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The anisotropic spin dynamics in wires based on a [001]-oriented semiconductor quantum well were inves-
tigated to determine the effect of applying an in-plane magnetic field both parallel to and perpendicular to the
spin-orbit magnetic field, and the interaction between them. In one-dimensional spin motion where the wire
width is less than the spin-precession length, it is known that the global spin precession is essentially determined
by the spin-orbit induced precession along the wire direction. In this study, our objective is to investigate the
nature of anisotropic spin dynamics in such narrow semiconductor wires along various crystal orientations. We
proposed an analytic expression for the anisotropic spin-relaxation rates and the Larmor-precession frequencies
for the arbitrary magnetic field orientation based on a theoretical understanding of the spin dynamics in the
narrow wire structure. This expression describes the interaction between the spin-orbit field and all orientations
of the in-plane magnetic field. We experimentally investigated the spin dynamics for lithographically defined
800-nm-width wires oriented along the [110], [100], and [110] crystal orientations using a [001] GaAs/AlGaAs
quantum well. Time-resolved Kerr rotation microscopy measurements indicated that the spin-relaxation time was
the longest for the in-plane magnetic field perpendicular to the spin-orbit field, whereas the parallel configuration
was found to be the shortest among all the directions. The precession frequency was found to have the opposite
symmetry. These relations are well explained by the theoretical considerations developed in this work. Because
the Rashba and Dresselhaus spin-orbit fields are mutually orthogonal in the [100] crystal orientation, it is possible
to evaluate both spin-orbit coefficients from the precession anisotropy. These findings suggest that it is possible
to control the spin state in narrow wires approaching the one-dimensional state and evaluate the spin-orbit
coefficient. This has the potential to provide a greater understanding of quantum and topological information
in semiconductor one-dimensional wires.
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I. INTRODUCTION

Spin dynamics in semiconductor low-dimensional systems
play a crucially important role in that they provide the plat-
form for various spin-related physics and devices, including
spin generation [1] and detection [2], helical spin texture
[3–7], nuclear spin order [8], Majorana quasiparticles [9,10],
parafermion [11], and Tomonaga-Luttinger liquids [12–15].
Spin relaxation in III-V semiconductors is governed by a spin-
orbit (SO) interaction which acts as a momentum-dependent
effective magnetic field for moving electrons [16]. Notably,
quantum confinement in one-dimensional (1D) wires restricts
electrons moving along the wire direction, thereby producing
a unidirectional SO field which suppresses the randomiza-
tion of the spin-precession axis. The advantage of such a
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well-defined SO field is that it allows the SO-induced gap
towards Majorana fermions to be realized [17,18] and sup-
presses D’yakonov-Perel’ (DP) spin relaxation [19–22]. The
effects of lateral confinement on the spin dynamics have been
studied intensively in spatially homogeneous spin orientation
[23–25] and spatially rotated spin structures [26–28], respec-
tively referred to as homogeneous and helical spin textures.
The spin-relaxation time in both spin textures is enhanced
when the lateral confinement is less than the spin-precession
length [23,27], i.e., in a 1D diffusive approximation for spin,
which is the definition of “narrow” wires in this context. De-
pending on the crystal orientation, the spin-relaxation time in
such narrow wire becomes anisotropic because of the parallel
and antiparallel interactions between the Rashba and Dressel-
haus SO fields [24,25].

For precise control of the spin state, the relative directions
of the Rashba and Dresselhaus SO fields are important. Their
interaction with the external magnetic field is also crucially
important. The in-plane magnetic field orientation in the 1D
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wires affects the spin dynamics, including spin relaxation and
the Larmor precession. The focus of most of the studies exam-
ining the interaction between the SO and external magnetic
field directions has been on two-dimensional (2D) electron
motion in III-V semiconductor quantum wells (QWs). There-
fore, the spin dynamics induced by SO and the external fields
are averaged due to the random 2D electron motion [29,30].
These averaged values obscure the fundamentally important
contribution to the spin relaxation and Larmor-precession fre-
quency made by the SO and an in-plane external magnetic
fields in isolation and the interaction between them. To date,
no comprehensive investigation of spin dynamics has been
conducted from both theoretical and experimental perspec-
tives considering spin relaxation and the Larmor precession
in narrow wire structures.

Herein, we investigate anisotropic spin dynamics in narrow
wire structures based on (001)-oriented III-V semiconductor
QWs under various in-plane magnetic field directions. The
wire orientation is aligned along the [110], [100], and [110]
crystal orientations, where the relative contribution between
the Rashba and Dresselhaus SO fields becomes anisotropic.
First, we establish a theoretical framework for the time evo-
lution of the homogeneous spin textures in 1D wires initially
oriented perpendicular to a QW plane under various in-plane
magnetic field angles. The results indicate that both the spin-
relaxation rate and precession frequency become anisotropic
depending on the SO and in-plane magnetic field orienta-
tions. We further extend the anisotropic spin dynamics for
arbitrary magnetic field orientation and obtain the exact eigen-
values under a moderately strong SO magnetic field. Based on
these theoretical understandings, we prepared 800-nm-width
wires along the [110], [100], and [110] crystal orientations
based on a GaAs/AlGaAs QW and employ time-resolved
Kerr rotation microscopy to evaluate the spin-relaxation time
and precession frequency under various in-plane magnetic
field angles. For [110] ([110]) -oriented wires where both
the Rashba and Dresselhaus SO fields are perpendicular
to the wire direction but are mutually parallel (antiparallel),
the longest spin-relaxation time and the smallest precession
frequencies are observed when the in-plane magnetic field
is perpendicular to the SO field. An in-plane magnetic field
parallel to the SO field has the shortest spin-relaxation time
and highest precession frequency. This finding indicates that
the maximum spin-relaxation time is exhibited for an in-plane
magnetic field parallel to the wire, and the maximum Larmor-
precession frequency occurs when this field is perpendicular
to the wire. However, because the two SO fields are mutually
orthogonal in the [100] wires, the observed anisotropies on
the spin relaxation and frequency are tilted at an angle to
the wire direction. These experimental results are in excellent
agreement with the predictions according to our proposed
theory. By fitting the experimentally obtained precession fre-
quency with the value obtained based on the relevant theory,
we obtain the Rashba and Dresselhaus SO coefficients. These
are in excellent agreement with the values extracted inde-
pendently from the spatiotemporal dynamics under diffusive
spin motion. Therefore, a comprehensive understanding of
the spin-relaxation mechanism and interaction between the
SO and in-plane magnetic fields can be elucidated by the
anisotropic spin dynamics in the wire.

This paper is organized as presented below. In Sec. II, we
define the Hamiltonian in a [001]-oriented 2D electron gas
with a zinc-blende structure under both Rashba and Dressel-
haus SO interactions. Next, in Sec. III, we introduce the spin
diffusion equation to consider the homogeneous spin textures
in narrow wire structures. In Sec. IV, we describe the time
evolution of an initial spin texture which is homogeneous
and parallel to the [001] crystal orientation. We examine two
distinct cases for which the corresponding in-plane magnetic
field is either parallel or perpendicular to the SO field and
derive the spin-relaxation rates and precession frequencies
explicitly. We further extend the induced anisotropy of the
relaxation rate and frequency for arbitrary magnetic field di-
rection. In Sec. V, we introduce the sample structure and
evaluate the SO coefficients through the spin dynamics under
diffusive spin motion. In Sec. VI, we present the anisotropic
spin relaxation and precession dynamics in wire structures
along the [110], [100], and [110] crystal orientations for var-
ious in-plane magnetic field angles. We close the paper in
Sec. VII with the conclusion.

