rb the four-spin periodicity is
maintained in the most part of the phase diagram but is vio-
lated near the saturation field.

The magnetic field breaks down the rotational degeneracy
of the helix. In the energy expansion with respect to the
magnetic field h̃, the quadratic term is isotropic with respect
to the field orientation, while the quartic term, in addition
to an isotropic contribution, has also the angle-dependent
part proportional to h̃4(cos4 ϑh + sin4 ϑh), where ϑh is the
angle between the field and one of the equilibrium moment
directions. The favorable helix orientation is determined by
the sign of the coefficient in front of this term. To find this
equilibrium helix orientation at a small magnetic field, we
compare the energies for two symmetric orientations shown

in Fig. 1, which we refer to as deformed 45◦ helix (45DH)
and deformed 0◦ helix (0DH) shown in the upper and lower
3D picture, respectively. The energy difference between these
orientations determines the coefficient in the above angle-
dependent quartic term in the energy expansion.

For the 45◦ helix, the four angles φn are determined by only
two independent angles α and β, see the left picture in the
upper part of Fig. 1,

φ0 = α, φ1 = −α, φ2 = π + β, φ3 = π − β, (4)

and at zero field, we have α = β = π/4. The reduced energy
per spin, Es = Elay/N |Jz,2|, for this state

Es(α, β ) = − cos(β − α)

+ rb

4
[cos2(2α) + cos2(2β ) + 2 cos2(β + α)]

− h̃

2
(cos α − cos β ) (5)

yields the equations for the equilibrium angles α and β

2 sin(β − α) + rb(sin(4α) + sin[2(α + β )]) − h̃ sin α = 0,

(6a)

2 sin(β − α) − rb(sin(4β ) + sin[2(α + β )]) − h̃ sin β = 0.

(6b)

These two angles determine the reduced magnetization per
spin,

m = (cos α − cos β )/2. (7)

Small magnetic field induces small deviations, which we
represent as α = π

4 − α+ − α−
2 , β = π

4 + α+ − α−
2 . Expand-

ing the energy with respect to the small deviations, α±, we
obtain

Es(α+, α−) ≈ −1 + 2(1 + rb)α2
+ + rbα

2
−

− 2(1 + 4rb)

3
α4

+ − rb

3
(12α2

+α2
− + α4

−)

−
√

2h̃

4

(
2α+ − α+α− − 1

3
α3

+ − 1

4
α+α2

−

)
.

(8)

Minimization of this energy gives equations for equilibrium
α±,

4(1 + rb)α+ − 8(1 + 4rb)

3
α3

+ − 8rbα+α2
−

−
√

2h̃

4

(
2 − α− − α2

+ − 1

4
α2

−

)
= 0, (9a)

2rbα− − 4rb

3
(6α2

+α− + α3
−) +

√
2h̃

4

(
α+ + 1

2
α+α−

)
= 0,

(9b)

which we expand with respect to h̃

α± =
∞∑

n=1

α
(n)
± h̃n. (10)
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FIG. 1. Spin configurations realized with increasing magnetic field for two field orientations for the model with fourfold anisotropy. The
upper sequence also describes states for the rotationally-degenerate model with k4 = 0.

A simple analysis shows that only odd α
(n)
+ and even α

(n)
− are

finite, α
(2k)
+ = α

(2k−1)
− = 0. For the expansion coefficients, we

derive from Eq. (9b)

α
(1)
+ =

√
2

8(1 + rb)
, (11a)

α
(2)
− = − 1

32rb(1 + rb)
, (11b)

α
(3)
+ =

√
2

512(1 + rb)4

[
4(1 + 4rb)

3
+ 1 + 1

rb

]
. (11c)

Substituting the expansion in Eq. (10) with these coeffi-
cients into Eq. (8), we finally obtain the energy expansion

Es(h̃) ≈ −1 − h̃2

16(1 + rb)
− 1 + 2r2

b/(1 + rb)2

1024rb(1 + rb)2
h̃4. (12)

From this result, we can also obtain the magnetization at small
fields, m = −dEs/dh̃,

m(h̃) ≈ h̃

8(1 + rb)
+ 1 + 2r2

b/(1 + rb)2

256rb(1 + rb)2
h̃3. (13)

It is characterized by the upward curvature which becomes
more pronounced at smaller rb.

Consider now the deformed 0◦ helix, see Fig. 1. This state
is determined by just one angle α as φ0 = 0, φ3 = −φ1 = α,
φ2 = π , and its energy is

Es = −1 + (1 + rb) cos2 α − h̃

2
cos α. (14)

Finding its minimum, we obtain

cos α = h̃

4(1 + rb)
, (15a)

Es(h̃) = −1 − h̃2

16(1 + rb)
. (15b)

Note that the quartic term is absent for this helix orientation.
Comparing this result with Eq. (12), we find the quartic angle-
dependent term in the energy

E (4)
s (ϑh) = C4h̃4[−1 + cos4 ϑh + sin4 ϑh]

= −2C4h̃4 cos2 ϑh sin2 ϑh

with C4 = 1 + 2r2
b/(1 + rb)2

512rb(1 + rb)2
. (16)

We see that the magnetic field breaks down the rotational
degeneracy and favors the 45◦ deformed helix state shown in
Fig. 1. From now on, we consider the evolution of this state
with increasing magnetic field.

A finite biquadratic coupling favors perpendicular orien-
tation between the moments in odd and even layers. On the
other hand, the magnetic field wants to orient the moments
in both sublattices in the same way. This means that at small
rb, one can expect a metamagnetic transition to the double-
periodic (DP) state with increasing the magnetic field with
φ3 = φ0 and φ2 = φ1, (the state in the middle of Fig. 1). Im-
portantly, a chiral nature of the state vanishes at this transition,
since the mirror image can be matched with the original spin
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configuration. We proceed with the analysis of this double-
periodic state and investigation of the transition to it.

A. Double-periodic state at high h̃

At high fields the double-periodic state is realized, in which
β = π − α, and

φ0 = φ3 = α, φ1 = φ2 = −α. (17)

Since such angle distribution can also be presented as φn =
−√

2α sin[(n − 1/2)π/2], this state formally belongs to the
family of fanlike states [12]. The energy of this double-
periodic state

Es(α, π − α) = cos(2α) + rb

2
[1 + cos2(2α)] − h̃ cos α

(18)

gives the equation for the equilibrium angle

4 cos α0[1 + rb cos(2α0)] = h̃. (19)

The limit α0 = 0 formally corresponds to saturation (the right
state in Fig. 1). This condition gives the nominal satura-
tion field h̃DP

sat = 4(1 + rb). We will show in the next section,
however, that the double-periodic state transforms into a
incommensurate-fan state with increasing magnetic field. As a
consequence, the true saturation field is somewhat higher than
the above value.

