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Symmetry analysis of bond-alternating Kitaev spin chains and ladders
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In this work, we analyze the nonsymmorphic symmetry-group structures for a variety of generalized Kitaev
spin chains and ladders with bond alternations, including Kitaev-Gamma chain, Kitaev-Heisenberg-Gamma
chain, beyond-nearest-neighbor interactions, and two-leg spin ladders. The symmetry analysis is applied to
determine the symmetry-breaking patterns of several magnetically ordered phases in the bond-alternating Kitaev-
Gamma spin chains, as well as the dimerization order parameters for spontaneous dimerizations. Our work is
useful in understanding the magnetic phases in related models and may provide guidance for the symmetry
classifications of mean field solutions in further investigations.
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I. INTRODUCTION

The honeycomb Kitaev spin- 1
2 model [1] is an exactly

solvable model which hosts spin-liquid ground state as well as
fractional excitations including Majorana fermions and non-
Abelian anyons [2]. Since the seminal work of Jackeli and
Khaliullin [3] in which a realistic method for realizing the
Kitaev model in solid-state systems is proposed, the field of
Kitaev materials has grown into an intensely studied research
area in the past decade [4–17], and fruitful results have been
obtained. However, real materials typically involve additional
non-Kitaev interactions [4,18–22], which spoil the exact solv-
ability of the model and in many cases favor magnetically
ordered rather than spin-liquid ground states [8,23–25]. Sym-
metries typically play important roles in the theoretical studies
of the generalized Kitaev models, including the determina-
tions of symmetry-breaking patterns for the ordered phases,
the derivations of low-energy field theories, and the classifi-
cations of mean field solutions in the approach of projective
symmetry groups [26,27]. Aside from the spin- 1

2 case, higher
spin Kitaev models have also been actively investigated, due
to their relevance with real magnetic materials [28–33].

From a theoretical point of view, there are intrinsic
difficulties in studying generic strongly correlated two-
dimensional (2D) systems both analytically and numerically.
Therefore, investigations in reduced dimensionality, i.e., in
one-dimensional (1D) systems, can be useful and valuable to
better understand the 2D physics since there are more con-
trollable theoretical tools in 1D [34–42]. Recently, there have
been a series of theoretical works on the phase diagrams of 1D
generalized Kitaev models [43–53]. A plethora of interesting
phases have been found, including emergent conformal invari-
ance, Luttinger liquid phases, magnetically ordered phases,
nonlocal string orders, and spin liquids.

On the other hand, bond alternation is a ubiquitous phe-
nomenon in 1D spin systems, which can be induced by the
spin-Peierls transition via the coupling with phonons. The

bond-alternating Kitaev-Gamma chain has been studied for
the spin- 1

2 and spin-1 cases [50,51], both exhibiting a rich
phase diagram. However, the structures of the symmetry
groups for bond-alternating Kitaev spin models have not been
analyzed before.

In this work, we perform a systematic study on the
symmetry groups of generalized Kitaev spin chains and
ladders with bond alternations, from Kitaev-Gamma to
Kitaev-Heisenberg-Gamma models, from nearest-neighbor to
beyond-nearest-neighbor interactions, and from chains to two-
leg ladders. We find rich nonsymmorphic symmetry group
structures which involve compositions of spatial operations
and global spin rotations. In particular, with the help of the
six-sublattice rotation [46], the symmetry group G of a bond-
alternating Kitaev-Gamma chain is found to satisfy G/〈T6a〉 ∼=
Oh, where Oh is the full octahedral group and 〈T6a〉 represents
the group generated by translation of six lattice sites. We
note that because of the nonsymmorphic structure, G is not
a semidirect product of Oh and 〈T6a〉. Instead, G is a nontrivial
group extension of Oh by 〈T6a〉.

As applications, the symmetries are used to analyze several
scenarios. The symmetry-breaking patterns are derived for the
magnetically ordered FMU6 , M1, and M2 phases discovered in
Ref. [50], as well as the FMU6 , MO, and MI phases discovered
in Ref. [51]: Oh → D4 for FMU6 ; Oh → D3 for MO, M1,
M2; and Oh → D2 for MI . The center-of-mass spin directions
in a unit cell for the Oh → D4, Oh → D3, and Oh → D2

symmetry-breaking patterns are found to point towards the
face centers, vertices, and edge middles of a spin cube, re-
spectively, in the corresponding 6-fold, 8-fold, and 12-fold
degenerate ground states, where Dn is the dihedral group of
order 2n. In addition, the relations among dimerization order
parameters are determined for the spontaneous dimerization,
and the structure of the symmetry group is analyzed when a
nonzero magnetic field is applied along the (1,1,1) direction.
Our work is useful to better understand various magnetic
phases in bond-alternating 1D Kitaev spin models, and may
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FIG. 1. Bond patterns of the bond-alternating Kitaev-Gamma
chain (a) before the six-sublattice rotation, (b) after the six-sublattice
rotation. The thick colored lines represent bonds with anisotropy gx ,
and the thin lines represent gy.

provide guidance for the symmetry classifications of mean
field solutions in further investigations.

The rest of the paper is organized as follows. In Sec. II,
a detailed analysis is given to the symmetry aspects of the
dimerized Kitaev-Gamma chain, including the model Hamil-
tonian, the symmetry-group structure, the symmetry-breaking
patterns of several magnetic phases, and the effect of an
external magnetic field. Section III is devoted to the more
general Kitaev-Heisenberg-Gamma model, as well as beyond-
next-nearest-neighbor interactions. In Sec. IV, the Kitaev spin
ladders are analyzed. Finally, in Sec. V, we briefly summarize
the results of the paper.

II. BOND-ALTERNATING KITAEV-GAMMA SPIN CHAIN

In this section, we first show that the symmetry group
G of a bond-alternating Kitaev-Gamma spin chain satisfies
G/〈T6a〉 ∼= Oh, where Tna is the translation by n sites and
〈 . . . 〉 represents the group generated by the operations within
the brackets. We also point out that G is a nontrivial group
extension of Oh by 〈T6a〉. Compared with the uniform Kitaev-
Gamma spin chain (i.e., without bond alternation) whose
symmetry-group structure has been demonstrated in Ref. [46]
to be Gu/〈T3a〉 ∼= Oh, we see that the symmetries are “halved”
in the bond-alternating case.

Then we discuss a variety of the applications of the symme-
try analysis, including derivations of the symmetry-breaking
patterns of several magnetically ordered phases discovered
in Refs. [50,51], symmetry constraints for dimerization order
parameters in spontaneous dimerizations, and the symmetry
group in a nonzero magnetic field along (1,1,1) direction.