II. HAMILTONIAN

We consider a [001]-oriented 2D electron gas (2DEG) with
a zinc-blende structure in the coordinate system � where the
Cartesian basis vectors {x̂, ŷ, ẑ} are aligned with the crys-
tallographic axes x̂ ‖ [110], ŷ ‖ [110], ẑ ‖ [001]. Near the �

point, the energy dispersion of the 2DEG is described by the
following Hamiltonian as

H = Hkin + Hz + HSO, (1)

with the kinetic part Hkin = h̄2k2/(2m∗), where k = (kx, ky )
represents the in-plane wave vector and m∗ stands for the
effective mass. We further include the effects of the in-plane
magnetic field B ⊥ ẑ, which becomes solely manifest in the
Zeeman Hamiltonian as

Hz = ω · s, (2)

where ω = geffμBB/h̄ constitutes the Larmor frequency, geff

is the effective g factor, μB represents the Bohr magneton, and
s = h̄σ/2 is the spin vector with σ = (σx, σy, σz ) being the
vector of the Pauli matrices. The SO Hamiltonian of

HSO = �(k) · s (3)

includes a k-dependent Zeeman field � = �1 + �3 called the
SO field. The latter is typically decomposed with respect to
the wave vector in first and third angular harmonics, respec-
tively, as �1 and �3. Using the in-plane polar coordinates
kx = k cos(ϕ) and ky = k sin(ϕ), where the polar angle ϕ is
measured from the [110] (x̂) axis, the SO field �1 can be
written as [31,32]

�1(ϕ) = 2γ (ϕ)

h̄
k�̂1(ϕ), (4)

with the SO field direction �̂1,

�̂1(ϕ) = 1

γ (ϕ)

⎛
⎝ (α + β1) sin ϕ

(−α + β1) cos ϕ

0

⎞
⎠, (5)
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and the effective SO strength

γ (ϕ) = [
α2 + β2

1 − 2αβ1 cos(2ϕ)
]1/2

. (6)

The third angular harmonic part of the SO field is

�3(ϕ) = 2β3

h̄
k

⎛
⎝ sin(3ϕ)

− cos(3ϕ)
0

⎞
⎠. (7)

The coefficient α = γREz denotes the Rashba coefficient and
β1 = γD(〈k2

z 〉 − 1
4 k2) and β3 = 1

4γDk2 denotes the Dressel-
haus coefficient, respectively. These are attributable to the
first and third angular harmonics in the wave vector. The
prefactors γR,D are material specific and can be extracted from
experiments or calculated using perturbation theory [33]. The
term 〈k2

z 〉 constitutes the projection of the operator −∂2
z on

the lowest subband in the growth direction and is inversely
proportional to the QW width. The Rashba coefficient α scales
with the electric field Ez because of the potential gradient
across the quantum well. Both fields �1 and �3 lie in the QW
plane. Although the magnitude of �1 depends on the angle ϕ,
the magnitude of �3 is isotropic.

III. SPIN-DIFFUSION EQUATION

A. General expression for weak disorder and spin-orbit
interaction

In the following, we specifically examine the expected
value of the local spin density s(r, t ) = 〈ψ†(r, t ) s ψ (r, t )〉
at time t and position r [or in reciprocal space s̃(q, t ) =∫

dr2e−iq·rs(r, t ) with wave vector q], where ψ (r, t ) de-
notes the fermionic wave function (bispinor) in the ground
state. To include the random disorder scattering effects, an
average is performed over all spin-independent impurity con-
figurations. Specific examination of the diffusive regime has
revealed that the temporal evolution of the spin density fol-
lows the spin-diffusion equation, which reads in reciprocal
space [31,32,34,35]

d s̃(q, t )

dt
= �(q)s̃(q, t ). (8)

The quantity � is called the spin-diffusion operator, and is
defined as

�(q) = −Dsq2 + 2h̄τ

im∗ 〈(k · q)[�1(k)]×〉 + [ω]× − τ̂−1
DP(�),

(9)

which involves the d-dimensional diffusion constant Ds =
v2

Fτ/d , later limited to the d = 2 case, with Fermi (F) velocity
vF = h̄kF/m∗, and elastic scattering time τ . At zero tempera-
ture, the mean 〈·〉 constitutes the average over all directions
of the wave vector kF at the approximately circular Fermi
surface. For convenience, we use the matrix representation of
the vector product of two vectors a and b, i.e., a × b = [a]×b,
where ([a]×)nm = εnlmal with the antisymmetric Levi-Civita
tensor εnlm and a summation over reappearing indices is im-
plied. The first term on the right-hand side of Eq. (9) describes
the free diffusion. The second and third terms, respectively,
account for spin precession in the space and time domain
because of the SO and the magnetic field. It is noteworthy

that only the first angular harmonic SO field �1 contributes to
the spatial spin precession because higher angular harmonics
cancel out upon averaging over the Fermi surface. The spin-
precession length is defined as the length scale necessary for
a spin vector to perform an entire rotation. Because of the
ϕ dependence of ‖�1‖ ∝ γ (ϕ), the spin-precession length
Ln depends on the wave-vector direction k = kFn̂ and reads
Ln = 2πvF/‖�1(k = kFn̂)‖. The last term on the right-hand
side of Eq. (9) represents the DP spin-relaxation tensor [16][

τ̂−1
DP(�)

]
i j = τ (〈�2〉δi j − 〈�i� j〉), (10)

which engenders the exponential decay of a spin texture which
is homogeneous in real space (q = 0). The spin-diffusion
equation (8) is valid for weak disorder and SO coupling,
meaning that the Fermi wavelength λF = 2π/kF is much
smaller than the elastic mean free path le = vFτ , whereas the
SO-induced spin-precession length Ln is much greater than the
mean free path. Furthermore, the expression assumes unbound
diffusion in d dimensions. To employ the spin-diffusion equa-
tion to a finite-sized geometry such as in a thin film or a
narrow wire, we must include boundary effects. These are
discussed in the following section.

B. Spin-diffusion operator for homogeneous spin textures
in narrow wires

As described herein, we are interested in the spin dynamics
of homogeneous spin textures in narrow wires based on a
[001]-confined 2DEG. The notion of “narrow” here means
that the wire width W is much less than the spin-precession
length Lu in the direction û of the lateral boundaries at ru =
±W/2. This condition is regarded as spin reflecting. At the
same time, the wire width is presumed to be sufficiently wide,
such that (i) it exceeds the elastic mean free path le, allowing
the transverse motion to remain diffusive, and (ii) the quantum
size effects attributable to the boundary on the energy disper-
sion are irrelevant. Condition (ii), which becomes significant
if λF ∼ W , is already implied by (i) because of our earlier
assumption that λF 	 le < W . Let us define the wire direction
as determined by the unit vector ĝ := ( cos(φ), sin(φ), 0) =
ẑ × û with the in-plane polar angle φ, as measured from
[110]. As explained at length in the Appendix, for the limit
W/Lu → 0, aside from �3, only the part of the SO field
�1 with wave-vector components along the wire direction ĝ
contributes to spin relaxation. In this case, the spin-diffusion
operator (9) reduces to the following:

�0(q) = [ω]× − Ds

{
q ĝ + 2π i

Lg
[�̂1(φ)]×

}2

− τ̂−1
DP(�3).