To find the stability range of the double-periodic state, we
consider a small deviation from the double periodicity, α =
α0 + ψ , β = π − α0 + ψ with ψ 	 1. The energy expansion

δE (2)
s (ψ ) =

[
−4rb cos2(2α0) + h̃

2
cos α0

]
ψ2 (20)

obtained from Eq. (5) gives the stability condition

−8rb cos2(2α0) + h̃ cos α0 > 0. (21)

Combining this equation with Eq. (19) for the equilibrium
angle, we find cos(2α0) at the instability point

cos(2α0) = − 2

1 + rb + R0
(22)

with R0 ≡
√

(1 + rb)2 + 12rb. This gives

cos α0 =
√

rb[rb + 7 + R0]1/2

1 + rb + R0
. (23)

For rb → 0, the instability angle approaches π/2.
Equations (22) and (23) allow us to obtain the analytic
result for the instability field from Eq. (19)

h̃i = 4
√

rb[rb + 7 + R0]1/2(1 − rb + R0)

(1 + rb + R0)2
. (24)

The double-periodic state is stable for h̃ > h̃i. In the limit
rb 	 1, we obtain a simple asymptotics

h̃i � 4
√

2rb, (25)

i.e., at small rb, the instability field decrease proportionally to√
rb and in this case, the double-periodic state occupies a wide

range of magnetic fields. In real units, the result in Eq. (25)
becomes Hi � 4

√
2Jz,b|Jz,2|/μ.

The instability field in Eq. (24) corresponds to a second-
order phase transition only if the coefficient c4 in the quartic
energy expansion term, δE (4)

s = 1
4 c4ψ

4, is positive. Calcula-
tions described in Appendix B give the following result for
the quartic coefficient at the instability point:

c4(rb) = 20rbu2 − (1 − u2)(1 + 15rbu)2

2(rb + u)
,

u(rb) = − cos(2α0) = 2

1 + rb +
√

(1 + rb)2 + 12rb

. (26)

The parameter c4(rb) is positive at small rb and becomes
negative at large rb. This transition between the regimes takes
place at c4(r0) = 0, giving

r0 = 5 + √
70

135
≈ 0.099 (27)

and u(r0) = (19 − 2
√

70)/3. For rb > r0 the transition be-
tween the 45DH and DP states becomes first order. In this
case, the first-order transition field exceeds the instability field
in Eq. (24).

B. Incommensurate-fan instability near the saturation field

In this section, we turn to the region of high magnetic fields
for the model with the rotational degeneracy and investigate
the instability of the aligned state. Namely, we consider the
general fanlike state

φn = ϑ sin(qn + ϕ) (28)

and find the minimum of energy with respect to the fan
amplitude ϑ , wave vector q, and, possibly, phase shift ϕ. Sub-
stituting this fan ansatz into the energy in Eq. (2) with K4 = 0,
we obtain the reduced energy per layer, Efan = E/N |Jz,2|,

Efan(ϑ, q, ϕ)

= 1

N

∑
n

{
cos[2ϑ sin q cos(nq + ϕ)]

+ rb cos2

[
2ϑ sin

q

2
cos

(
nq + q

2
+ ϕ

)]

− h̃ cos[ϑ sin(nq + ϕ)]

}
. (29)

Near the saturation, we can expand this energy with respect to
the fan amplitude ϑ ,

Efan(ϑ, q, ϕ) ≈ Efan(0, q, ϕ) + 1
2 a2(q, ϕ)ϑ2 + 1

4 a4(q, ϕ)ϑ4.

(30)
For the quadratic term, we obtain

a2(q, ϕ) = −2 sin2 q − 2rb(1 − cos q) + h̃

2

−
(

2 sin2 q + h̃

2

)
〈cos(2nq + 2ϕ)〉n

− 2rb(1 − cos q)〈cos[(2n + 1)q + 2ϕ]〉n, (31)
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FIG. 2. Magnetic phase diagram of the rotationally-isotropic
model. The dotted blue line shows instability field of the double-
periodic state, Eq. (24), which coincides with the second-order
transition line for rb < 0.099 (dash-dotted line). The dashed line
shows the low-rb asymptotics of this line, Eq. (25). The blue solid
line at higher rb shows the location of the first-order transition to the
double-periodic state. The upper red solid line shows the transition
between the saturated and incommensurate fan states. The red dotted
line shows the approximate transition line from incommensurate to
double-periodic state obtained from Eq. (42). The solid red line with
circles shows the more accurate transition line obtained by numerical
minimization of the energy in Eq. (29) with respect to the fan state
parameters. For comparison, the nominal saturation field for the
double-periodic state is shown by the brown dashed line.

where 〈. . .〉n notates the averaging over the layer index. The
last two oscillating terms average to zero unless q = π yield-
ing

a2(q) = −2 sin2 q − 2rb(1 − cos q) + h̃

2
, for q �= π.

(32)

Note that the quadratic coefficient does not depend on the
phase shift ϕ. The saturated state with ϑ = 0 is stable at given
h̃ if the coefficient a2(q) is positive for all q. The instability
first develops at the wave vector q = Q where a2(q) is mini-
mal. From Eq. (32), we immediately obtain

cos Q = − rb

2
(33)

and a2(Q) = −2(1 + rb
2 )2 + h̃

2 . For small rb, this corresponds
to a weakly incommensurate state with Q slightly larger than
π/2 and the period smaller than four layers. The instability
develops at the field

h̃sat = (rb + 2)2, (34)

or, in real units, Hsat = (2|Jz,2| + Jb)2/(μ|Jz,2|). As expected,
this field is larger than the nominal saturation field for the
double-periodic state 4(1 + rb) introduced after Eq. (19), but
the difference is quadratic in r2

b and is very small for rb < 0.5,
see Fig. 2.

To find the energy and magnetization slightly below the
instability field, we also need the quartic term in the energy

expansion, for which the derivation similar to Eq. (32) yields

a4(q, ϕ) = sin4 q + 8rb sin4 q

2
− h̃

16

+ 1

3

(
4 sin4 q + h̃

4

)
〈cos(2nq + 2ϕ)〉n

+ 32

3
rb sin4 q

2
〈cos[(2n + 1)q + 2ϕ]〉n

+ 1

6

(
2 sin4 q − h̃

8

)
〈cos(4nq + 4ϕ)〉n

+ 8

3
rb sin4 q

2
〈cos[2(2n + 1)q + 4ϕ]〉n.

In this case, the oscillating terms average to zero for q �= π
2 , π .

For such incommensurate states, we obtain

a4(q) = sin4 q + 2rb(1 − cos q)2 − h̃

16
, for q �= π

2
, π

(35)

and a4(Q) = (1 + rb
2 )4 − h̃

16 ≈ 3
4 (1 + rb

2 )4. As the quadratic
term in Eq. (32), the quartic term for incommensurate states
does not depend on the phase angle ϕ. In contrast, the quartic
term for the commensurate fan with four-layer period

a4

(
π

2
, ϕ

)
= 1 + 2rb − h̃

16
+ 1

3

(
1 − 2rb − h̃

16

)
cos(4ϕ)

(36)

does depend on ϕ. The value ϕ giving the smallest a4( π
2 , ϕ)

is energetically favorable. For 1 − 2rb − h̃/16 > 0 this min-
imum is realized at ϕ = π/4 corresponding to the double-
periodic state yielding a4( π

2 , π
4 ) = 1

3 (2 + 8rb − h̃
8 ). Near the

instability field for the commensurate state, h̃ � 4(1 + rb), the
above inequality is valid if rb < 1/3. It is important to note
that the quartic term for the four-layer-period state is smaller
than for the incommensurate state.

Minimizing the energy of the incommensurate state with
respect to the amplitude

ϑ2 = 2
[

sin2 q + rb(1 − cos q) − h̃
4

]
sin4 q + 2rb(1 − cos q)2 − h̃/16

, (37)

we obtain the energy

Efan(q) ≈ 1 + rb − h̃ −
[

sin2 q + rb(1 − cos q) − h̃
4

]2

sin4 q + 2rb(1 − cos q)2 − h̃/16
.