A. The Hamiltonian

In accordance with Refs. [50,51], the Hamiltonian of a
bond-alternating Kitaev-Gamma spin chain is defined as

H =
N/2∑
l=1

(
gxH (x)

2l−1,2l + gyH (y)
2l,2l+1

)
, (1)

in which N is system length, N + 1 is identified with 1, and

H (γ )
i, j = KSγ

i Sγ

j + �
(
Sα

i Sβ
j + Sβ

i Sα
j

)
, (2)

where α �= β ∈ {x, y, z} are the two directions other than γ .
The pattern for the bond γ is shown in Fig. 1(a), which
alternates between x and y. When gx = gy, Eq. (1) reduces
to the isotropic Kitaev-Gamma model studied in Ref. [46].
We note that there are two free parameters θ and g in H ,

defined by

K = cos(θ ), � = sin(θ ), g = gy/gx. (3)

A useful transformation is the six-sublattice rotation U6,
which is defined as [46]

Sublattice 1 : (x, y, z) → (x′, y′, z′),

Sublattice 2 : (x, y, z) → (−x′,−z′,−y′),

Sublattice 3 : (x, y, z) → (y′, z′, x′),

Sublattice 4 : (x, y, z) → (−y′,−x′,−z′),

Sublattice 5 : (x, y, z) → (z′, x′, y′),

Sublattice 6 : (x, y, z) → (−z′,−y′,−x′), (4)

in which “Sublattice i” (1 � i � 6) represents all the sites
{i + 6n|n ∈ Z} in the chain, and Sα (S′α) is abbreviated as
α (α′) for short (α = x, y, z). Unlike the uniform case where
the transformed Hamiltonian has a three-site periodicity, the
Hamiltonian H in Eq. (1) is six-site periodic after the U6 trans-
formation. Denoting H ′ to be the transformed Hamiltonian,
we have

H ′ =
∑

〈i j〉∈γ bond

[g0 + (−)i−1δ]

× [−KSγ

i Sγ

j − �
(
Sα

i Sα
j + Sβ

i Sβ
j

)]
, (5)

in which 〈i j〉 denotes the nearest-neighboring bond connect-
ing sites i and j, and

g0 = gx + gy

2
, δ = gx − gy

2
. (6)

The bond structure for H ′ is shown in Fig. 1(b), which shows
a screw pattern going as x − z − y. Appendix A explicitly
displays the terms of H ′ in a six-site unit cell.

Here we make some comments on the density matrix
renormalization group (DMRG) numerics that we employ. We
solve numerically the dimerized Kitaev-Gamma chain using
the DMRG method [40,41] on a chain of a length up to 144
sites for the spin- 1

2 and up to 48 sites for the spin-1 cases,
both with periodic boundary conditions. Several sweeps are
performed to reach convergence using up to m = 800 DMRG
states keeping a truncation error below 10−6.

B. Symmetries

It can be verified that the transformed Hamiltonian in
Eq. (5) is invariant under the following transformation:

1. T :
(
Sx

i , Sy
i , Sz

i

) → (−Sx
i ,−Sy

i ,−Sz
i

)
,

2. R−1
a T2a :

(
Sx

i , Sy
i , Sz

i

) → (
Sy

i+2, Sz
i+2, Sx

i+2

)
,

3. RI ITa :
(
Sx

i , Sy
i , Sz

i

) → (−Sz
7−i,−Sy

7−i,−Sx
7−i

)
,

4. R(x̂, π ) :
(
Sx

i , Sy
i , Sz

i

) → (
Sx

i ,−Sy
i ,−Sz

i

)
,

5. R(ŷ, π ) :
(
Sx

i , Sy
i , Sz

i

) → (−Sx
i , Sy

i ,−Sz
i

)
,

6. R(ẑ, π ) :
(
Sx

i , Sy
i , Sz

i

) → (−Sx
i ,−Sy

i , Sz
i

)
, (7)

in which T is the time-reversal operation; R(α̂, π ) (α =
x, y, z) are global spin rotations around α̂ directions which
form a Z2 × Z2 subgroup of the whole symmetry group;
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FIG. 2. Actions of the symmetry transformations in spin space as
symmetry operations of a spin cube.

Tna (n ∈ Z) is the translation operator by n lattice sites where
“a” represents the lattice constant; I is the inversion operator
with respect to site 4 or, alternatively, we can write ITa as I ′
where I ′ is the inversion operation with respect to the center
of the bond between sites 3 and 4; RI = R(n̂I , π ) is a π

rotation around the n̂I = (1, 0,−1)/
√

2 direction; and Ra =
R(n̂a, 2π/3) is a 2π/3 rotation around the n̂a = (1, 1, 1)/

√
3

direction. In general, R(n̂, φ) is used to denote a global spin
rotation around n̂ direction by an angle φ. The symmetry
group G is generated by the above transformations, i.e.,

G = 〈
T, RI ITa, R−1

a T2a, R(x̂, π ), R(ŷ, π ), R(ẑ, π )
〉
. (8)

As can be seen from Fig. 2, if we ignore the spatial com-
ponents involving I, Ta in Eq. (7), then the actions of all
symmetry transformations restricted within the spin space are
symmetry transformations of the three-dimensional spin cube.
In particular, the time-reversal operation can be viewed as
inversion within the spin space since it changes the sign of the
spin operators. The above observation indicates that the sym-
metry group G is closely related to the Oh group, which is the
symmetry group of a cube. Indeed, we are able to show that

G/〈T6a〉 ∼= Oh, (9)

which will be proved in Sec. II C.
Notice that six is the smallest period for the spatial transla-

tion symmetry, hence, G/〈Tna〉 is meaningful only for n ∈ 6Z.
In contrast, the period is three for a uniform Kitaev-Gamma
chain (i.e., gx = gy), and as a result, Gu/〈T3a〉 ∼= Oh in the
uniform case, where Gu is the symmetry group for gx = gy.
Comparing the group structures of G with Gu, we see that
the symmetries in G are halved with respect to Gu. This is
intuitively correct since an alternation of stronger and weaker
bonds is introduced.

C. Proof of G/〈T6a〉 ∼= Oh

We give a proof for the group structure G/〈T6a〉 ∼= Oh.
The method is similar with the analysis in Ref. [46], where
Gu/〈T3a〉 ∼= Oh is proved for the uniform Kitaev-Gamma
chain.

The proof consists of two parts, including G/〈T6a〉 ⊆ Oh

and |Oh| � |G/〈T6a〉|, where |A| represents the order (i.e.,
number of elements) of the group A.

1. G/〈T6a〉 ⊆ Oh

There is a generator-relation representation for the Oh

group [54]:

Oh = 〈r, s, t |r2 = s2 = t2 = (rs)3 = (st )4 = (rt )2 = e〉,
(10)

in which e is the identity element, and the geometri-
cal meanings of the generators r, s, t are three reflections.
We are going to construct r, s, t out of {T, R−1

a T2a, RI ITa,

R(x̂, π ), R(ŷ, π ), R(ẑ, π )}, and verify the following two asser-
tions:

(1) r, s, t satisfy the relations in Eq. (10) in the sense of
modulo T6a = (rs)3.

(2) All symmetry operations in Eq. (7) can be obtained
from r, s, t .

Notice that assertion 1 ensures that 〈r, s, t〉/〈T6a〉 is a sub-
group of Oh, whereas assertion 2 ensures that G is equal to
〈r, s, t〉. Then, G/〈T6a〉 has to be a subgroup of Oh as a result
of the above two assertions.

The generators can be constructed as follows:

r = T RI ITaT−6a,

s = T
(
R−1

a T2a
)
RI ITa

(
R−1

a T2a
)−1

,

t = T R(ŷ, π ). (11)

In spin space, their actions are given by

r (x, y, z) → (z, y, x) reflection to ABA′B′ plane,

s (x, y, z) → (y, x, z) reflection to ACA′C′ plane,

t (x, y, z) → (x,−y, z) reflection to xz plane,
(12)

in which the second and the third columns show the actions
in the spin space (where Sα is denoted as α for short) and
the geometrical meanings as symmetries of a cube in Fig. 2,
respectively. It can be proved that

r2 = s2 = t2 = (st )4 = (rt )2 = 1, (rs)3 = T6a. (13)

Detailed verifications of the relations in Eq. (13) are included
in Appendix B. Notice that T6a = (rs)3 belongs to the group
generated by {r, s, t}, and it can be easily seen that 〈T6a〉 is
a normal subgroup. Hence, the quotient 〈r, s, t〉/〈T6a〉 forms
a group. Then, Eq. (13) implies assertion 1, and as a conse-
quence, 〈r, s, t〉/〈T6a〉 ⊆ Oh.