(11)

To analyze the spin-density dynamics, a new coordinate frame
�′ is selected. This is adapted to the orientation of �1,
which has the following underlying basis vectors: {�̂1(φ), ẑ ×
�̂1(φ), ẑ}. In system �′, the spin-diffusion operator for a
homogeneous (q = 0) spin texture becomes

�0 =
⎛
⎝−�3 0 ω⊥

0 −�1(φ) − �3 −ω‖
−ω⊥ ω‖ −�1(φ) − 2�3

⎞
⎠, (12)
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with the spin-relaxation rates

�1(φ) = 2τ

(
γ (φ)kF

h̄

)2

, (13)

�3 = 2τ

(
β3kF

h̄

)2

. (14)

Here, we defined ω‖ = ω cos θ and ω⊥ = ω sin θ with θ =
∠(ω,�1) as components of the Larmor frequency ω, which
are parallel and perpendicular, respectively, to the SO field
�1(φ). To relate resulting expressions to the original crystal-
adherent coordinate frame �, where the Larmor frequency
vector is given as ω = ω(cos ϑ, sin ϑ, 0) with the polar angle
ϑ measured from the x̂ ‖ [110] axis, we use the relation

θ = ϑ − χ, (15)

where χ = arctan(�y/�x ) is the polar angle enclosed by �1

and the [110] crystal direction (x̂). An arbitrary vector v′ in
�′ can be represented in � by applying the transformation
v = Rv′ with the rotation matrix

R =
⎛
⎝cos χ − sin χ 0

sin χ cos χ 0
0 0 1

⎞
⎠. (16)

To convert scalar expressions, such as eigenvalues, the identity

cos θ = �̂1 · ω̂ = α sin(ϑ − φ) − β1 sin(ϑ + φ)

γ (φ)
(17)

is particularly convenient. The spin-diffusion operator (12)
constitutes a dynamic matrix that solves the linear differential
equation ∂t s̃ = �0s̃, where a general solution can be written
as s̃(t ) = exp(�0t )s̃(0). The dynamic matrix �0 separates
into a Hermitian part (in the chosen basis even diagonal)
and a skew-symmetric part. The Hermitian part is com-
prised of spin-relaxation rates and yields negative semidefinite
eigenvalues, and therefore describes a decaying of the con-
stant spin texture. The skew-symmetric part includes the
Larmor-precession frequencies and yields imaginary eigen-
values, thereby causing time-periodic orbits. The mixing of
both parts in �0 engenders generally complex eigenvalues
λn (n ∈ {0,±}), where the real part defines an effective spin-
relaxation rate

1

τs,n
:= |Reλn|, (18)

and the imaginary part defines an effective Larmor frequency

νn := |Imλn|. (19)

Both 1/τs,n and νn can be influenced, respectively, by the
Larmor frequency ω and the spin-relaxation rates �1,3. Im-
portantly, the relative significance is found by the ratio ω/�1,3

between the Larmor frequency and spin-relaxation rates, and
not by the relative strength of the magnetic and SO fields.

We do not account for spin relaxation at the boundaries
because the DP mechanism is dominant in zinc-blende semi-
conductor wires. Spin relaxation due to the Elliot-Yafet (EY)
mechanism at the boundaries is not sensitive to changes in
the in-plane magnetic field orientation. Rather, it is expected

that the EY mechanism gives an additive spin-relaxation rate
over all in-plane field angles. In previous studies, the effect
of the EY mechanism in the wire has been discussed [36,37].
The spin-flip process at the boundary suppressed the highly
polarized spin polarization near the wire edge [36]. Also, more
frequent boundary collision in the narrow wire enhances spin
relaxation [37].

In the QW structures, the cubic Dresselhaus coefficient is
usually smaller than the linear Dresselhaus coefficient. As we
will show later, the physical picture in the experiments does
not require the �3 term and only considers the �1 term in the
analysis. However, it should be noted that since the relative
contribution of the �3 term depends on the α/β1 ratio, wire
direction, and the investigated initial spin state, it is erroneous
to believe that the �3 term is irrelevant.

IV. DYNAMICS OF A HOMOGENEOUS (001)-ORIENTED
SPIN TEXTURE

In the following, we analyze the time evolution of an initial
spin texture that is at time t = 0 homogeneous in real space
and which is parallel to the [001] crystal orientation, i.e.,
s(0) = ẑ. We first present exact solutions for the special cases
in which the magnetic field is either parallel or perpendicular
to the SO field direction �̂1(φ). Thereafter, we concentrate on
the low-damping regime, where the Larmor precession of the
spin texture is observable. In this regime, we can derive simple
analytic formulas for the effective spin-relaxation rates and
oscillation frequencies that are valid for arbitrary directions
of the in-plane magnetic field. For enhanced precision, we
also provide a more generally applicable analytic expression
which provides accurate values for high and moderately high
magnetic fields.

A. Magnetic field parallel to the SO field

For cases in which the magnetic field is parallel to the SO
field, i.e., ω⊥ = 0, the eigenvalues of �0 read as

λ0 = −�3, (20)

λ± = −�1 − 3
2�3 ± iξ‖, (21)

with the corresponding (non-normalized) eigenvectors

v0 = (1, 0, 0), (22)

v± = (0,�3 ± 2iξ‖, 2ω‖), (23)

where ξ‖ =
√

ω2
‖ − �2

3/4. We identify two parameter
regimes: (i) �3 < 2ω‖, which implies that Imξ‖ = 0; and
(ii) �3 > 2ω‖, which implies that Reξ‖ = 0. In case (i), the
term ξ‖ constitutes an effective Larmor frequency, which de-
pends on the spin-relaxation rate �3. In case (ii), the term
iξ‖ contributes to the total effective spin-relaxation rate that
is, as a result, frequency dependent. It is noteworthy that the
eigenvectors are nonorthogonal because �0 is not Hermitian.
The time evolution of an initial spin orientation out of plane is
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given as

s(t ) = 1

4ω‖

∑
±

(
1 ± i

�3

2ξ‖

)
v±eλ±t

= exp

[
−

(
�1 + 3

2
�3

)
t

]
sin (ξ‖t )

×
(

0,−ω‖
ξ‖

, cot (ξ‖t ) − �3

2ξ‖

)
. (24)

For measurements of the z component of the spin density at
time t , we expect

sz(t ) = eReλ±t

[
cos (Imλ±t ) + Reλ0

2Imλ±
sin (Imλ±t )

]
. (25)

B. Magnetic field perpendicular to the SO field

For the case in which the magnetic field is perpendicular to
the SO field, i.e., ω‖ = 0, the eigenvalues of �0 read as

λ0 = −�1 − �3, (26)

λ± = − 1
2 (�1 + 3�3) ± iξ⊥, (27)

where ξ⊥ =
√

ω2
⊥ − (�1 + �3)2/4 with the corresponding

(non-normalized) eigenvectors

v0 = (0, 1, 0), (28)

v± = (λ∓ + �3, 0, ω⊥). (29)

Similar to the discussion above, ξ⊥ denotes an effective Lar-
mor frequency assuming that �1 + �3 < 2ω⊥, and otherwise
ξ⊥ contributes to the spin relaxation. The time evolution of an
initial spin orientation out of plane is given as

s(t ) = 1

2iξ⊥ω⊥

∑
±

±(�3 + λ±)v±eλ±t

= exp

[
−1

2
(�1 + 3�3)t

]
sin (ξ⊥t )

×
(

ω⊥
ξ⊥

, 0, cot (ξ⊥t ) − �1 + �3

2ξ⊥

)
. (30)

For measurement of the z component of the spin density at
time t , the result is equivalent to Eq. (25) when eigenvalues
(20) and (21) are replaced, respectively, by Eqs. (26) and (27).