(38)

Near the instability, we can neglect the field dependence of the
wave vector and set q = Q yielding a simpler result

Efan(Q) ≈ 1 + rb − h̃ −
[(

1 + rb
2

)2 − h̃
4

]2

(
1 + rb

2

)4 − h̃
16

. (39)
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On the other hand, for the four-layer-period state with q = π/2, we have

Efan

(
π

2
, ϕ

)
≈ 1 + rb − h̃ −

(
1 + rb − h̃

4

)2

1 + 2rb − h̃
16 + 1

3

[
1 − 2rb − h̃

16

]
cos(4ϕ)

. (40)

For 1 − 2rb − h̃/16 > 0, the ground state is at ϕ = π/4 with

Efan

(
π

2
,
π

4

)
= 1 + rb − h̃ − 3

(
1 + rb − h̃

4

)2

2 + 8rb − h̃/8
. (41)

Even though the instability initially develops at the in-
commensurate wave vector defined by Eq. (33), with further
field decrease the four-layer-period state wins due to the
smaller quartic coefficient. At small rb, this transition takes
place at field slightly smaller than the instability field of the
double-periodic state, 4(1 + rb), within the validity range of
the small-amplitude expansion. Compare energies in Eqs. (39)
and (41), we obtain the value of the transition field in the main
order with respect to rb 	 1

h̃i−c ≈ 4(1 + rb)

− 2

(√
3

2
+ 1

)[
1 + 4

(
1 +

√
2

3

)
rb

]
r2

b . (42)

The incommensurate-fan state is realized above this field up
to the saturation field in Eq. (34). The field range of this state
decreases roughly proportional to r2

b . This transition field is
shown in Fig. 2 by dotted red line. We can conclude that
at small rb the most field range below the saturation field is
occupied by the double-periodic state. Note that the transi-
tion field in Eq. (42) is approximate because it was obtained
by the energy comparison assuming a simple periodic fan
state in Eq. (28). It is possible that the emerging state is
more complicated. The commensurate-incommensurate tran-
sition typically takes place via formation of a periodic lattice
of solitons. Nevertheless, we expect that the range of such
soliton-lattice state is very narrow meaning that the accurate
transition field should be very close to the estimate in Eq. (42).

C. Phase diagram and magnetization curves

Figure 2 summarizes the magnetic phase diagram in the
rb-h̃ plane for the model with rotational degeneracy. With
increasing field, the system transforms from the deformed 45◦
helix into the double-periodic state at the field monotonically
increasing with the ratio rb = Jz,b/|Jz,2|. At rb < r0, Eq. (27),
the transition is second order at the field in Eq. (24). At higher
rb, the transition becomes first order and the second-order-
transition line extends into the dotted instability line. The
first-order line is obtained by direct numerical comparison of
the energies in Eqs. (5) and (18) minimized with respect to the
corresponding angles.

Further increase of the magnetic field leads to the transi-
tion from the double-periodic into incommensurate fan state.
We show two approximate results for the boundary between
two states. The red dotted line shows the analytical result
in Eq. (42) valid for small rb. The solid line with circles is
obtained by numerical minimization of the energy in Eq. (29)
with respect to fan states with different amplitudes and wave

vectors. This procedure also provides independent numerical
verification that the double-periodic state has the lowest en-
ergy in the intermediate field range. Finally, at even higher
magnetic field, the continuous transition to the saturated
aligned state takes place.

Figure 3 shows the representative magnetic-field depen-
dences of the magnetization for different values of the ratio
rb. The solid lines are obtained for the symmetric states by
minimizing the energy in Eq. (5) with respect to the angles α

and β. The magnetization is then computed from Eq. (7). The
dotted curves for rb = 0.4 in the main plot and for rb = 0.1
in the inset correspond to the incommensurate state. They are
computed by minimizing the energy in Eq. (29) with respect
to the fan amplitude ϑ and wave vector q. The magnetization
is evaluated using the derivative of the energy with respect
to the magnetic field. We see that the low-field behavior is
characterized by upward curvature which becomes more pro-
nounced at smaller rb. The transition to the double-periodic
state leads to noticeable features in the magnetization curves.
At small rb the transition is manifested by a kink which be-
comes more pronounced with increasing rb, while at high rb, a
kink is replaced with a first-order jump. With further increase
of the field, the transition to the incommensurate-fan state
takes place, which is accompanied by a small increase of the
magnetization in comparison with the double-periodic state.
With decreasing rb, this increase becomes weaker and the field

FIG. 3. The representative magnetic-field dependences of the
reduced magnetization for the rotationally-degenerate system for
different values of the ratio rb = Jz,b/|Jz,2|. The vertical solid line for
rb = 0.4 shows the location of the 1st-order phase transition and the
picture insets show the computed spin configurations at the transition
point. The dotted lines for rb = 0.4 and for rb = 0.1 in the inset
show the magnetization for the incommensurate fan state. In the
main plot, the range of this state for rb = 0.1 is marked by bold
line. For reference, the solid lines showing the magnetization for
the double-periodic state are extended to the high-field region where
this state does not minimize the energy any more. For rb = 0.02, the
range of incommensurate fan state is invisible in this scale.
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range for incommensurate state rapidly shrinks. At higher
fields the magnetization drops below the double-periodic
curve. Finally, the transition to the aligned state takes place
at the saturation field, which monotonically increases with rb.
This transition is manifested as a kink in the magnetization
curve. We also note that all curves intersect at one point. This
feature occurs to be universal and we will discuss it in detail
below.

III. FINITE FOURFOLD ANISOTROPY

In this section, we explore the magnetic phase diagram
for finite in-plane fourfold anisotropy parameter K4 using the
full energy functional in Eq. (2). For a state with four-spin
periodicity, this reduced energy per spin, Es = Elay/N |Jz,2|,
can be written as

Es = 1

2
[cos(φ2 − φ0) + cos(φ3 − φ1)] + k4

16

3∑
n=0

cos(4φn)

+ rb

4
[cos2(φ1 − φ0) + cos2(φ2 − φ1)

+ cos2(φ3−φ2)+ cos2(φ0 − φ3)] − h̃

4

3∑
n=0

cos(φn − θ ).

(43)

This energy has the symmetry property

Es(φn, θ, k4) = Es

(
φn + π

4
, θ + π

4
,−k4

)
, (44)

i.e., the 45◦ rotation is equivalent to sign change of the pa-
rameter k4. Similar to the in-plane isotropic case, four-layer
periodicity is violated in the vicinity of the saturation field.

The model in Eq. (43) assumes zero nearest-neighbor
exchange constant Jz,1. As noted in the introduction, finite
fourfold anisotropy stabilizes the 90◦ helix within some range
of this constant. This range is evaluated in Appendix A. Finite
small Jz,1 does not significantly alter most results of this sec-
tion. One key parameter which may be substantially affected
by finite Jz,1 is the wave vector of the incommensurate-fan
state near the saturation field, see Eq. (33). Influence of Jz,1

on this wave vector is evaluated in Appendix D.
The fourfold anisotropy fixes the orientation of the helix

in zero magnetic field. For k4 > 0 and h̃ = 0, the equilibrium
angle configuration following from the energy in Eq. (43) is
φn = π/4 ∓ π (n − 1)/2. This determines the four easy-axis
directions in the xy plane, at ±45◦ and ±135◦. In this case,
the behavior is sensitive to the in-plane orientation of the
magnetic field. In the following sections, we consider the
phase diagrams for the two symmetric field orientations, 45◦
with respect to the initial moment direction [θ = 0 in Eq. (43)]
and along this direction (θ = 45◦).