Next we verify assertion 2. The constructions go as fol-
lows:

T = (rs)−1(st )2r(st ),

RI ITa = (st )2rsts(rs)3,

R−1
a T2a = rs,

R(x̂, π ) = r(ts)2r,

R(ŷ, π ) = sr(st )2rs,

R(ẑ, π ) = (st )2, (14)

which demonstrates that G = 〈r, s, t〉. The verifications of
Eq. (14) are included in Appendix C.
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TABLE I. List of 24 of the proper group elements of the point
group Oh, which form the group O. The 24 improper elements in
the group Oh can be obtained from the elements in this table by
multiplying with the time-reversal operation, i.e., (rs)−1(st )2r(st ).
In accordance with the notations in Fig. 2, OM represents the vector
pointing from the center of the cube (i.e., the point O) to the vertex
or the direction M, where M is one of A, A′, B, B′, C, C′, D, D′

when it is a vertex of the cube, or is one of X, Y, Z, X ′, Y ′, Z ′ when
it represents a direction. X, Y, Z represent the positive directions of
the three axes x, y, z, and X ′, Y ′ Z ′ represent the negative directions
of the three axes. The symbol [MN] represents the line passing
through the point that bisects the edge MN ′ and the point that bisects
M ′N , where M, N, M ′, N ′ are all vertices of the cube. The third,
fourth, fifth, and sixth columns give the action in the spin space, the
geometrical meaning, the spatial component, and the expression in
terms of the generators, for each symmetry operation, respectively.

E 1 (x, y, z) 1 1 e

3C2 2 (x,−y, −z) R(OX, π ) 1 r(ts)2r
3 (−x, y, −z) R(OY, π ) 1 sr(st )2rs
4 (−x, −y, z) R(OZ, π ) 1 (st )2

6C4 5 (x, z,−y) R(OX, π

2 ) IT−7a trsr

6 (x, −z, y) R(OX ′, π

2 ) IT−7a rsrt

7 (−z, y, x) R(OY, π

2 ) IT−5a rsts

8 (z, y, −x) R(OY ′, π

2 ) IT−5a stsr

9 (y, −x, z) R(OZ, π

2 ) IT−3a st

10 (−y, x, z) R(OZ ′, π

2 ) IT−3a ts

6C′
2 11 (y, x, −z) R([AC], π ) IT−5a rsrtsr

12 (−y, −x, −z) R([BD], π ) IT−3a r(ts)2rst
13 (z,−y, x) R([AB], π ) IT−5a rt
14 (−z,−y, −x) R([CD], π ) IT−5a (st )2rsts
15 (−x, z, y) R([AD], π ) IT−a strs
16 (−x, −z,−y) R([BC], π ) IT−a tsrtst

8C3 17 (y, z, x) R(OA, 2π

3 ) T2a rs

18 (z, x, y) R(OA′, 2π

3 ) T−2a sr

19 (−y, −z, x) R(OB, 2π

3 ) T2a trst

20 (z,−x, −y) R(OB′, 2π

3 ) T−2a tsrt

21 (y, −z,−x) R(OC, 2π

3 ) T2a stsrst

22 (−z, x, −y) R(OC′, 2π

3 ) T−2a tsrsts

23 (−y, z,−x) R(OD, 2π

3 ) T2a (st )2rs

24 (−z,−x, y) R(OD′, 2π

3 ) T−2a sr(ts)2

2. |Oh| � |G/〈T6a〉|
To further prove Oh

∼= G/〈T6a〉, it is enough to show that
|Oh| � |G/〈T6a〉| since we have already shown that the latter
is a subgroup of the former. For this, we will construct 48
distinct elements within G/〈T6a〉. Using the fact that |Oh| =
48, the statement follows directly.

The construction of 24 distinct elements in G/〈T6a〉 is
shown in the last column in Table I. The third and the fourth
columns both give the actions of the corresponding transfor-
mations restricted within the spin space, and the fifth column
gives the spatial components of the symmetries. The expres-
sions in the table can be checked using the similar method as
the one used in Appendix C.

Since the 24 elements all have distinct actions in the
spin space, they of course must be different when spatial
components are also taken into account. The other 24
elements can be obtained by multiplying those in Table I
with time-reversal operation T = (rs)−1(st )2r(st ). Since the
determinants of the corresponding matrices of the linear trans-
formations in spin space become −1 after composing with T ,
the newly obtained 24 elements must be different from the
older ones. This proves that |G/〈T6a〉| � 48.

D. Group extension

In this section, we make some further comments on
the group structure of the symmetry group G. Although
G/〈T6a〉 ∼= Oh, we will show that G is not a semidirect product
of Oh and 〈T6a〉. In fact, G corresponds to a nontrivial group
extension of Oh by 〈T6a〉.

First, we briefly review some basic facts about group ex-
tensions [55]. Consider the following short exact sequence,

1 −→ N
i−→ G0

π−→ H → 1, (15)

in which 1 represents the trivial group containing a single
element, the arrows represent group homomorphisms, N is
an Abelian group, i and π are group homomorphisms which
are injective and surjective, respectively, and Ker(π ) = Im(i).
Given Eq. (15), G0 is called a group extension of H by N .
Since the homomorphism i is injective, N can be naturally
viewed as a subgroup of G0 via the embedding induced by i.
Furthermore, since Ker(π ) = Im(i) ∼= N and π is surjective,
N is a normal subgroup of G0 and H ∼= G0/N . As a result,
there is a natural group action ϕ of H on N , defined as

ϕh(n) = xhn(xh)−1, (16)

in which h ∈ H , n ∈ N , and xh ∈ G0 satisfies π (xh) = h. In
this way, N becomes an H module via ϕ. Notice that although
the choice of xh is not unique (up to some element in N), ϕh is
well defined since N is Abelian.

Equation (15) determines how G0 is formed out of H and
N . A simple example is G0 as a semidirect product of H
and N , i.e., G0

∼= N �ϕ H , where ϕ is the group action under
consideration. In this case, H can be naturally viewed as a
subgroup of G0 or, equivalently, there exists an injective group
homomorphism τ : H → G0 such that π · τ = id where “the
center dot” represents the composition of maps and id is the
identity map on H . However, in more general situations, τ

may not exist and G0 is not of a semidirect product structure.
In fact, it is known that group extensions can be classified by
the second cohomology group H2(H, N ) [56], and semidirect
products correspond to the trivial element in H2(H, N ). A
brief review for the relation between group extensions and
H2(H, N ) is given in Appendix D.

Coming back to the case of dimerized Kitaev-Gamma
model, we have the short exact sequence

1 −→ 〈T6a〉 i−→ G
π−→ Oh → 1. (17)

We will show that there does not exist any group homo-
morphism τ : Oh → G such that π · τ = id , thereby negating
the semidirect product structure. We prove by contradic-
tion. Suppose otherwise such a group homomorphism τ
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exists. Consider R−1
a T2a ∈ G, and let y = π (R−1

a T2a). Since
π (τ (y)) = π (R−1

a T2a) = y, τ (y) and R−1
a T2a must only differ

by an element in Ker(π ) = 〈T6a〉, i.e., there exists n ∈ Z, such
that τ (y) = R−1

a T(2+6n)a. Since τ is assumed to be a homomor-
phism, we have

τ (y3) = [τ (y)]3 = T(1+3n)6a. (18)

Notice that T(1+3n)6a ∈ Ker(π ), hence,

π (τ (y3)) = e, (19)

where e is the identity element in Oh. On the other hand,
recall that π · τ = 1, thus y3 = e. However, for τ to be a group
homomorphism, we must have

τ (y3) = τ (e) = e0, (20)

where e0 is the identity element in G. Clearly, Eq. (20) con-
tradicts with Eq. (18), since 1 + 3n can never be 0 (so that
T(1+3n)6a �= e0 for whatever n ∈ Z).