C. Low-damping regime for arbitrary magnetic field orientation

The spin-relaxation rates were demonstrated earlier to
become frequency independent after exceeding the thresh-
old 2ω⊥ � �1 + �3 for a magnetic field perpendicular
and 2ω‖ � �3 for a magnetic field parallel to the SO
field �1(φ). Asymptotically, we can thereby find simple
analytic frequency-independent expressions for the spin-
relaxation rates for arbitrary magnetic field directions which
are generally valid in the low-damping regime. In the
limit ω � �1 + �3, the eigenvectors of the spin-diffusion
operator (12) are determined predominantly by magnetic-
field-dependent terms. Neglecting �1 and �3, the eigenvalues

are

λ
(0)
0 = 0, (31)

λ
(0)
± = ± iω, (32)

with the respective eigenvectors

v(0)
0 = (cos θ, sin θ, 0), (33)

v(0)
± = ±(−i sin θ, i cos θ,±1)/

√
2. (34)

It is noteworthy that the eigenvalue λ
(0)
0 vanishes because the

related eigenvector corresponds to a spin orientation parallel
to the magnetic field, which does not oscillate in time. By
treating the spin-relaxation contributions �1 and �3 as a weak
perturbation, we can compute the approximate eigenvalues
within standard perturbation theory. Including corrections up
to the second order, we estimate that

λn ≈
2∑

j=0

λ( j)
n with n ∈ {0,±}. (35)

We find that the first-order corrections

λ
(1)
0 = −�1 sin2 θ − �3, (36)

λ
(1)
± = −�1

2
[1 + cos2(θ )] − 3

2
�3 (37)

display spin-relaxation anisotropy because of the presence
of an in-plane magnetic field, whereas the (nonvanishing)
second-order corrections

λ
(2)
± = ± i

8ω

[
3�2

1 sin4 θ − 2�1(2�1 + �3) sin2 θ − �2
3

]
,

(38)

together with the zeroth-order terms λ
(0)
± reproduce the spin-

relaxation-dependent effective Larmor frequency. In short, the
effective spin-relaxation rates and Larmor frequencies in the
low-damping regime are given as

τ−1
s,0± ≈ ∣∣Reλ(1)

0,±
∣∣ (39)

and

ν± ≈ |Im(λ(0)
± + λ

(2)
± )|, (40)

respectively. As shown in Fig. 1, we compare these results
with the exact eigenvalues obtained by the diagonalization of
�0 in Eq. (12). Although the low-damping limit has an as-
sociated assumption of ω � �1 + �3, remarkable agreement
is obtained even for ω ≈ �1 + �3. Next we use earlier results
to compute approximate formulas for the time evolution of the
initial spin texture s(0) = (0, 0, 1) for arbitrary magnetic field
directions. The initial spin texture can be represented by the
approximate eigenvectors as

s(0) = 1
2 [v(0)

+ + v(0)
− ], (41)
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FIG. 1. Effective spin-relaxation rates 1/τs,0,± = |Reλ0,±| [row (i)] and Larmor frequencies ν± = |Imλ±| (ν0 = 0) [row (ii)] in dependence
of the in-plane magnetic field angle θ for different magnitudes of the Larmor frequency ω [columns (a),(b),(c)] and for the ratio of the first and
third angular harmonic spin-relaxation terms �3/�1 = 0.1. The solid lines show the approximate spin-relaxation rates in the low-damping
regime using Eq. (35) and the dashed lines display the real and imaginary parts of the exact eigenvalues given in Eqs. (48) and (52) obtained
by diagonalizing the matrix (12).

which yields finite time t for a large magnetic field

s(t ) ≈ 1

2
[eλ+t v(0)

+ + eλ−t v(0)
− ]

≈ exp

(
− t

τs,±

)
(sin θ sin ν±t,− cos θ sin ν±t, cos ν±t ).

(42)

Consequently, the dynamics are determined by the eigenval-
ues λ±. Because the magnitudes of the real and imaginary
parts of λ± are degenerate, the decay and oscillations can be
described using a single relaxation rate and frequency. The
spin-relaxation anisotropy engenders a change of the effective
spin lifetime

δτs,± = 2�1 sin2 θ

(2�1 + 3�3)(�1 + �1 cos2 θ + 3�3)
, (43)

where δτs,± = τs,± − τmin
s,± with τmin

s = τs(θ = 0). It is also
interesting that, for �1 > �3, the frequency ν± assumes a
global minimum

ν±,min = ω − 1

6ω

(
�2

1 + �1�3 + �2
3

)
(44)

appearing at the angles

θmin = ± arctan

√
2�1 + �3

�1 − �3
(mod π ), (45)

which is illustrated by the example presented in Fig. 2. This
appearance leads to a change of the effective Larmor fre-
quency, such that

δνs,± = νs,± − ν±,min = (�3 − �1 + 3�1 cos2 θ )2

24ω
. (46)

The difference between the global minimum and the adjacent
local maximum is given as

ν±,(π/2) − ν±,min = (�1 − �3)2

24ω
, (47)

and therefore disappears for �3 → �1. In Fig. 3, modulation
of the effective spin lifetime δτs,± and Larmor frequency δν±
are shown in terms of the dependence of the polar angle ϑ [see
Eq. (15)] of the in-plane magnetic field and the distinct wire
directions in the crystal-adherent coordinate system �.
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FIG. 2. The effective Larmor frequency ν±(θ ) = |Imλ±| and the
dependence of the in-plane magnetic field angle θ for ω = 1.6(�1 +
�3). The red solid line corresponds to Eq. (52), i.e., the imaginary
part of the respective eigenvalue obtained by the exact diagonal-
ization of expression (12). The black dashed line represents the
approximation in the low-damping regime, Eq. (35). The blue dashed
grid lines correspond to the approximate angle θmin [Eq. (45)], for
which a global minimum is assumed.

D. Exact eigenvalues for moderately strong magnetic fields

Because of large SO coupling in certain materials, it may
be challenging to achieve the low-damping regime. Expres-
sions for spin relaxation that are more precise and frequency
anisotropy with a range that covers a larger parameter spec-
trum can be useful to support the fitting of data obtained from
experimentation. As a result of the mixing of SO coupling
and the magnetic field, the exact eigenvalues are generally
complex. Moreover, the disentangling of real and imaginary
parts is intricate. By inspection, we find exact expressions
for the effective spin-relaxation rates and Larmor frequen-
cies that hold for ξ := �1/ω �

√
3/

√
1 + ε + ε2, where ε =

�3/�1. Assuming that �1 > �3, this condition simplifies
to ω > �1/

√
3 ≈ 0.58�1. Therefore, the following formulas

also cover moderately large frequencies and extend the results
presented in an earlier section. In this regime, the exact di-
agonalization of Eq. (12) yields the effective spin-relaxation
rates

τ−1
s,n

ω
= 2

3
ξ (1 + 2ε) + f (θ )2/3 − κ

6 f (θ )1/3

{−1, for n = 0
1
2 , for n = ±,

(48)

where

κ = 12 − 4(1 + ε + ε2)ξ 2, (49)

f (θ ) = g(θ ) +
√

κ3 + g(θ )2, (50)

g(θ ) = 4ξ{(2 + ε)[9 + ξ 2(1 + ε − 2ε2)] − 27 sin2(θ )}
(51)

and the effective Larmor frequencies

ν±(θ )

ω
= f (θ )2/3 + κ

4
√

3 f (θ )1/3
, (52)

and ν0 = 0.