A. Field angle 45◦ with respect to easy axis

When the field is oriented at 45◦ with respect to equilib-
rium moment direction, the behavior is qualitatively similar to
the case k4 = 0 with quantitative modifications of the typical
fields and critical parameters caused by the finite anisotropy.
Therefore we follow the same route as in Sec. II and just

revise the results accounting for the finite value of k4. For the
finite anisotropy, the energy of the symmetric state with angles
defined in Eq. (4) becomes

Es(α, β ) = rb

2
− cos(β − α)

+ rb + k4

8
[cos(4α) + cos(4β )]

+ rb

4
cos[2(β + α)] − h̃

2
(cos α − cos β ). (45)

This gives equations for the equilibrium angles α and β

2 sin(β − α) + k4 sin(4α) + rb{sin(4α)

+ sin[2(α + β )]} − h̃ sin α = 0, (46a)

2 sin(β − α) − k4 sin(4β ) − rb{sin(4β )

+ sin[2(α + β )]} − h̃ sin β = 0. (46b)

First, we consider the small-h̃ expansion of the energy,
similar to Eq. (12). The calculation details of the expansion
of the angles and energy are presented in Appendix C 1 and
the result for the energy is

Es(h̃) ≈ −1 − k4

4
− h̃2

16(1 + rb + k4)

− 1

512(2rb+k4)(1 + rb+k4)2

×
[

1+ (2rb+k4)(rb + k4)

(1 + rb + k4)2

]
h̃4. (47)

Contrary to the case considered in Sec. II, the rotational de-
generacy of helix is already broken at zero magnetic field.
Helix orientation considered in this subsection is favored by
both the fourfold anisotropy and magnetic field. We will use
this energy expansion later, in the consideration of the helix-
rotation transition for different field orientation. The energy
expansion in Eq. (47) gives the low-field behavior of the
magnetization,

m(h̃) ≈ h̃

8(1 + rb + k4)
+ 1

128(2rb+k4)(1 + rb + k4)2

×
[

1+ (2rb+k4)(rb+k4)

(1 + rb + k4)2

]
h̃3. (48)

We see that the fourfold anisotropy decreases the linear sus-
ceptibility. It also reduces the upward curvature.

Similarly to the rotationally degenerate case, at sufficiently
high magnetic field the system transfers into the double-
periodic state defined by Eq. (17). In the next subsection, we
consider the influence of the fourfold anisotropy on this state.

1. Double-periodic state

For the finite fourfold anisotropy, the energy of the double-
periodic state for considered field direction becomes

Es(α, π − α) = rb

2
− k4

4
+ cos(2α) + rb + k4

2
cos2(2α)

− h̃ cos α (49)
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yielding the equation for the equilibrium angle

4 cos α0[1 + (rb + k4) cos(2α0)] − h̃ = 0. (50)

For the double-periodic state, the magnetization would reach
saturation at the field h̃DP

sat = 4(1 + rb + k4). However, as in
the isotropic case, the double-periodic state transforms into
the incommensurate fan with increasing magnetic field and
therefore this field does not have a direct physical meaning.
A peculiar property following from Eq. (50) is the presence
of the universal point at the field h̃ = 2

√
2, where α0 = π/4

and the neighboring moment pairs are orthogonal. The key
observation is that the magnetization at this point m = √

2/2
does not depend on the material’s parameters rb and k4.

To evaluate stability of the state, we consider deviation
from double periodicity, α = α0 + ψ , β = π − α0 + ψ . Ex-
pansion of the energy in Eq. (45) with respect to ψ ,

δE (2)
s (ψ ) =

{
2[k4 − 2(rb + k4) cos2(2α0)] + h̃

2
cos α0

}
ψ2

gives the stability condition

4[k4 − 2(rb + k4) cos2(2α0)] + h̃ cos α0 > 0, (51)

which determines the instability field h̃i. Combining this re-
sult with the relation h̃ cos α0 = 2[1 + cos(2α0)][1 + (rb +
k4) cos(2α0)] following from Eq. (50), we obtain a quadratic
equation for cos(2α0)

[1 + cos(2α0)][1 + (rb + k4) cos(2α0)]

= 4(rb + k4) cos2(2α0) − 2k4,

from which we obtain

cos(2α0) = − 2(1 + 2k4)

1 + rb + k4 + R ,

R = [(1 + rb + k4)2 + 12(1 + 2k4)(rb + k4)]1/2

(52)

giving

cos α0 = [6(1 + 2k4)(rb + k4) + (1 + rb + k4)(rb − k4) + (rb − k4)R]1/2

1 + rb + k4 + R .

These results allow us to obtain the instability field for finite anisotropy from Eq. (50),

h̃i(rb, k4) = 4 cos α0[1 + (rb + k4) cos(2α0)]

= 4
[6(1 + 2k4)(rb + k4) + (rb − k4)(1 + rb + k4 + R)]1/2[1 − (rb + k4)(1 + 4k4) + R]

[1 + rb + k4 + R]2
. (53)

For k4 = 0, this result reproduces Eq. (24). The double-
periodic state is stable at h̃ > h̃i(rb, k4). In general, the
fourfold anisotropy affects the instability field in rather com-
plicated way. In the expected case of small parameters,
rb, k4 	 1, the instability field has a simple asymptotics

h̃i(rb, k4) � 4
√

2rb + k4. (54)

We see that at small rb, the fourfold anisotropy increases the
instability field. However, the accurate analysis shows that this
is only correct for rb < 0.09.

The nature of the phase transitions between the deformed
45◦ helix and double-periodic states is determined by the sign
of the quartic-term coefficient c4 in the energy expansion with
respect to the perturbation ψ , δE (4)

s = 1
4 c4ψ

4. The calculation
of this quartic coefficient described in Appendix C 2 yields the
result

c4(rb, k4) = 20(rb + k4)u2 − 10k4

− (1 − u2)(1 + 15(rb + k4)u)2

2(u + rb)
,

u = − cos(2α0) = 2(1 + 2k4)

1 + rb + k4 + R , (55)

where the parameter R is defined in Eq. (52). At small rb

and k4, the quartic coefficient is positive corresponding to
the second-order phase transition. The transition becomes
first order with increasing of either rb or k4. The boundary
c4(rb, k4) = 0 is shown by the navy line in the Fig. 4. It is very
close to the linear dependence, r0(k4) ≈ 0.099 − 1.22k4. We

see that the critical value of rb, where the nature of the transi-
tion changes, decreases with increasing k4 and for k4 > 0.081
the transition is first order for any rb.

As in the rotationally isotropic case, the double-periodic
state transforms into the incommensurate fan, Eq. (28), in the
vicinity of the saturation field. In the next section, we consider
the latter state in the case of finite fourfold anisotropy.