The above result can be understood from the point of view
of the second cohomology group. Since 〈R−1

a T2a〉 is a sub-
group of G, we may consider the following exact sequence:

1 −→ 〈T6a〉 i−→ 〈
R−1

a T2a
〉 π−→ C3 → 1, (21)

in which C3 � Z3(= Z/3Z) is the cyclic group of order three,
a subgroup of Oh obtained from the image of 〈R−1

a T2a〉 under
the homomorphism π . A cleaner way to write Eq. (21) is

1 −→ Z
i−→ 1

3Z
π−→ Z3 → 1. (22)

Notice that in this case, since R−1
a T2a commutes with T6a, the

group action of Z3 on Z is trivial, i.e., ϕa(b) = b for any a ∈
Z3, b ∈ Z. On the other hand, it is known that H2(Z3,Z) ∼=
Z3 for such trivial group action [57]. Indeed, the dimerized
Kitaev-Gamma chain corresponds to a nontrivial element in
H2(Z3,Z).

E. Symmetry-breaking patterns of magnetically ordered phases

We apply the previous symmetry analysis to several
magnetically ordered phases in the spin-S bond-alternating
Kitaev-Gamma chain. We will figure out the symmetry-
breaking patterns for the FMU6 , M1, and M2 phases in the
spin- 1

2 case discovered in Ref. [50], as well as the FMU6 , MO,
and MI phases in the spin-1 case in Ref. [51]. Three differ-
ent types of symmetry-breaking patterns are found, including
Oh → D4, Oh → D3, and Oh → D2.

1. The FMU6 phase: Oh → D4

The FMU6 phase appears in both spin- 1
2 and spin-1 cases.

The spin orderings in one of the degenerate ground states in
the FMU6 phase are given by

〈�S1+6n〉 = cẑ, 〈�S2+6n〉 = bẑ, 〈�S3+6n〉 = bẑ,
(23)

〈�S4+6n〉 = cẑ, 〈�S5+6n〉 = aẑ, 〈�S6+6n〉 = aẑ,

which have been shown numerically in Ref. [50] for the spin- 1
2

case, and in Ref. [51] for the spin-1 case. We will demonstrate
that the unbroken symmetry group of the pattern in Eq. (23) is

H1 = 〈T R(ŷ, π ), st, T6a〉, (24)

in which s and t as two of the generators of the full symmetry
group are given in Eq. (11). It can be verified that the expres-
sion of st can be simplified as

st = R

(
ẑ,−π

2

)
IT−3a. (25)

Let us figure out the allowed spin-ordering patterns which
are invariant under H1. First notice that T6a belongs to H1,
hence, the spin alignments are six-site periodic. We will fo-
cus on a single unit cell in which the site indices should be
understood as modulo six. The actions of the two generators
of H1 on the spins are

T R(ŷ, π ) :

⎛
⎝Sx

i

Sy
i

Sz
i

⎞
⎠ →

⎛
⎝ Sx

i

−Sy
i

Sz
i

⎞
⎠,

st :

⎛
⎝Sx

i

Sy
i

Sz
i

⎞
⎠ →

⎛
⎝−Sy

5−i

Sx
5−i

Sz
5−i

⎞
⎠. (26)

Therefore, the invariance under H1 requires

Sx
i = −Sy

5−i = 0, Sz
5−i = Sz

i . (27)

Denoting〈
Sz

1

〉 = 〈
Sz

4

〉 = c,
〈
Sz

2

〉 = 〈
Sz

3

〉 = b,
〈
Sz

5

〉 = 〈
Sz

6

〉 = a, (28)

we obtain Eq. (23).
Next, we prove that H1/〈T6a〉 is isomorphic to D4, where

Dn is the dihedral group of order 2n. First, we show
that H1/〈T6a〉 is a subgroup of D4. For this, the following
generator-relation representation of the Dn group is needed
[54]:

Dn = 〈a, b|an = b2 = (ab)2 = e〉. (29)

Let st = a1 and T R(ŷ, π ) = b1. It can straightforwardly be
checked that

(a1)4 = 1, (b1)2 = 1, (a1b1)2 = 1, (30)

which are all e in the sense of modulo T6a. Hence, the two
generators of H1/〈T6a〉 satisfy the relations in Eq. (29), and
as a result, H1/〈T6a〉 must be a subgroup of D4. Second, to
further prove that H1/〈T6a〉 ∼= D4, it is enough to show that
H1 contains at least |D4| = 8 group elements. Eight distinct
elements can be constructed as

{1, a1, (a1)2, (a1)3, a1b1, (a1)2b1, (a1)3b1}. (31)

These eight operations are mutually distinct since when
restricted to the spin space, they correspond to the eight sym-
metry operations of the square AB′CD′ in Fig. 2.

The above analysis proves that the symmetry-breaking pat-
tern for the FMU6 phase is Oh → D4. Since |Oh/D4| = 6,
there are six degenerate ground states. The center-of-mass
directions of the six spins in a unit cell point to the ±x̂, ±ŷ, and
±ẑ directions in the six degenerate states, which correspond to
the face centers of the cube in Fig. 2.

2. The M1, M2, and MO phases: Oh → D3

The M1 and M2 phases are found in the spin- 1
2 bond-

alternating Kitaev-Gamma chain [50], and the MO phase is
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found in the spin-1 case [51], which all exhibit a six-site
periodicity in the spin orderings. The spin expectation values
in a unit cell in all these three phases are given by (ηα = ±1,
where α = x, y, z)

〈�S1〉 =
⎛
⎝ηxa

ηyb
ηzc

⎞
⎠, 〈�S2〉 =

⎛
⎝ηxa

ηyc
ηzb

⎞
⎠, 〈�S3〉 =

⎛
⎝ηxc

ηya
ηzb

⎞
⎠,

〈�S4〉 =
⎛
⎝ηxb

ηya
ηzc

⎞
⎠, 〈�S5〉 =

⎛
⎝ηxb

ηyc
ηza

⎞
⎠, 〈�S6〉 =

⎛
⎝ηxc

ηyb
ηza

⎞
⎠, (32)

which is numerically shown for the M1 and M2 phases in the
spin- 1

2 case in Ref. [50], and for the MO phase in the spin-1
case in Ref. [51]. Clearly, the ground states are eightfold
degenerate, and the center-of-mass spin directions in a unit
cell in the corresponding eight degenerate ground states point
to the eight vertices of the spin cube in Fig. 2. We will demon-
strate that in the sense of modulo T6a, the residual symmetry
group of the spin alignments in Eq. (32) is D3. Hence, the
symmetry-breaking pattern is Oh → D3.

Consider the group

H2 = 〈
R−1

a T2a, s
〉
, (33)

in which s is given in Eq. (11). It has been verified in Eq. (11)
that s = MACIT3a, in which MAC is a reflection in the spin
space, defined as MAC : (x, y, z) → (y, x, z).