V. SAMPLE STRUCTURE AND SPIN-ORBIT
COEFFICIENTS IN GAS/ALGAAS TWO-DIMENSIONAL

ELECTRON GAS

To clarify the anisotropic spin dynamics under an in-
plane magnetic field in narrow wires, we used a 20-nm-thick
GaAs/AlGaAs QW grown on a (001) GaAs substrate. The
Si-doped Al0.3Ga0.7As layer was placed 35 nm above the
GaAs QW layer to make the QW asymmetric, which meant
the Rashba SO field was larger than the Dresselhaus field.
We fabricated 50 parallel wires along the [110], [100], and
[110] crystal orientations by electron beam lithography and
reactive ion etching. All wire widths and lengths are, respec-
tively, 800 nm and 150 μm with 1 μm separation between the
wires. The wire width is designed to be much shorter than the
spin-precession length. The carrier density and mobility were,
respectively, 1.72 × 1011 cm−2 and 1.12 × 105 cm2/V s, as
evaluated from a separately processed Hall bar device at
4.2 K. For time-resolved Kerr rotation (TRKR) microscopy,
we used a mode-locked Ti:sapphire laser which emitted
2-ps-long pulses at a 79.2-MHz repetition rate. The laser
was split into pump and probe beams with delay time t . A
circularly polarized pump beam with a Gaussian width of σpp

was focused on the sample surface to excite out-of-plane spin
polarization, while the linearly polarized probe beam with
a spot size of σpr was overlapped with the pump beam. It
detected the z component of excited spin polarization at the
delay time t . For TRKR measurements in narrow wires, we
set the σpp and σpr to be 15 and 30 μm, respectively. Because
the spot sizes of the pump and probe beams were larger than
both the 800-nm wire width and the spin-precession length,
helical spin textures were not excited in this condition. In
addition, the nonequilibrium spin population was excited in
several wires simultaneously and was detected as spatially
averaged spin dynamics. This corresponds to the detection
of the homogeneous spin texture discussed in Sec. III B.
We applied the constant in-plane magnetic field of Bin =
‖Bin‖ = 0.65 T and rotated its direction as polar angle with
respect to the [110] crystal orientation [Fig. 4(a)]. At each
Bin direction, we applied TRKR microscopy. Before measur-
ing the anisotropic spin dynamics in the wire, we evaluated
the Rashba and Dresselhaus SO coefficients for a nonpro-
cessed sample by employing spatiotemporal Kerr rotation
microscopy. By changing the relative distance r between the
pump and probe beam location using a motor-controlled scan-
ning mirror, we measured the TRKR signal and evaluated the
frequency modulation of the spin precession which originated
from the diffusion-induced SO field. All the optical measure-
ments were taken at 30 K to suppress dynamic nuclear spin
polarization [38].

Considering the theoretical description of spin dynamics
developed in Secs. III and IV, the spin-precession length
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FIG. 3. Modulation of the effective spin lifetime δτs,± [Eq. (43)] (blue dashed lines) and Larmor frequency δν± [Eq. (43)] (green solid line)
depending on the in-plane magnetic field angle ϑ (measured from [110]) and the wire orientation (indicated by wide red lines and the crystal
orientations shown by the plot labels). We select the Larmor frequency and spin-relaxation configuration ω = 1.3(�1 + �3) and �3 = 0.1�1.
We assume a ratio α/β1 = 2 between the Rashba and Dresselhaus SO strength which, together with the wire direction, leads to the specific
orientation of the SO field �1 (displayed by the wide blue lines).

Lu was expected to be larger than wire width W . To
clarify this point, we first investigated the SO coefficients
in the present GaAs QW by spatiotemporal Kerr rotation
microscopy [Fig. 4(a)]. The spins excited by the pump beam
were diffused away from the center position (0,0). At position
(x, y) of the probe beam, the diffusion velocity was found as
the center-to-center distance r between the pump and probe
spots, as described by [39]

vdif = 2Ds

2Dsτs + σ 2
eff

r, (53)

where Ds is the spin-diffusion constant, τs represents the DP
spin-relaxation time, and σeff denotes the convoluted spot
size defined by σ 2

eff = σ 2
pp + σ 2

pr. The spin-precessional mo-
tion is induced by the diffusion velocity vdif under an external
magnetic field Bin = (Bx, By), whose precession frequency
�x,y(vy,x ) is described by

�x,y(vy,x ) = 2m∗

h̄2 (±α + β1)vy,x + geffμB

h̄
Bx,y. (54)

By scanning the probe position along x ‖ [110] and y ‖
[110], one can detect the SO-induced frequency modula-

tion d�x,y(vy,x )/dr, which is proportional to the Rashba and
Dresselhaus SO coefficients [Fig. 4(a)]. Figure 4(b) shows
the representative color-coded time–space map of TRKR
traces along the y scan with σeff = 11 μm in Bin = Bxx̂ with
Bx = −0.65 T. The spin-precession frequency is modulated
depending on the probe position, and can be attributed to
the diffusion-induced SO field. We continued mapping TRKR
traces by scanning along both the x and y axes under fixed
Bin = 0.65 T for different σeff sizes. Then we extracted the
precession frequency |�meas| by fitting the normalized Kerr
signal

sz = exp
(
− t

τs

)
cos(|�meas|t + ζ ), (55)

where |�meas| is the Larmor frequency and ζ is the phase
shift. Figure 4(c) shows the evaluated frequency modulation
defined by �so = |�meas| − geffμBBx,y/h̄ as a function of x
or y in various σeff , where the effective g factor is evaluated
for both the pump and probe beams at the position (x, y) =
(0, 0). The linear variation in �so can be attributed to the
position-dependent diffusion velocity described by Eq. (54).
The corresponding linear slope of �so (d�so/dr) reflects the
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FIG. 4. Methods to evaluate Rashba and Dresselhaus SO coefficients: First, (a) shows that the excited spins by the pump beam are diffused
away from the center position (0,0). The diffusion velocity vdif is determined by Eq. (53). The right figure expresses the SO field depending
on electron momentum when α and β1 is negative. Also, (b) shows the color-coded time-space map of TRKR traces along the y scan with
σeff = 11 μm in Bx = −0.65 T. In (c), the evaluated frequency modulation is depicted as a function of x or y in various σeff . Panel (d) shows
plots d�so/dx and d�so/dy as functions of 1/(2Dsτs + σ 2

eff ) to clarify the SO contribution by fitting with Eqs. (56) and (57).

total SO coefficient and the spot size described in Eqs. (53)
and (54). This is readily apparent by changing the spot size
from σeff = 11 μm to 20 μm for the y-scan measurements
in Bx = −0.65 T shown as the filled circles and squares,
respectively, in Fig. 4(c), where the larger spots induce smaller
d�so/dr. In the case of the spots of similar sizes shown as
filled circles (11 μm, y scan in Bx = −0.65 T) and triangles
(10 μm, x scan in By = +0.65 T) in Fig. 4(c), d�so/dr are
reduced in the x-scan measurements because of the subtrac-
tive contribution between the Rashba and Dresselhaus SO
fields. To quantitatively evaluate the SO contributions, we
plot d�so/dx and d�so/dy as functions of 1/(2Dsτs + σ 2

eff )
in Fig. 4(d). The value of Ds = 0.0114 m2/s was ascertained
from the spatially resolved expansion of the spin polarization
[40]. The linear variation of d�so/dr in Fig. 4(d) can be
described as

d�so/dx = 4m∗Ds

h̄2

−α + β1

2Dsτs + σ 2
eff

, (56)

d�so/dy = −4m∗Ds

h̄2

α + β1

2Dsτs + σ 2
eff

. (57)