2. Influence of fourfold anisotropy on incommensurate-fan state
near saturation

In this section, we consider modifications of the
incommensurate-fan state caused by the finite fourfold
anisotropy term, K4(cos4 φn + sin4 φn − 3

4 ), in the energy
functional, Eq. (2). In this case, the fan energy, Eq. (29)
has the additional term 1

N

∑
n

k4
4 cos[4ϑ sin(qn + ϕ)]. As a

consequence, the quadratic term in the energy expansion with
respect to the fan amplitude ϑ , Eq. (32), acquires additional
q-independent contribution

a2(q) = −2k4 − 2 sin2 q − 2rb(1 − cos q) + h̃

2
. (56)

This means that the fourfold anisotropy just increases the
saturation field,

h̃sat = (2 + rb)2 + 4k4 (57)

but does not change much the overall behavior. In particu-
lar, the energy minimum is still realized at the wave vector
in Eq. (33). However, as mentioned above, finite fourfold
anisotropy stabilizes 90◦ helix for some range of the nearest-
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FIG. 4. The parameter regions with different spin-state-
transformations scenarios for two field orientations. Here 0DH,
45DH, and DP stand for deformed 0◦ helix, deformed 45◦ helix,
and double-periodic state, respectively, see Fig. 1. Single (→)
and double (⇒) arrows indicate to a second- and first-order phase
transitions, respectively. The upper brown and navy line corresponds
to change from second- to first-order transition to the DP state for the
magnetic field applied along the easy axis and at 45◦, respectively.
Above the lower brown line, for the easy-axis field direction, the
system first has the helix-rotation transition from 0DH to 45DH
state and then transfers into the DP state. Below this line, the system
jumps directly from 0DH to DP state bypassing the intermediate
45DH state.

neighbor exchange interaction constant Jz,1 and this constant
does affect the wave vector of the incommensurate-fan state,
see Appendix D. Importantly, with finite Jz,1, the period of this
state can be both smaller and larger than four layers.

For the quartic coefficient, we obtain

a4(q) = sin4 q + 2rb(1 − cos q)2 + 4k4 − h̃

16
(58)

for q �= π
2 , π and

a4

(
π

2
, ϕ

)
= 1 + 2rb + 4k4 − h̃

16

+ 1

3

(
1 − 2rb + 4k4 − h̃

16

)
cos(4ϕ). (59)

From the above quadratic and quartic coefficients in Eqs. (56)
and (58), we find that the energy of the incommensurate state
below the saturation field, Eq. (38), is modified as

Efan(q) = 1 + rb + k4

4
− h̃

−
[

sin2 q + rb(1 − cos q) + k4 − h̃
4

]2

sin4 q + 2rb(1 − cos q)2 + 4k4 − h̃/16
. (60)

For small rb, near instability one can again neglect the field
dependence of the optimal wave vector q and use cos Q = − rb

2
from Eq. (33) yielding

Efan(Q) ≈ 1 + rb + k4

4
− h̃ −

[(
1 + rb

2

)2 + k4 − h̃
4

]2

(
1 + rb

2

)4 + 4k4 − h̃/16
.

(61)

On the other hand, for the state with q = π/2, we have

Efan(π/2, ϕ) = 1 + rb + k4

4
− h̃ −

(
1 + rb + k4

4 − h̃
4

)2

1 + 2rb + 4k4 − h̃
16 + 1

3

[
1 − 2rb + 4k4 − h̃

16

]
cos(4ϕ)

. (62)

For 1 − 2rb + 4k4 − h̃/16 > 0 or, at the instability field,
3rb − 5k4 < 1, minimum energy is realized for the double-
periodic state, ϕ = π/4, yielding

Efan(π/2, π/4) = 1 + rb + k4

4
− h̃. − 3

(
1 + rb + k4 − h̃

4

)2

2 + 8rb + 8k4 − h̃/8
.

(63)

Comparing the energies of two states in Eqs. (61) and (63),
we can estimate the transition field in the limit rb 	 1

h̃i−c ≈ 4(1 + rb + k4)

− 2

(√
3

2
+ 1

)[
1 + 4

(
1 +

√
2

3

)
rb

1 + 5k4

]
r2

b . (64)

From this result and the value of the saturation field in
Eq. (57), we can conclude that the field range of the incom-
mensurate state is still proportional to r2

b and the fourfold
anisotropy has only a small influence on this range.

B. Field along easy axis

The case of field along the equilibrium moment direction
is richer and more complicated than the previous cases. The
reason is that for such field direction, the interaction with the
field and the fourfold anisotropy favor different helix orienta-
tions. For θ = π/4 in Eq. (43), it is convenient to utilize the
symmetry property in Eq. (44) and make substitution φn →
φn + π/4 which transforms the energy to the same form as
for θ = 0 except for the sign reverse in the k4 term. Therefore,
after this substitution, the energy per spin becomes

Es = 1

2
[cos(φ2 − φ0) + cos(φ3 − φ1)] − k4

16

3∑
n=0

cos(4φn)

+ rb

4
[cos2(φ1 − φ0) + cos2(φ2 − φ1)

+ cos2(φ3 − φ2) + cos2(φ0 − φ3)] − h̃

4

3∑
n=0

cos(φn).

(65)
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At low magnetic fields, the ground state is given by the de-
formed 0◦ helix abbreviated as 0DH (lower 3D picture in
Fig. 1), which is described by the angles φ0 = 0, φ3 = −φ1 =
α, φ2 = π . Its energy is given by

Es = 1

2
[−1 + cos(2α)] − k4

8
[1 + cos(4α)]

+ rb cos2 α − h̃

2
cos α (66)

and the equilibrium angle α0 is determined by the equation

4 cos α0[1 + rb − k4 cos(2α0)] − h̃ = 0. (67)

Using substitution u = cos α0, we rewrite these equations as

Es = −1 − k4

4
+ (1 + rb + k4)u2 − k4u4 − h̃

2
u, (68a)

4u[1 + rb + k4 − 2k4u2] = h̃. (68b)

Contrary to isotropic case, the second equation does not have a
compact analytical solution similar to Eq. (15a). We start with
the analytic analysis of helix configuration at small magnetic
field.

1. Small h̃ expansion and first-order helix-rotation transition

At small magnetic field, we derive from Eq. (68b) the
expansion of the parameter u with respect to h̃,

u ≈ h̃

4(1 + rb + k4)
+ k4h̃3

32(1 + rb + k4)4
.

Substituting this result into Eq. (68a), we obtain the expansion
of the energy

Es(h̃) ≈ −1 − k4

4
− h̃2

16(1 + rb + k4)
− k4h̃4

256(1 + rb + k4)4
,

(69)

which determines the low-field behavior of the magnetization

m(h̃) ≈ h̃

8(1 + rb + k4)
+ k4h̃3

64(1 + rb + k4)4
. (70)

Comparing the cubic terms in this result and in Eq. (48), we
can conclude that the small-field magnetization for the easy-
axis direction is lower than for the 45◦ direction.