According to Eq. (7), the invariance under R−1
a T2a requires

xi+2 = zi, yi+2 = xi, zi+2 = yi. (34)

Hence, the spin orderings must be

〈�S1〉 =
⎛
⎝a

b
c

⎞
⎠, 〈�S3〉 =

⎛
⎝c

a
b

⎞
⎠, 〈�S5〉 =

⎛
⎝b

c
a

⎞
⎠,

〈�S2〉 =
⎛
⎝a′

b′
c′

⎞
⎠, 〈�S4〉 =

⎛
⎝c′

a′
b′

⎞
⎠, 〈�S1〉 =

⎛
⎝b′

c′
a′

⎞
⎠. (35)

The action of MACIT3a is

MACIT3a : (xi.yi, zi ) → (y5−i, x5−i, z5−i ). (36)

Thus, the invariance under MACIT3a requires

a′ = a, b′ = c, c′ = b, (37)

which reduces Eq. (35) to Eq. (32).
The above analysis demonstrates that the unbroken sym-

metry group for the ground state corresponding to ηx = ηy =
ηz = 1 is the group H2 defined in Eq. (33). Next, we prove that
H2/〈T6a〉 is isomorphic to D3. Let a2 = R−1

a T2a, and b2 = s.
Then clearly

(a2)3 = T6a, (b2)2 = 1, (a2b2)2 = 1. (38)

According to Eq. (29), H2/〈T6a〉 satisfies the generator-
relation representation for the D3 group, hence, it is a
subgroup of D3. Furthermore, the following six elements are
all distinct:

{1, a2, (a2)2, b2, a2b2, (a2)2b2} (39)

since when restricted to the spin space, they correspond to the
six symmetry operations of the green dashed triangle in Fig. 2.
As a result, H2/〈T6a〉 and D3 are isomorphic to each other.

In conclusion, the symmetry-breaking pattern is Oh →
D3. Since |Oh/D3| = 8, the ground-state degeneracy is eight,
which is consistent with Eq. (32).

3. The MI phase: Oh → D2

In Ref. [51], it is shown that there is an MI phase in the
phase diagram of the spin-1 bond-alternating Kitaev-Gamma
model, in which the spin alignments have six-site periodicity.
We will demonstrate that the unbroken symmetry group for
the MI phase is isomorphic to the D2 group in the sense of
modulo T6a. Hence, the symmetry-breaking pattern is Oh →
D2, corresponding to 12-fold ground-state degeneracy since
|Oh/D2| = 12. Using the residual unbroken D2 symmetry
group, the spin alignments in one of the 12 degenerate ground
states can be determined as

〈�S1+6n〉 =
⎛
⎝c1

0
c2

⎞
⎠, 〈�S2+6n〉 =

⎛
⎝a

0
b

⎞
⎠, 〈�S3+6n〉 =

⎛
⎝a′

0
b′

⎞
⎠,

〈�S4+6n〉 =
⎛
⎝b′

0
a′

⎞
⎠, 〈�S5+6n〉 =

⎛
⎝b

0
a

⎞
⎠, 〈�S6+6n〉 =

⎛
⎝c2

0
c1

⎞
⎠. (40)

It is straightforward to see that the center-of-mass spin direc-
tion of the six spins in a unit cell in Eq. (40) points to the
middle of the edge AB′. More generally, the center-of-mass
spin directions in the 12 degenerate ground states are directed
at the middle points of the 12 edges of the spin cube in Fig. 2.
We note that in Ref. [51], the spin alignments are identified to
be given by Eq. (40), with the relations c1 = c2, a = a′, and
b = b′. However, these additional constraints are generally not
satisfied according to the symmetry analysis.

Consider the following group as the unbroken symmetry
group,

H3 = 〈T R(ŷ, π ), rt, T6a〉, (41)

in which rt can be worked out as

rt = RABITa, (42)

where RAB is a π rotation in the spin space defined as

RAB :
(
Sx

i , Sy
i , Sz

i

) → (
Sz

i ,−Sy
i , Sx

i

)
. (43)

Clearly, the invariance of the spin orderings under T R(ŷ, π )
requires that Sy

i = 0. On the other hand, the action of RABITa

is given by

RABITa :
(
Sx

i , Sy
i , Sz

i

) → (
Sz

7−i,−Sy
7−i, Sx

7−i

)
. (44)

Therefore, within a six-site unit cell, the invariance under
RABITa leads to

Sx
1 = Sz

6 = c1, Sz
1 = Sx

6 = c2,

Sx
2 = Sz

5 = a, Sz
2 = Sx

5 = b, (45)

Sx
3 = Sz

4 = a′, Sz
3 = Sx

4 = b′,

which is consistent with Eq. (40).
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FIG. 3. Spin alignments in the spin-1 bond alternating Kitaev-
Gamma chain at θ = 0.15π and g = 2, where K = sin(θ ), � =
cos(θ ), and g = gy/gx . A small magnetic field h = 10−4 along (1,0,1)
direction is applied to polarize the system into the ground state in
Eq. (40). DMRG calculations are performed on a finite chain of
L = 48 sites with periodic boundary conditions.

Next, we prove that H3/〈T6a〉 ∼= D2. Let a3 = rt , b3 =
T R(ŷ, π ). It can be easily seen that

(a3)2 = (b3)2 = (a3b3)2 = 1. (46)

According to Eq. (29), this demonstrates that H3/〈T6a〉 is a
subgroup of D2. In addition, there are at least four distinct
group elements in H3/〈T6a〉, which are given by

{1, a3, b3, a3b3}. (47)

The operations in Eq. (47) are all distinct since when restricted
to the spin space, they correspond to the four symmetry oper-
ations which leave invariant the line connecting the middle
points of AB′ and A′B in Fig. 2. Therefore, the order of
H3/〈T6a〉 is no less than the order of D2. Hence H3/〈T6a〉 must
be isomorphic to D2.

As shown in Fig. 3, we have used DMRG numerics to
calculate the spin expectation values for θ = 0.15π , g = 2
in the spin-1 bond-alternating Kitaev-Gamma model, which,
according to Ref. [51], lies in the MI phase, where K = sin(θ ),
� = cos(θ ), and g = gy/gx. A small magnetic field h = 10−4

is applied along the (1,0,1) direction, such that the state having
spin alignments given in Eq. (40) is picked out among the 12
symmetry-breaking ground states. We find that the pattern of
spin expectation values in Eq. (40) is satisfied, with

c1 = 0.6315, c2 = 0.6326,

a = 0.7148, a′ = 0.7093,

b = 0.3864, b′ = 0.3968. (48)

Notice that c1, c2 are very close, so are a, a′ and b, b′, which is
probably the reason why Ref. [51] identifies them to be equal.

F. Dimerization order parameters

Spontaneous dimerization can be induced in the spin chain
when the system is coupled to phonons via spin-Peierls effect.
It also arises in the J1 − J2 models when the coupling of the
next-nearest-neighbor interaction is beyond a critical value.

In this section, we derive the order parameters for the sponta-
neous dimerization based on a symmetry analysis.

When the system spontaneously develops an alternation
of strong and weak bonds, the symmetry-breaking pattern
is Gu → G, in which Gu/〈T3a〉 ∼= Oh and G/〈T6a〉 ∼= Oh, i.e.,
there is a Z2 symmetry breaking and the only broken symme-
try is T3a.