By fitting with Eqs. (56) and (57), we evaluated the Rashba
and Dresselhaus SO coefficients as α = −3.22 × 10−13 eV m
and β1 = −1.37 × 10−13 eV m, respectively. The minus sign
in Eq. (57) reflects the negative value of Bx. The corre-
sponding spin-precession lengths Lu(φ) are calculated as 8.69,
11.40, and 21.57 μm, respectively, for the [110], [100], and
[110] crystal orientations, all of which are much longer than

the 800-nm-wire width. These findings ensure the condition
of 1D diffusive approximation for spin. In addition, the Fermi
wavelength and mean free path are evaluated as λF = 60 nm
and le = 0.76 μm, respectively, satisfying the narrow wire
condition of λF 	 le � W .

VI. SPIN DYNAMICS IN WIRE STRUCTURES ALONG THE
[110], [100], AND [110] CRYSTAL ORIENTATIONS FOR

VARIOUS IN-PLANE MAGNETIC FIELD ANGLES

Next, we investigate the spin dynamics in GaAs/AlGaAs-
based wires along the [110], [100], and [110] crystal
orientations under the in-plane magnetic field Bin = 0.65 T
for various Bin(ϑ ) direction, where ϑ is defined from the
x ‖ [110] orientation [Fig. 5(a)].

Figure 5(b) shows the color-coded plot of TRKR ampli-
tude as functions of the Bin(ϑ ) direction and delay time t in
the [110] wire. The directions of Bin(ϑ = 90◦) and Bin(ϑ =
180◦) correspond to (Bin ⊥ [110]), which is perpendicular,
and (Bin ‖ [110]), which is parallel to the wire direction
[Fig. 5(a)]. It is also noteworthy that the first angular har-
monics of the SO field �1 in the [110] wire are perpendicular
to the wire direction (�1 ⊥ [110]) because of the strong lat-
eral confinement. When Bin(ϑ ) is rotated from ϑ = 90◦ to
ϑ = 180◦, the spin-relaxation time is enhanced, as is indicated
by the unchanging colored TRKR amplitude, which clearly
remains at around 2 ns for Bin(ϑ = 180◦). On the other hand,
the precession frequency is reduced for Bin(ϑ = 180◦) be-
cause the precession phase is shifted slightly towards a longer

094434-9



JUNPEI SONEHARA et al. PHYSICAL REVIEW B 105, 094434 (2022)

FIG. 5. Results of TRKR measurements in wire structures by applying the in-plane magnetic field Bin = 0.65 T at various Bin (ϑ ) direction.
Panel (a) represents the angle of the SO and external fields for the [110] wire. Panel (b) shows the color-coded plot of TRKR amplitude as
functions of Bin (ϑ ) directions and the delay time t for the [110] wire. Also, panel (c) shows the evaluated τs and |�meas| fitting by Eq. (55).
Panels (d)–(f) show the TRKR amplitude for the [110], [100], and [110] wires where the Bin (ϑ ) is parallel (blue circles) and perpendicular
(red triangles) to the angle of the SO field.

delay time than that of the TRKR trace in Bin(ϑ = 90◦). The
difference in the TRKR traces shown in Fig. 5(f) is clear
evidence of the frequency modulation between the Bin(ϑ =
90◦) and Bin(ϑ = 180◦) angles. Particularly, these two condi-
tions satisfy the developed analytical model in Eqs. (24) and
(30), which correspond to the time evolution of the spin z com-
ponent in an in-plane magnetic field parallel [Bin(ϑ = 90◦)]
and perpendicular [Bin(ϑ = 180◦)] to the SO field, respec-
tively. Here, because the third angular harmonic term �3 is
two orders of magnitude smaller than the Larmor frequency
in the sample, we can explain the entire physics without
considering the �3 term. Based on Eqs. (24) and (30), two
striking effects emerge in the spin-relaxation rate and pre-
cession frequency. For the magnetic field parallel to the SO
field [Bin(ϑ = 90◦)] where spin precession takes place in the
x-z plane, the precession frequency is defined solely by the
external magnetic field (ξ‖) in Eq. (24). This is because the
spin-relaxation rate for x(‖ [110])- and z(‖ [001])-oriented
spins is the same due to lateral confinement. As a result, the
spins along the x and z directions experience identical torques
during precession, resulting in no spin-relaxation anisotropy.
In such a case, the spin-relaxation rate is simply governed by
the �1 term, i.e., �1 ⊥ [110], in Eq. (24). For the magnetic
field perpendicular to the SO field [Bin(ϑ = 180◦)], where
spin precession occurs in the y-z plane [Fig. 5(a)], spin relax-
ation is suppressed for spin orientations along the y direction

parallel to �1. This results in anisotropic spin relaxation be-
tween y- and z-oriented spins. As a result, the spin-relaxation
rate is reduced by a factor of 2 in Eq. (30). Such spin-
relaxation anisotropy also reduces the precession frequency to
ξ⊥ in Eq. (30). Similar modulation on the spin-relaxation rate
and precession frequency is also observed in [110] and [100]
wires under a Bin(ϑ ) field parallel and perpendicular to the SO
field [Figs. 5(d) and 5(e)], clearly indicating the interaction
between the SO and in-plane magnetic field directions. To
elucidate the observed anisotropic spin dynamics in the wire,
we used Eq. (55) to quantitatively evaluate τs and |�meas| in
various Bin(ϑ ) directions. Representative fitting results are
shown as the black curves in Figs. 5(d)–5(f). For the [110]
wires, Fig. 5(c) summarizes all the extracted τs and |�meas|,
indicated by the filled circles and triangles, respectively, as
a function of the Bin(ϑ ) direction. Because of the spatial
symmetry of the measurement configurations, we safely ex-
tend the result to 0◦ � ϑ < 90◦ and 270◦ < ϑ � 360◦, as
shown by the open symbols. Both τs and |�meas| show oscilla-
tory behavior with respect to the Bin(ϑ ) direction. To further
understand the spin-relaxation and frequency anisotropy in
wires, we conducted the same analysis in other wires to extract
τs and |�meas| under various Bin(ϑ ) direction and summarized
the results for all [110], [100], and [110] wires as polar plots
in Figs. 6(a)–6(f). The blue solid lines are the fitted curves
from Eqs. (48) and (52). All the wire orientations exhibit

094434-10



ANISOTROPIC SPIN DYNAMICS IN SEMICONDUCTOR … PHYSICAL REVIEW B 105, 094434 (2022)

FIG. 6. The spin-relaxation time and the frequency anisotropy in [110], [100], and [110] wires by applying the in-plane magnetic field
Bin = 0.65 T at various Bin (ϑ ) direction. The blue solids are the fitted curves from Eqs. (48) and (52). The orange dashed line connects the
maximum points. The red line corresponds to the wire orientations. The spin-relaxation time is approximately doubled when ϑ is perpendicular
to the SO field. On the other hand, the precession frequency decreased when ϑ is perpendicular to the SO field.