As demonstrated in Sec. II, the magnetic field favors the
45◦ helix orientations, which conflicts with the initial parallel
orientation set by the fourfold anisotropy. Therefore, at small
k4, a sufficiently strong magnetic field should reorient the
helix. This rotation transition is somewhat similar to the spin-
flop transition in easy-axis antiferromagnets for the magnetic
field applied along the easy axis, see, e.g., Ref. [35]. To find
the field at which such helix-rotation spin-flop transition takes
place, h̃r , we have to compare the energy of the 0◦ helix in
Eq. (69) with the energy of the 45◦ helix, which in our case
can be obtained from Eq. (47) with the substitution k4 → −k4.
In the limit k4 	 1, we can neglect k4 in the field-dependent
terms. This gives transition field in the lowest order with
respect to k4,

h̃r � 4(1 + rb)

[
2rbk4

1 + 2rb + 3r2
b

]1/4

. (71)

In particular, h̃r � 4[2rbk4]1/4 for rb, k4 	 1. This corre-
sponds to μHr � 4[2Jz,bK4]1/4

√|Jz,2| in real units. Keeping
k4 in the expansion terms, we can derive a somewhat more
accurate result with the next-order term,

h̃r � 4(1 + rb)

(
2rbk4

1 + 2rb + 3r2
b

)1/4

×
(

1 −
√

2rbk4

1 + 2rb + 3r2
b

)
. (72)

When k4 is not very small, the precise location of transition
can be found numerically by the energy comparison. With
further increase of the magnetic field, the system again trans-
forms into the double-periodic state. In addition, the accurate
analysis shows that at sufficiently large k4 the intermediate
45DH state may be bypassed and the 0DH state may jump
directly into the DP state.

2. Double-periodic and incommensurate-fan states

In the DP state, the energy and the equation for the equi-
librium angle can be obtained from Eq. (50) by replacement
k4 → −k4,

Es(α, π − α) = cos(2α) + k4

4
+ rb

2

+ rb − k4

2
cos2(2α) − h̃ cos α, (73a)

4 cos α0[1 + (−k4 + rb) cos(2α0)] − h̃ = 0. (73b)

Similarly, the instability field for the double-periodic state
h̃i and the quartic coefficient c4 for this field direction can be
obtained from Eqs. (53) and (55) with the same replacement
k4 → −k4. In particular, at small rb the fourfold anisotropy
reduces the instability field for the easy-axis orientation. The
parameter range where the 45DH → DP transition changes
its order is now determined by the condition c4(rb,−k4) = 0
using Eq. (55). For the easy-axis field direction, the critical
value of rb above which the transition becomes first order
increases with k4. This critical value is shown in Fig. 4 by
the upper brown line.

At sufficiently large k4, two subsequent phase transi-
tions are replaced by a single first-order phase transition at
which the system directly jumps from the 0DH to DP state.
To find the parameter range where this scenario is realized, we
find the field of such direct transition h̃t (rb, k4) by comparing
the energies of two states in Eqs. (66) and (73a). The direct-
transition scenario is realized when h̃t (rb, k4) > h̃i(rb,−k4),
where h̃i(rb, k4) is given by Eq. (53). At small rb and k4 such
direct first-order transition takes place for k4 > 1.04rb. The
lower brown line in Fig. 4 shows the boundary below which
the direct-transition scenario is realized.

As mentioned above, the universal point α0 = π/4 is real-
ized in the DP state at the field h̃ = 2

√
2, where magnetization

m = √
2/2 does not depend on rb and k4. As a consequence,

the magnetization is also identical for two field orientations,
meaning that the magnetization curves m(h̃) always cross at
this point.

As in other cases, the DP state transforms into the
incommensurate-fan state at high fields. The results of
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FIG. 5. Phase diagrams in the plane fourfold anisotropy–
magnetic field for the ratio rb = 0.05. The upper and lower panel
is for the magnetic field oriented at 45◦ and 0◦ with respect to the
equilibrium moment direction (easy axis). In the former case, the
transition field to the double-periodic state slowly increases with
k4 and the transition becomes first order at k4 > 0.0375. For the
parallel direction in the lower plot, the two subsequent transition
0DH ⇒ 45DH → DP are realized for k4 < 0.055 and only one
first-order transition 0DH → DP is realized at higher k4. The dashed
line in the lower panel presents the low-k4 asymptotics of the rotation
transition field h̃r given by Eq. (71).

Sec. III A 2 can be directly applied to the easy-axis orien-
tation using the same substitution k4 → −k4. In particular,
the saturation field for this orientation h̃sat = (2 + rb)2 − 4k4

is smaller than for the 45◦ field orientation in Eq. (57),
h̃sat (45◦) − h̃sat (0◦) = 8k4.

C. Phase diagrams and magnetization curves

Figure 5 shows the phase diagrams in the k4-h̃ plane for
rb = 0.05 and two field orientations for fields significantly
lower than the saturation region. The upper and lower pan-
els are for angle 45◦ and 0◦ between the magnetic field
and the equilibrium moment direction, respectively. In the
former case, the transition field to the double-periodic state
slowly increases with k4. The transition becomes first order at
k4 > 0.0375. In the lower panel, the two subsequent transition
0DH ⇒ 45DH → DP are realized at small k4 with opposite
dependences of the transition fields on k4. At k4 = 0.055,
the transition lines cross and only one first-order transition
0DH → DP is realized at higher k4. The dashed line in the
lower panel presents the low-k4 asymptotics of the rotation

FIG. 6. The representative field dependences of the magneti-
zation for two field directions for parameters rb = 0.08 and k4 =
0.05. The inset zooms into the transition’s regions. For comparison,
we also show by the black dashed line the curve for rotationally-
isotropic case, k4 = 0. For both field orientations, the kinks near
h̃ = μH/|Jz,2| ≈ 1.2 correspond to the phase transitions from the
deformed 45◦ helix to double-periodic state. For the 0◦ (45◦) ori-
entation, the anisotropy slightly decreased (increases) the transition
field and for the 45◦ orientation the transition becomes of the
first order. For the parallel orientation, there is also the first-order
phase transition near h̃ = μH/|Jz,2| ≈ 1 marked by the vertical line
corresponding to the helix rotation, as illustrated in Fig. 1. All mag-
netization curves intersect at the point h̃ = μH/|Jz,2| = 2

√
2, m =√

2/2 marked by the vertical bar. The bold lines near the saturation
show the regions occupied by the incommensurate-fan state.

transition field h̃r given by Eq. (71). We can see that it gives
an accurate estimate of the transition field only at very small
k4, k4 � 0.01.

Figure 6 shows the field dependences of the magnetization
curves for the two field orientations. The plots are made using
the representative parameters rb = 0.08 and k4 = 0.05. The
curve for 45◦ orientation is obtained in a way similar to k4 = 0
case in Fig. 3. For 0◦ orientation, we minimized the energy in
Eq. (65) with respect to four angles φi. In this case, we found
that the ground-state configuration always corresponds to one
of the symmetric states shown in Fig. 1. One can observe
several key features. Both field orientations are characterized
by the transition to the DP state near h̃ ≈ 1.2. For the 45◦
orientation, the transition is weak first-order one and is located
at a somewhat higher field than for the parallel orientation.
In addition, for the easy-axis orientation, the first-order helix
rotation transition takes place at a somewhat lower field, near
h̃ ≈ 1. The magnetization curves for the two field orientations
cross three times: at smallest fields, the magnetization is lower
for the easy-axis direction, it becomes larger for this direc-
tion after the first-order transition into the 45DH state and it
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remains larger until the transition into the DP state. Note that
this small field range is not universal and vanishes for larger
k4. In the DP state, the magnetization is again lower for the
easy-axis direction until two magnetization curves cross at the
universal point h̃ = 2

√
2.