The relations among dimerization order parameters can be
determined using the unbroken symmetry group G. First no-
tice that the global Z2 × Z2(= {1, R(x̂, π ), R(ŷ, π ), R(ẑ, π )})
symmetries are unbroken, hence, all expectation values of
cross products 〈Sα

i Sβ
j 〉 (α �= β) vanish. Therefore, we inves-

tigate the following order parameters:

Oα
i = Sα

i Sα
i+1 − Sα

i+3Sα
i+4. (49)

In one of the two dimerized states, since T6a is an unbroken
symmetry, the expectation values of Oα

i satisfy〈
Oα

i

〉 = −〈
Oα

i+3

〉
. (50)

Hence, it is enough to consider i ∈ {6n + 1, 6n + 2, 6n + 3}.
Furthermore, the actions of R−1

a T2a and RI ITa are given by

R−1
a T2a :

〈
Oα

i

〉 → 〈
OR−1

a α

i+2

〉
,

(51)
RI ITa :

〈
Oα

i

〉 → −〈
ORI α

3−i

〉
,

which lead to the following relations:

A = 〈
Oy

1+6n

〉 = 〈
Oz

1+6n

〉 = −〈
Ox

2+6n

〉
= −〈

Oy
2+6n

〉 = 〈
Ox

3+6n

〉 = 〈
Oz

3+6n

〉
,

B = 〈
Ox

1+6n

〉 = −〈
Oz

2+6n

〉 = 〈
Oy

3+6n

〉
. (52)

An implication of Eqs. (50) and (52) is

〈�Si · �Si+1〉 − 〈�Si+3 · �Si+4〉 = (−)i−1(4A + 2B). (53)

Notice that 〈�Si · �Si+1〉 = 〈�Si+2 · �Si+3〉 since R−1
a T2a is a resid-

ual symmetry. Therefore, the conventional dimerization order
parameter does not vanish:

(−)i〈�Si · �Si+1〉 + (−)i+1〈�Si+1 · �Si+2〉 = −(4A + 2B). (54)

As an example, we consider the nearest-neighbor spin- 1
2

Kitaev-Gamma chain with an additional Heisenberg term in
the six-sublattice rotated frame. The Hamiltonian is

Hnn =
∑

〈i j〉∈γ bond

[−KSγ

i Sγ

j − �
(
Sα

i Sα
j + Sβ

i Sβ
j

)]

+
∑
〈〈i j〉〉

J2 �Si · �S j, (55)

in which 〈〈i j〉〉 denotes a next-nearest-neighboring bond, and
the pattern for the bond γ is shown in Fig. 1(b). We emphasize
that Hnn is not a realistic Hamiltonian describing real Kitaev
materials since the Heisenberg term acquires a weird form in
the original frame. The system defined by Eq. (55) is con-
sidered solely for the purpose of demonstrating spontaneous
dimerization in a pure spin model without introducing the
coupling to phonons.

As discussed in Ref. [46], when J2 = 0 in Eq. (55), there
is an emergent SU(2)1 phase in the phase diagram of the uni-
form spin- 1

2 Kitaev-Gamma chain. The low-energy theory is
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FIG. 4. Absolute values of the spin correlation functions |〈Sα
1 Sα

1+r〉| (α = x, y, z) at (a) J2 = 0 and (b) J2 = 0.2. In both (a) and (b), the
horizontal axes are sin(πr/L); the vertical and horizontal axes are plotted in logarithmic scales; φ = 0.15π where K = cos(φ) and � = sin(φ);
DMRG numerics are performed on a system of L = 144 sites with periodic boundary conditions.

described by the SU(2)1 Wess-Zumino-Witten (WZW) model,
given by

H = 2π

3
v

∫
dx( �JL · �JL + �JR · �JR) − gc

∫
dx �JL · �JR, (56)

in which �Jα (α = L, R) are WZW current operators, v is the
velocity, and gc > 0 is the coupling of the marginal operator
�JL · �JR. It is known that the marginal term is irrelevant (rele-
vant) when gc > 0 (<0) [39]. In particular, the �JL · �JR term is
irrelevant in the emergent SU(2)1 phase of the spin- 1

2 Kitaev-
Gamma chain, though there are logarithmic corrections in the
correlation functions due to its marginality [39,46].

When a nonzero J2 is turned on in Eq. (55), the low-energy
theory remains SU(2) symmetric. Hence, the low-energy
Hamiltonian is still given by Eq. (56), albeit with renormal-
ized values of v and gc. When gc changes sign, the �JL · �JR

term becomes marginally relevant. As a result, gc flows to
strong coupling in the low-energy limit, giving rise to a dimer-
ized phase [39] with broken translational symmetry. As an
example, the φ = 1.15π point lies in the emergent SU(2)1

phase [46], where K = cos(φ) and � = sin(φ). According
to Supplemental Material in Ref. [46], the critical value
of J2 for φ = 1.15π separating the gapless and dimerized
phases is Jc2 = 0.135. Hence, we expect that a spontaneous
dimerization develops in the system when J2 > Jc2, and the
dimerization order parameters should satisfy the relations in
Eq. (52).

Next, we proceed to numerical checks of the above sym-
metry and field theory predictions. Figures 4(a) and 4(b)
show the spin-spin correlation functions 〈Sα

1 Sα
1+r〉 (α = x, y, z)

for J2 = 0 and J2 = 0.2, respectively, where φ = 1.15π .
DMRG numerics are performed on a system of L = 144 sites.
Clearly, the correlation functions exhibit a power-law behav-
ior when J2 = 0, consistent with the predicted Luttinger liquid
behavior. However, when J2 = 0.2, the correlations decay ex-
ponentially at long distances, indicating an absence of rank-1
spin orders.

Figure 5 displays the dimerization order parameters de-
fined in Eq. (49) in the presumably dimerized phase at J2 =
0.2. A very small dimerization ε = 10−3 is introduced into
the system to polarize the ground state into one of the two

degenerate dimerized states, where ε = (gx − gy)/(gx + gy).
It can be straightforwardly observed that the relations in
Eq. (52) are satisfied, and the values of the dimerization order
parameters can be extracted as

A = 0.1039, B = 0.1263. (57)

G. Magnetic field along (1,1,1) direction

In this section, we discuss the symmetry group of the
system when a magnetic field is applied along the (1,1,1)
direction. According to Eq. (4), the uniform magnetic field
becomes staggered after six-sublattice rotation. The Hamilto-
nian in the six-sublattice rotated frame is given by

H ′
h =

∑
〈i j〉∈γ bond

(g0 + (−)i−1δ)
[−KSγ

i Sγ
j

− �
(
Sα

i Sα
j + Sβ

i Sβ
j

)] + h
∑

i

(−)i
(
Sx

i + Sy
i + Sz

i

)
. (58)

FIG. 5. Dimerization order parameters 〈Oα
i 〉 (α = x, y, z) at J2 =

0.2. φ = 0.15π where K = cos(φ) and � = sin(φ), and DMRG
numerics are performed on a system of L = 144 sites with periodic
boundary conditions. Only a range of sites is shown for better illus-
trations of the patterns.
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The remaining symmetries of H ′
h among the operations in

Eq. (7) are R−1
a T2a and RI ITa. Hence, the symmetry group Gh

is generated by these two operations, i.e.,

Gh = 〈
R−1

a T2a, RI ITa
〉
. (59)

We will prove that

Gh/〈T6a〉 ∼= D3. (60)

Denote ah = R−1
a T2a and bh = RI ITa. It is straightforward

to verify that

(ah)3 = T6a, (bh)2 = 1, (ahbh)2 = 1. (61)

Since Gh/〈T6a〉 satisfies the generator-relation representation
of the D3 group, it must be a subgroup of D3. On the other
hand, the following six elements in Gh/〈T6a〉 are all distinct:

{1, ah, (ah)2, bh, bhah, bh(ah)2}. (62)

This is because the operations in Eq. (62), when restricted to
the spin space, correspond to the six symmetry operations of
the green dashed triangle in Fig. 2. Hence, |Gh/〈T6a〉| � |D3|.
Combining the established fact that Gh/〈T6a〉 is a subgroup of
D3, we conclude that Gh/〈T6a〉 is isomorphic to D3.