anisotropy both for the spin-relaxation time [Figs. 6(a)–6(c)]
and the precession frequency [Figs. 6(d)–6(f)], in which their
amplitude and direction strongly depend on the wire orienta-
tion. For the [110] and [110] wires, the induced anisotropies
on the spin relaxation and the precession frequency are paral-
lel and perpendicular to the wire orientation, respectively. This
orientation is understood because both the Rashba and Dres-
selhaus SO fields are parallel (antiparallel) to each other in
the [110] ([110]) crystal orientation, and the total SO field �1

remains perpendicular to the wire orientation. Because of the
additive contribution to the two SO fields in the [110] wires,
the τs value is smaller than that of the [110] wires by a factor
of 10. The spin-relaxation anisotropy defined by τs(Bin(ϑ ) ⊥
�1)/τs(Bin(ϑ ) ‖ �1) was found to be 1.91 and 1.53 for the
[110] and [110] wires, respectively. In Figs. 6(d) and 6(f),
because the total SO field in the [110] wires is larger than
that in [110] wires, the corresponding frequency anisotropy is
also enhanced in the [110] wires, where an additional kink
structure is observed around Bin(ϑ = 90◦) in Fig. 6(d). In
the case of the [100] wires, on the other hand, the induced
anisotropy is tilted from the wire orientation even though the
orthogonal anisotropy between spin relaxation and precession
frequency is maintained. This tilt in anisotropy occurs because
the Dresselhaus SO field is perpendicular to the Rashba SO
field in the [100] crystal orientation [Fig. 4(a)]. Consequently,
the total SO field �1 is tilted from the wire orientation.
The ratio of τs(Bin(ϑ ) ⊥ �1)/τs(Bin(ϑ ) ‖ �1) was 1.99 for
the [100] wire. These characteristic features in the TRKR
measurements are in excellent agreement with the developed
theory presented in Fig. 3. According to Eqs. (43) and (46),

the induced anisotropy is governed by the spin-relaxation
rate �1.

For the quantitative evaluation of �1, i.e., the Rashba and
Dresselhaus SO coefficients, we fit the τs and |�meas| accord-
ing to the theoretical description of effective τs and the Larmor
frequency ν for arbitrary Bin(ϑ ) direction. It is noteworthy
that we neglect �3 for the fitting because �3 is much smaller
than �1 in our sample. Because the Larmor frequency under
Bin = 0.65 T is comparable to �1, we used Eqs. (48) and
(52) to adopt moderately strong magnetic fields. The blue
solid curves in Figs. 6(a)–6(f) show the fitting results for
each wire orientation, and are in remarkably good agreement
with the experimentally obtained results. The maximum and
minimum τs differ by a factor of 2, as predicted from theory.
This was reproduced in the experiments except in the case
of the [110] wire. This is because the SO field is small in
the case of the [110] wire, and the influence of the EY spin-
relaxation mechanism is therefore relatively large. In both the
experiments and the fitting for the [110] and [100] wires, the
Larmor frequency shows the kink when the Bin(ϑ ) is parallel
to the SO field direction. Similar behavior was also observed
in the weak localization anisotropy in the wire. It can be
explained by the partial symmetry recovery [41]. The eval-
uated �1 values for the [110], [100], and [110] wires and the
corresponding theoretical values are presented in Table I. For
the theoretical values, we used the SO coefficients obtained
from spin-diffusion measurements in Fig. 4. The �1 from
Larmor frequency ν is in good agreement with the theoretical
values, whereas the �1 from effective τs fitting is larger than
the theoretical values by a factor of 2 to 3. These findings
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TABLE I. �1 values for each wire evaluated from the SO field [Eq. (13)] and fitting in Fig. 6.

Wire direction [110] [100] [110]

Theoretical value 45.43 26.39 7.29
Fitted Larmor frequency anisotropy (109 s−1) 34.34 29.53 7.59
Fitted spin-relaxation time anisotropy (ns) 147.72 61.87 11.73

indicate the evaluated spin-relaxation times in the wires are
smaller than we expected from the Rashba and Dresselhaus
SO coefficients evaluated. It is possible that the reason for
this discrepancy is that spin relaxation other than the DP
mechanism contributes to the reduction of τs, such as diffusive
scattering at the wire edge and/or the EY spin-relaxation
mechanism near the wire edge. We have measured the wire-
width dependence of spin-relaxation time for the [110] wire
(not shown). As the wire width decreases from 15 to 1 μm, the
spin-relaxation time is monotonously increased from 100 to
920 ps. Several theoretical models are proposed in wire-width
dependence of spin-relaxation time by considering either the
DP or the EY mechanism. In the case of the DP mechanism
as the dominant contribution, in quasi-1D wires with a spec-
ular boundary, spin-relaxation time is increased with the wire
width decreases, but is saturated by further decreases in the
wire width since multiple specular scattering at the boundary
does not contribute to suppressing the spin relaxation [42]. On
the other hand, with a diffusive boundary, the spin-relaxation
time is kept longer for narrower wire because the motion
narrowing is effectively enhanced by the diffusive scattering
at the wire edge [42]. The effect of the EY mechanism on
narrow wires has been also investigated [36,37]. As the wire
width is decreased, the spin-relaxation time decreases because
of the more frequent boundary collisions, resulting in the
enhancement of the EY mechanism. If the EY mechanism
at the boundary dominantly takes place, the spin-relaxation
time should decrease in narrower wires, which was not the
case in our experimental results. This indicates that the EY
mechanism at least partly contributes to the spin relaxation
and a more systematic study will be necessary to clarify the
EY mechanism in the wire structures. Another possible reason
is that the mean free path is similar in length to the wire
width, and these could be modifications to the spin-relaxation
theory [43]. However, because the Larmor frequency is purely
induced by the SO field and external magnetic field, it is less
affected by other non-SO-related mechanisms. Consequently,
we use �1 obtained from the frequency anisotropy to eval-
uate the Rashba and Dresselhaus SO coefficients. Using the
orthogonal relation between the Rashba and Dresselhaus SO
fields along the [100] crystal orientation, we directly separate
α and β1 coefficients solely from the [100] wire. Given the
similarity of the weak localization anisotropy [41,44,45], the
Bin(ϑ ) direction at the largest Larmor frequency in the [100]
wire is described as

β1

α
= tan(45◦ − η). (58)

The observed η in Fig. 6(e) is 18◦ with respect to the x ‖ [110]
axis, corresponding to β1/α = 0.51. Together with �1(φ =
45◦) = 2τ (

√
α2 + β2

1 kF/h̄)2 = 29.53 × 109 s−1, we evalu-
ate α and β1, respectively, as −3.28 × 10−13 and −1.67 ×

10−13 eV m. These values are in good agreement with the
SO values obtained from the spin-diffusion measurements in
Fig. 4, enabling us to make a precise evaluation of the SO
coefficients in the wire structure.