In both cases, there are narrow incommensurate-fan re-
gions near the saturation. These regions are marked by bold
lines in the plot. Small modifications of the magnetization in
these regions are similar to one shown in the inset of Fig. 3.
Finally, the magnetization in the easy-axis direction saturates
at a smaller magnetic field than for the 45◦ orientation. Qual-
itatively, these generic shapes of magnetization curves realize
for other sets of parameters and their features can be used for
experimental determination of the equilibrium helix orienta-
tion at zero magnetic field.

IV. SUMMARY AND DISCUSSION

In summary, we investigated a phenomenological phase
diagram for the magnetic helical state with a 90◦ turn angle
between neighboring spin layers in the external magnetic field
applied perpendicular to the helix axis. We assumed that this
unusual state is stabilized by the biquadratic nearest-neighbor
interaction and in-plane fourfold anisotropy. We found the
metamagnetic transition from the distorted helix into the
double-periodic state. The corresponding transition field is
mostly determined by the strength of the biquadratic interac-
tion. In addition, this field depends on the fourfold anisotropy
and field orientation. Depending on the parameters, the tran-
sition to the double-periodic state can be either second or first
order. Such behavior is different from the helical structures
realized within the frustrated Heisenberg model, where the
nature of the transition is fully determined by the modulation
wave vector [12]. When the magnetic field is applied along
the equilibrium moment direction (easy axis) and the fourfold
anisotropy K4 is weak, we found an additional first-order
spin-flop transition corresponding to the 45◦ rotation of the
distorted helix. The field of this transition behaves as K1/4

4
for K4 → 0. At sufficiently large K4, this helix rotation is
bypassed and there is only one first-order spin-flop transition
directly into the double-periodic state.

In the vicinity of the saturation field, the double-periodic
state transforms into the incommensurate fan. The field range
of the latter state is proportional to the biquadratic coupling
squared. In the model with rotational degeneracy, the fan
period is always smaller than four layers. On the other hand,
for the model with the fourfold anisotropy and finite nearest-
neighbor exchange constant, the period may be both smaller
and larger than four layers. Interestingly, recent neutron-
scattering results [36] suggest that, at high magnetic fields,
the structure period becomes a little bit larger than four layers
corresponding to the wave vector dropping below π/2.

We evaluated the phase diagrams within a mean-field the-
ory completely neglecting thermal spin fluctuations. These
fluctuations grow when the temperature approaches the mag-
netic transition point Tm. We expect that the transition
magnetic fields computed here will be reduced by the spin
fluctuations and vanish as T → Tm. The fluctuations also may
significantly modify the shapes of magnetization features at
the transitions.

The unusual helical state considered in this paper has been
established in the superconducting iron arsenide RbEuFe4As4

[20,21], which has the superconducting transition at 36.5 K
and magnetic transition at 15K. The most likely reason for
very small nearest-neighbor bilinear exchange interaction Jz,1

in this material is an accidental compensation of the normal
and superconducting RKKY contributions to this parameter
[34]. In addition, the biquadratic nearest-neighbor term prob-
ably has a superconducting origin due to sensitivity of the
superconducting energy to the exchange field.

Since the interlayer helical state emerges inside the su-
perconducting state, the global magnetic response is hidden
either by superconducting screening or by the presence of
superconducting vortex lines. This complicates direct verifi-
cation of the predicted fine features in the magnetization. The
magnetic field is not uniform in the superconducting state.
In the Meissner state, it drops at the scale of the London
penetration depth from the surface and in the equilibrium
vortex state it oscillates with the periods given by vortex-
lattice spacings. Even more severe disturbing factor is the
formation of the critical state due to vortex pinning in which
the magnetic field is macroscopically nonuniform. Due to the
temperature dependence of the magnetic susceptibility, such
a state is formed even for cooling in fixed external magnetic
field [37]. The distinct features in the global magnetization
at the transition fields will be smeared because of these field
spatial variations.

The magnetic field varies at spatial scales much larger than
the distance between the Eu2+ moments. Therefore, in the
simplest scenario, we expect that the local spin configuration
and magnetization follow the local magnetic field. The sat-
uration field for the in-plane orientation is about 1 kG [38].
The metamagnetic transition fields depend on the material’s
parameters K4 and Jb that are currently unknown. As these
parameters are expected to be small in comparison with Jz,2,
it is feasible that the metamagnetic transition fields may be
smaller than the in-plane lower critical field Hab

c1 , which for
this material is roughly 200 G at low temperatures. In this
case, even in the Meissner state, the magnetic behavior be-
comes nontrivial: the spin configuration at the surface will
transform with increasing magnetic field and the boundary
between two different spin states will be formed parallel to
the surface. Similarly, the spin configuration near the center
of an isolated in-plane vortex line will be different from the
configuration outside and the vortex core will be surrounded
by the boundary with the shape of an elliptical cylinder. Such
unusual magnetic vortex structure may have a substantial in-
fluence on the properties of the vortex state. In particular, it
may be relevant for the understanding of clustering instabili-
ties found in RbEuFe4As4 by magneto-optical imaging of side
faces [37].
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APPENDIX A: RANGE OF STABILITY OF 90◦ HELIX
FOR FINITE NEAREST-NEIGHBOR

EXCHANGE INTERACTION

With finite nearest-neighbor coupling, the energy in Eq. (2)
at zero magnetic field becomes

Es = 1

N

∑
n

[
|Jz,2| cos(φn+2 − φn) − Jz,1 cos(φn+1 − φn)

+ Jz,b cos2(φn+1 − φn) + K4

4
cos(4φn)

]
. (A1)

We find the range of Jz,1 within which 90◦ helix still gives the
ground state. Substituting the helix ansatz, φn = qn + π/4,
we obtain

Es(q) = −|Jz,2| + (2|Jz,2| + Jz,b) cos2 q

− Jz,1 cos q − K4

4
〈cos(4qn)〉n. (A2)

For the incommensurate state, the fourfold anisotropy van-
ishes. In this case, we find the optimal wave vector

cos Q = Jz,1

2(2|Jz,2| + Jz,b)
(A3)

and the corresponding incommensurate-state energy

Es(Q) = −|Jz,2| − J2
z,1

4(2|Jz,2| + Jz,b)
. (A4)

On the other hand, the energy of 90◦ helix is

Es(π/2) = −|Jz,2| − K4

4
. (A5)

Comparing energies in Eqs. (A4) and (A5), we find that the
90◦ helix gives ground state if the condition

|Jz,1| <
√

(2|Jz,2| + Jz,b)K4. (A6)

is satisfied. This result is approximate, because we limit our-
selves by a simple incommensurate helical state and did not
consider more complicated nonuniform configurations which
may emerge at the transition.

APPENDIX B: CALCULATION OF QUARTIC
COEFFICIENT IN THE ENERGY EXPANSION FOR k4 = 0

Presenting the angles as α = α0 + ψ + ϑ , β = π − α0 +
ψ − ϑ , we derive expansion of the energy in Eq. (5) with
respect to ψ and ϑ

δEs(ψ,ϑ ) ≈
[

− 2 cos(2α0) − 2rb cos(4α0) + h̃

2
cos α0

]
ϑ2

+
[

− 4rb cos2(2α0) + h̃

2
cos α0

]

+
(

8rb sin 4α0 − h̃

2
sin α0

)
ϑψ2

+
[

16

3
rb cos2(2α0) − h̃

24
cos α0

]
ψ4.