We also note that the symmetry group Gh is nonsymmor-
phic, which cannot be written as a semidirect product structure
as D3 � 〈T6a〉. This is because R−1

a T2a remains to be an ele-
ment in Gh, so that the analysis in Eq. (21) still applies.

III. BOND-ALTERNATING
KITAEV-HEISENBERG-GAMMA CHAIN

In this section, we generalize the previous symmetry analy-
sis to bond-alternating Kitaev-Heisenberg-Gamma spin chain.
We also briefly discuss more general cases, including the
Kitaev-Heisenberg-Gamma-�′ model, and interactions be-
yond the nearest-neighbor level.

A. Kitaev-Heisenberg-Gamma chain

The symmetry group G1u of a uniform Kitaev-Heisenberg-
Gamma (KH�) spin chain has been shown in Ref. [47]
to satisfy G1u/〈T3a〉 ∼= D3d . In this section, we discuss the
bond-alternating KH� spin chain, and demonstrate that its
symmetry group G1 satisfies G1/〈T6a〉 ∼= D3d .

The Hamiltonian is defined as Eq. (1), in which H (γ )
i, j is

replaced by

H (γ )
i, j = KSγ

i Sγ

j + �
(
Sα

i Sβ
j + Sβ

i Sα
j

) + J �Si · �S j . (63)

It can be verified that after six-sublattice rotation, the Hamil-
tonian becomes

H ′ =
∑

〈i j〉∈γ bond

[g0 + (−)i−1δ]
[−(K + J )Sγ

i Sγ

j

− �
(
Sα

i Sα
j + Sβ

i Sβ
j

) − J
(
Sα

i Sβ
j + Sβ

i Sα
j

)]
. (64)

Compared with Eq. (7), the elements in the Z2 × Z2 sub-
group {1, R(x̂, π ), R(ŷ, π ), R(ẑ, π )}, except the identity, are
no longer symmetries of the model. As discussed in Sec. II G,
the symmetry group generated by {R−1

a T2a, RI ITa} modulo T6a

is D3. Hence, in the sense of modulo T6a, the symmetry group

G1 of the bond-alternating KH� spin chain is

G1/〈T6a〉 ∼= D3 × ZT
2 (∼= D3d ) (65)

since T acts as inversion in the spin space. Again, R−1
a T2a

is a group element of G1, and G1 is nonsymmorphic as a
consequence of the short exact sequence in Eq. (21).

We make a comment on the relations between the symme-
try operations in the rotated and unrotated frames. As can be
easily seen from Fig. 1(a), the symmetry group of the Hamil-
tonian in the unrotated frame for the bond-alternating KH�

model is generated by T , T2a, and ITa. By straightforward
calculations, it can be shown that

U −1
6 RaTaU6 = T2a, U −1

6 RI ITaU6 = ITa. (66)

Hence, the symmetry groups in the rotated and unrotated
frames just differ by a U6 transformation, which is as ex-
pected. However, we note that the Z2 × Z2 symmetry for
the bond-alternating Kitaev-Gamma model acquires a com-
plicated form with six-site periodicity in the original frame,
as discussed in Ref. [46].

B. �′ term and interactions beyond nearest neighbor

The �′ term on the bond γ ∈ {x, y} in the original frame is
defined as

�′(Sγ
i Sα

j + Sα
i Sγ

j + Sγ
i Sβ

j + Sβ
i Sγ

j

)
, (67)

which should be included in Eq. (2). In addition to time-
reversal symmetry, it is straightforward to see that T2a and
ITa in Eq. (2) remain to be the symmetries even when a
nonzero �′ term is added. Therefore, comparing with the
Kitaev-Heisenberg-Gamma chain, the symmetry group of a
bond-alternating Kitaev-Heisenberg-Gamma-�′ chain in the
six-sublattice rotated frame remains to be D3d in the sense of
modulo 〈T6a〉.

Finally, we consider interactions beyond the nearest-
neighbor level. At nth-neighbor level (n � 2), the couplings
correspond to a z bond [20], i.e., γ = z in Eq. (2) where
j = i + n. Again, the bond structure is invariant under both
T2a and ITa in the original frame. Hence, the symmetry group
remains to be isomorphic to D3d modulo 〈T6a〉.

IV. KITAEV SPIN LADDERS

In this section, we discuss the symmetry-group structure of
two-leg Kitaev spin ladders.

A. Bond-alternating Kitaev spin ladders

The bond-alternating generalized Kitaev-Gamma two-leg
spin ladder is shown in Fig. 6. In the ladder case, the six-
sublattice rotation defined in Eq. (4) is performed for both the
upper and lower chains in Fig. 6(a), and it can be verified that
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FIG. 6. The bond patterns of the bond-alternating generalized
Kitaev spin ladder (a) before the six-sublattice rotation, (b) after the
six-sublattice rotation. The thick colored lines represent bonds with
anisotropy gx , and the thin lines represent gy.

the bond pattern after the transformation is given by Fig. 6(b).
It is clear that all the symmetries in the chain remain to be
symmetry operations of the ladder, except that the inversion
ITa for the chain should be replaced by reflection M for the
ladder, where M is defined as

M : �S+,i → �S+,7−i, �S−,i → �S−,7−i, (68)

in which the subscripts + and − represent the upper and lower
chains in the ladder, respectively. In addition to the symme-
tries inherited from the chain case, there is an additional Z2

symmetry for the ladder, defined as

RI P :
(
Sx

λ,i, Sy
λ,i, Sz

λ,i

) → (−Sz
−λ,10−i,−Sy

−λ,10−i,−Sx
−λ,10−i

)
,

(69)

in which λ = ±. This is a composition of an inversion with
respect to the rung center at the fifth rung, followed by a spin
rotation RI .

The above analysis shows that the symmetry group GL is

GL = 〈
T, R−1

a T2a, RI M, R(x̂, π ), R(ŷ, π ), R(ẑ, π ), RI P
〉
.

(70)

In the sense of modulo T6a, the symmetry group is a semidirect
product of Oh and 〈RI P〉, i.e.,

GL/〈T6a〉 = Z2 � Oh. (71)

The analysis can be similarly performed for bond-alternating
Kitaev-Heisenberg-Gamma two-leg spin ladder. In this case,
the structure of the symmetry group G1L is

G1L/〈T6a〉 � Z2 � D3d . (72)

We note that both GL and G1L are nonsymmorphic
which cannot be written as a semidirect product
involving T6a, as a consequence of the short exact sequence in
Eq. (21).

B. Uniform Kitaev spin ladders

Finally, we determine the symmetry group of Kitaev spin
ladders without bond alternation. In the absence of dimeriza-
tion, the swapping of the two chains is a symmetry, i.e.,

σ : �Sλ,i → �S−λ,i. (73)

Since σ commutes with all other symmetry operations, we see
that for the uniform Kitaev-Gamma spin ladder, the structure
of the symmetry group GuL is

GuL/〈T3a〉 � Z2 × Oh, (74)

and for the uniform Kitaev-Heisenberg-Gamma spin ladder,
the symmetry group G1uL is

G1uL/〈T3a〉 � Z2 × D3d , (75)

in which for both cases, Z2 represents 〈σ 〉.
Both GuL and G1uL are nonsymmorphic groups, which

cannot be written as a semidirect product involving T3a. This
time, instead of R−1

a T2a, we consider the symmetry operation
RaTa and the following short exact sequence:

1 −→ 〈T3a〉 i−→ 〈RaTa〉 π−→ C3 → 1. (76)

In Eq. (76), it can be proved in a similar way as Sec. II D that
there does not exist a group homomorphic τ such that π · τ =
id , which establishes the nonsymmorphic group structures of
GuL and G1uL.