VII. CONCLUSION

We have theoretically and experimentally investigated
anisotropic spin dynamics in semiconductor narrow wires
induced by the interaction between the spin-orbit field and
the Larmor precession under an in-plane magnetic field.
The developed theory describes the modulation of the spin-
relaxation rate and the spin-precession frequency depending
on the in-plane magnetic field angle with respect to the SO
field direction. Depending on the spin-precessional plane de-
termined by the in-plane magnetic field direction, the SO
field induces spin-relaxation anisotropy or isotropy between
perpendicular and in-plane spins to the in-plane magnetic
field, resulting in a modulation of the precession frequency
and the spin-relaxation rate. There is a twofold difference
in the spin-relaxation rate depending on whether the mag-
netic field is applied parallel or perpendicular to the SO
field direction. In addition, the predicted anisotropy in the
spin-relaxation rate and the precession frequency are orthog-
onal. Using 800-nm-width wires along the [110], [100], and
[110] crystal orientations based on a GaAs/AlGaAs quantum
well, we demonstrated the predicted anisotropy on both spin
relaxation and precession frequency by time-resolved Kerr
rotation microscopy at 30 K. For [110] and [110] wires, be-
cause the Rashba and Dresselhaus SO fields are aligned in
the same direction (perpendicular to the wire orientation),
the spin-relaxation time is the longest (shortest) when the
in-plane magnetic field is parallel (perpendicular) to the wire
orientation. The precession frequency exhibits the opposite
symmetry, where the frequency is reduced when the in-plane
magnetic field is parallel to the wire orientation. In the case of
the [100] wire, even though such anisotropic behaviors with
respect to the SO field are also observed, the anisotropy is
tilted from the wire orientation because the two SO fields are
mutually orthogonal. All results are in good agreement with
the developed theory. The Rashba and Dresselhaus SO coef-
ficients obtained from the [100] wires are virtually identical
to the values independently evaluated from the spin-diffusion
measurements. This study paves the way to the precise control
of the spin state and to the ability to accurately evaluate the
SO coefficient in narrow wires, thereby providing important
insights into quantum and topological information based on
semiconductor 1D wires.
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ther supported by the Center for Science and Innovation in
Spintronics at Tohoku University, Japan. M.K. and J.N. are
supported via a Grant-in-Aid for Scientific Research (Grant
No. 21H04647) from the Japan Society for the Promotion
of Science. This work was also supported by the JST FOR-
EST Program (Grant No. JPMJFR203C). D.I. acknowledges
financial support from the Graduate Program in Spintronics at
Tohoku University.

APPENDIX: SPIN DIFFUSION WITH SPECULAR
BOUNDARIES

1. Non-Abelian gauge field representation

In order to consider the boundary effects on spin diffusion,
it is illuminating to realize that because of the first angular
harmonics in the SO field �1 in the spin-diffusion operator
(9), the SO contributions can be interpreted as ramifications
of a non-Abelian gauge field A. The latter couples to the wave
vector q → q + 2eA/h̄ and allows the rewriting of Eq. (9) in
a compact form [46], as

�(q) = [ω]× − Ds

[
q + 2e

h̄
A(�1)

]2

− τ̂−1
DP(�3), (A1)

where a gauge field component parallel to an arbitrary unit
vector n̂ reads as

An = 2ih̄2τ

eDsm∗ 〈kn[�1]×〉 = ih̄

2evF
[�1(k = kFn̂)]×. (A2)

The second equality holds because 〈knkm〉 = δnmk2
F/d . When

an electron diffuses along the direction n̂, the gauge field
component An induces spin rotations about the vector
�1(k = kFn̂). Full rotation is performed if 2e‖An‖Ln/h̄ =
2π , which defines the spin-precession length along n̂ as
Ln = 2π‖�1(k = kFn̂)‖/vF and the associated wave vector
Qn = 2π/Ln = vF/‖�1(k = kFn̂)‖ [47]. Matrix norm ‖An‖
gives the maximum singular value of An. Moreover, because
〈k εnlm �l〉2 = 〈�n�m − �2δmn〉 k2

F/d , the term Ds(2eA/h̄)2

is equivalent to the DP tensor τ̂−1
DP with � = �1. Therefore,

the DP tensor in expression (A1) depends solely on the con-
tribution of the third angular harmonic SO field �3.

2. Spin-conserving specular boundary condition

To derive a spin-diffusion equation for narrow quantum
wires of width W , we assume spin-reflecting walls perpen-
dicular to the longitudinal direction of the wire, i.e., in
an arbitrary transverse direction û ⊥ ẑ at ru = ±W/2. The
walls constitute a barrier through which the spin-diffusion
current cannot pass and therefore impose the following
condition [19]:

0 = û · js(r, t )
∣∣
ru=±W/2 (A3)

for the spin-current density js, with the tensorial com-
ponents jsm

n , where n, m ∈ {x, y, z}. In compliance with
Eqs. (8) and (A1), the expression for a current-density vector

component js
u = ( jsx

u , j
sy
u , jsz

u ) in real space in the direction of
the boundaries (unit vector û) takes the form [19,34]

js
u(r, t ) = Ds

i

(
−i

∂

∂ru
+ 2e

h̄
Au

)
s(r, t ). (A4)

By performing a non-Abelian gauge transformation s → s′ =
UAsU †

A , where UA = exp(i2eAuru/h̄), the equation simplifies
to the Neumann boundary condition as

∂s′(r, t )

∂ru
= 0. (A5)

An infinite orthonormal basis set of transverse
spin-density modes that satisfy this equation is
{1/

√
W ,

√
2/

√
W cos[nπ (ru/W − 1/2)]} with n ∈ N+ [34].

3. Spin diffusion in narrow wires

In mesoscopic wires, where widths W are smaller than
the dephasing lengths lφ (mean free path between inelastic
scattering events), the diffusion is dominated by the lowest
diffusion mode 〈ru|0〉 ≡ 1/

√
W , called a zero mode, which

is a constant function along û in the gauge-transformed sys-
tem [cf. Eq. (A5)]. Projecting the spin-diffusion operator
(A1) on the zero mode, i.e., �0(q) := 〈0|UA�(q)U †

A |0〉, is
known as the zero-mode or the 1D-diffusive approximation
because the diffusion becomes one-dimensional. By applying
the gauge transformation together with the zero-mode approx-
imation, the consequences are as follows: (i) it removes the uth
component of the kinetic momentum (first term on the right-
hand side) in Eq. (A1) because 〈0|UA(qu + 2eAu/h̄)U †

A |0〉 =
0; and (ii) it yields corrections proportional to W Qu =
W vF/‖�1(k = kFû)‖ because UA = 1 + O(W Qu). For nar-
row wires, where the spin-precession length Lu is much
greater than the wire width W , i.e., W Qu 	 1, the spin re-
laxation severely slows for certain spin textures [19,21,34,48–
50]. In leading order, one can neglect the corrections O(W Qu)
and the spin decoherence associated with the first harmonic
SO field for wave vectors along û, i.e., �1(k = kFû), dis-
appears completely. In this limit, the spin-diffusion operator
is equivalent to Eqs. (9) and (A1) when setting qu → 0 and
Au → 0 [or equivalently �1(k) → �1(ku = 0)], i.e., we ob-
tain

�0(q) ≈ [ω]× − Ds

[
q + 2e

h̄
A(�1)

]2

qu=Au=0

− τ̂−1
DP(�3).

(A6)

The resulting expression resembles the spin-diffusion operator
for a 1D-confined system, where the boundary engenders sub-
band quantization and only the lowest subband is occupied.
In such a scenario, the contribution of �1 for wave vectors
parallel to û also vanishes. However, two crucial differences
exist in Eq. (A6): (i) Because the averaging 〈·〉 is performed
over the 2D Fermi sphere, the diffusion constant differs by a
factor 2 from the 1D case. (ii) In a 1D-confined system, the k-
cubic SO terms would also be subject to size quantization, but
such is not the case in the 1D-diffusive wires. Moreover, the
DP tensor in Eq. (A6), involving the third angular harmonics
�3, remains that of a 2D-diffusive system.
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