Excluding ϑ for fixed ψ

ϑ = − 8rb sin(4α0) − h̃
2 sin α0

−4 cos(2α0) − 4rb cos(4α0) + h̃ cos α0
ψ2,

we obtain the full quartic term for expansion with respect
to ψ

E (4)
s = 1

4
c4ψ

4,

c4 = 64

3
rb cos2(2α0) − h̃

6
cos(α0)

−
(
8rb sin 4α0 − h̃

2 sin α0
)2

−2 cos(2α0) − 2rb cos(4α0) + h̃
2 cos α0

.

At the instability point, we have relations given by Eqs. (19)
and (21). This allows us to exclude both h̃ and α0 and express
c4 at the instability point via rb leading to Eq. (26) of the main
text.

APPENDIX C: CALCULATIONS FOR FINITE FOURFOLD
ANISOTROPY AND FOR FIELD ANGLE 45◦ WITH

RESPECT TO THE MOMENT DIRECTION

1. Small-h̃ expansion

We follow essentially the same steps as in derivation of
expansion in Eq. (12). Small magnetic field leads to small
deviations, which we represent as α = π

4 − α+ − α−
2 , β =

π
4 + α+ − α−

2 . The energy can be expanded as

Es(α+, α−) ≈ − 1 − k4

4
+ 2(1 + rb + k4)α2

+

+ (2rb + k4)
α2

−
2

− 2[1+4(rb + k4)]α4
+

3

− 4(rb + k4)α2
+α2

− − 1

6
(2rb + k4)α4

−

−
√

2h̃

4

(
2α+ − α+α− − 1

3
α3

+ − 1

4
α+α2

−

)
.

(C1)

This gives equation for equilibrium α±

4(1 + rb + k4)α+ − 8

3
[1 + 4(rb + k4)]α3

+ − 8(rb + k4)α+α2
−

−
√

2h̃

4

(
2 − α− − α2

+ − 1

4
α2

−

)
= 0, (C2a)

(2rb + k4)α− − 8(rb + k4)α2
+α− − 2

3
(2rb + k4)α3

−

+
√

2h̃

4

(
α+ + 1

2
α+α−

)
= 0. (C2b)

In the expansion with respect to h̃,

α± =
∞∑

n=1

α
(n)
± h̃n,
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only odd α
(n)
+ and even α

(n)
− are finite, α(2k)

+ = α
(2k−1)
− = 0. For

expansion coefficients, we obtain from Eqs. (C2a) and (C2b),

α
(1)
+ =

√
2

8(1 + rb + k4)
, (C3a)

α
(2)
− = −

√
2

4(2rb + k4)
α

(1)
+ = − 1

16(2rb + k4)(1 + rb + k4)
,

(C3b)

α
(3)
+ =

√
2

512(1 + rb + k4)4

×
{

4[1 + 4(rb + k4)]

3
+ (2 + k4)(1 + rb + k4)

(2rb + k4)

}
.

(C3c)

Substituting this expansion into Eq. (C1), we derive the
energy expansion

Es(h̃) =
∞∑

n=1

E (n)
s h̃2n

with

E (2)
s = − 1

16(1 + rb + k4)
, (C4a)

E (4)
s = − 1

512(2rb + k4)(1 + rb + k4)2

×
[

1 + (2rb + k4)(rb + k4)

(1 + rb + k4)2

]
. (C4b)

This result is presented in Eq. (47) of the main text.

2. Calculation of quartic coefficient in the energy expansion

To find the full quartic term, we present α = α0 + ψ + ϑ ,
β = π − α0 + ψ − ϑ and expand the energy in Eq. (45) with
respect to small deviations ψ and ϑ ,

Es ≈ cos(2α0) + 3rb

4
+ rb + k4

4
cos(4α0) − h̃ cos α0

+
[

− 2 cos(2α0) − 2(rb + k4) cos(4α0) + h̃

2
cos α0

]
ϑ2

+
[

− 4(rb + k4) cos2(2α0) + 2k4 + h̃

2
cos α0

]
ψ2

+
(

8(rb + k4) sin(4α0) − h̃

2
sin α0

)
ϑψ2

+
[

16

3
(rb + k4) cos2(2α0) − 8

3
k4 − h̃

24
cos α0

]
ψ4.

Finding the minimal value of ϑ for fixed ψ

ϑ = − 8(rb + k4) sin(4α0) − h̃
2 sin α0

−4 cos(2α0) − 4(rb + k4) cos(4α0) + h̃ cos α0
ψ2,

we derive the full quartic term,

δE (4)
s = 1

4
c4ψ

4

c4 = 64

3
(rb + k4) cos2(2α0) − 32

3
k4 − h̃

6
cos(α0)

−
(
8(rb + k4) sin(4α0) − h̃

2 sin α0
)2

−2 cos(2α0) − 2(rb + k4) cos(4α0) + h̃
2 cos α0

.

At the instability point, we have relations in Eqs. (50) and
(51), which allows us to exclude both h̃ and α0 and express
c4 at the instability of the double-periodic state via rb and k4

giving the result in Eq. (55).

APPENDIX D: INCOMMENSURATE-FAN STATE
FOR FINITE FOURFOLD ANISOTROPY AND

NEAREST-NEIGHBOR EXCHANGE INTERACTION

In this Appendix, we consider the influence of the finite
nearest-neighbor exchange interaction on the wave vector of
the incommensurate fan, Eq. (28), emerging near the satura-
tion field. With finite nearest-neighbor exchange constant Jz,1

and fourfold anisotropy K4, the reduced fan energy in Eq. (29)
acquires an additional contribution

1

N

∑
n

{
− jz,1 cos

[
2ϑ sin

q

2
cos

(
nq + q

2
+ ϕ

)]

+ k4

4
cos[4ϑ sin(qn + ϕ)]

}

with jz,1 ≡ Jz,1/|Jz,2|. Expanding the energy with respect to
the fan amplitude ϑ near the saturation field, we obtain for the
quadratic coefficient,

a2(q) = −2 sin2 q + (− jz,1 + 2rb)(1 − cos q) − 2k4 + h̃

2

(D1)

for q �= π . Contrary to the fourfold anisotropy, the nearest-
neighbor exchange interaction influences q dependence of the
quadratic coefficient. The optimal wave vector corresponding
to the minimum of a2(q) is given by

cos Q = jz,1 − 2rb

4
. (D2)

The important consequence of this result is that in the case of
finite fourfold anisotropy the cos Q may be positive meaning
that the period of the incommensurate fan may be longer than
four layers. This may happen if Jz,1 is positive corresponding
to ferromagnetic interaction and exceeds 2Jb. On the other
hand, at zero field, the 90◦ helix is stable if the condition in
Eq. (A6) is satisfied. This means that the longer period may
realize if the right-hand side of Eq. (A6) exceeds 2Jb giving
the condition for the fourfold anisotropy K4 > 4J2

b /(2|Jz,2| +
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Jz,b). Evaluating the quadratic coefficient at the optimal wave
vector

a2(Q) = − (4 − jz,1 + 2rb)2

8
− 2k4 + h̃

2
,

we find that the saturation field

h̃sat = (2 − jz,1/2 + rb)2 + 4k4 (D3)

is also shifted by Jz,1.
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