V. CONCLUSIONS

In conclusion, we have analyzed the symmetry-group
structures for several one-dimensional generalized Kitaev spin
models with bond alternations. As applications of the sym-
metry analysis, the symmetry-breaking patterns of several
magnetically ordered phases are determined in the bond-
alternating Kitaev-Gamma spin chains, including Oh → D4,
Oh → D3, and Oh → D2 symmetry breaking. The dimeriza-
tion order parameters are also derived for the spontaneous
dimerization. Our work is useful in understanding magnetic
phases in related models and may provide guidance for the
symmetry classifications of mean field solutions in further
investigations.
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APPENDIX A: HAMILTONIAN IN ROTATED FRAME

The Hamiltonian for the bond-alternating Kitaev-Gamma
model acquires the following form in the six-sublattice rotated
frame:
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H ′
6n+1,6n+2 = gx

[−KSx
6n+1Sx

6n+2 − �
(
Sy

6n+1Sy
6n+2 + Sz

6n+1Sz
6n+2

)]
,

H ′
6n+2,6n+3 = gy

[−KSz
6n+2Sz

6n+3 − �
(
Sx

6n+2Sx
6n+3 + Sy

6n+2Sy
6n+3

)]
,

H ′
6n+3,6n+4 = gx

[−KSy
6n+3Sy

6n+4 − �
(
Sz

6n+3Sz
6n+4 + Sx

6n+3Sx
6n+4

)]
,

H ′
6n+4,6n+5 = gy

[−KSx
6n+4Sx

6n+5 − �
(
Sy

6n+4Sy
6n+5 + Sz

6n+4Sz
6n+5

)]
,

H ′
6n+5,6n+6 = gx

[−KSz
6n+5Sz

6n+6 − �
(
Sx

6n+5Sx
6n+6 + Sy

6n+5Sy
6n+6

)]
,

H ′
6n+6,6n+7 = gy

[−KSy
6n+6Sy

6n+7 − �
(
Sz

6n+6Sz
6n+7 + Sx

6n+6Sx
6n+7

)]
. (A1)

The Hamiltonian for the bond-alternating Kitaev-Heisenberg-Gamma model in the rotated frame is given by

H ′
6n+1,6n+2 = gx

[−(K + J )Sx
6n+1Sx

6n+2 − �
(
Sy

6n+1Sy
6n+2 + Sz

6n+1Sz
6n+2) − J (Sy

6n+1Sz
6n+2 + Sz

6n+1Sy
6n+2

)]
,

H ′
6n+2,6n+3 = gy

[−(K + J )Sz
6n+2Sz

6n+3 − �
(
Sx

6n+2Sx
6n+3 + Sy

6n+2Sy
6n+3) − J (Sx

6n+2Sy
6n+3 + Sy

6n+2Sx
6n+3

)]
,

H ′
6n+3,6n+4 = gx

[−(K + J )Sy
6n+3Sy

6n+4 − �
(
Sz

6n+3Sz
6n+4 + Sx

6n+3Sx
6n+4) − J (Sx

6n+3Sz
6n+4 + Sz

6n+3Sx
6n+4

)]
,

H ′
6n+4,6n+5 = gy

[−(K + J )Sx
6n+4Sx

6n+5 − �
(
Sy

6n+4Sy
6n+5 + Sz

6n+4Sz
6n+5) − J (Sy

6n+4Sz
6n+5 + Sz

6n+4Sy
6n+5

)]
,

H ′
6n+5,6n+6 = gx

[−(K + J )Sz
6n+5Sz

6n+6 − �
(
Sx

6n+5Sx
6n+6 + Sy

6n+5Sy
6n+6) − J (Sx

6n+5Sy
6n+6 + Sy

6n+5Sx
6n+6

)]
,

H ′
6n+6,6n+7 = gy

[−(K + J )Sy
6n+6Sy

6n+7 − �
(
Sz

6n+6Sz
6n+7 + Sx

6n+6Sx
6n+7) − J (Sx

6n+6Sz
6n+7 + Sz

6n+6Sx
6n+7

)]
. (A2)

APPENDIX B: VERIFICATION OF EQ. (10)

Before proceeding on, we fix some notations. Let R be a
rotation in spin space defined as

(R(Sx ),R(Sy),R(Sz )) = (Sx, Sy, Sz )R, (B1)

in which R is a 3 × 3 orthogonal matrix corresponding to R.
Let R′ be another rotation with R′ the corresponding matrix.
Then, the composition RR′ is given by

RR′ : (Sx, Sy, Sz ) → (Sx, Sy, Sz )RR′. (B2)

For later convenience, recall that Ra = R(n̂a,−2π/3) and
RI = R(n̂I , π ) satisfy

Ra :
(
Sx

i , Sy
i , Sz

i

) → (
Sz

i , Sx
i , Sy

i

)
,

(B3)
RI :

(
Sx

i , Sy
i , Sz

i

) → (−Sz
i ,−Sy

i ,−Sx
i

)
,

in which n̂a = 1√
3
(1, 1, 1)T is parallel to the line of OA in

Fig. 2, and n̂I = 1√
2
(1, 0,−1)T is parallel to the line passing

through the point that bisects the edge CD′ and the point that
bisects C′D in Fig. 2. Thus, the matrix representations are

Ra =
⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠, RI =

⎛
⎝ 0 0 −1

0 1 0
−1 0 0

⎞
⎠. (B4)

In addition to the spin rotations, the spatial operations act as

Ta : i → i + 1,

I : i → 8 − i. (B5)

Equations (B1) and (B5) enable us to calculate the actions of
any symmetry operation.

We first verify the relations r2 = s2 = t2 = e. First,

r2 = T 2(IT−5a)2(RI )2 = 1 (B6)

since T 2 = 1, ITnaI = T−na and (RI )2 = [R(n̂I , π )]2 =
R(n̂I , 2π ) = 1. Second,

s2 = T 2
(
T2aIT−a

)2(
R−1

a RI Ra
)2

= T2aITaIT−a
[
R
(
R−1

a n̂I , π
)]2

= T2aT−aT−aR
(
R−1

a n̂I , 2π
)

= 1, (B7)

in which R0R(n̂, θ )R−1
0 = R(R0n̂, θ ) is used. Finally for t , we

obtain

t2 = T 2[R(ŷ, π )]2 = 1. (B8)

We note that we view all the operations as acting in the three-
dimensional vector space spanned by {Sx, Sy, Sz}. Hence,
although SO(3) acts projectively for the spin- 1

2 case, we still
have R(n̂, 2π ) = 1 when acting on {Sx, Sy, Sz}. Also, T 2 = 1
in span{Sx, Sy, Sz}, though T 2 = −1 for spin 1

2 .
Using the expressions of r, s, t , we can work out the ex-

pressions of rs, st, rt , as

rs = R−1
a T2a,

st = R

(
ẑ,

π

2

)
IT−3a,

rt = R([AB], π )IT−5a. (B9)

Their actions in the spin space are given by

rs (x, y, z) → (y, z, x) R
(
OA, 2π

3

)
,

st (x, y, z) → (y,−x, z) R
(
ẑ, π

2

)
,

rt (x, y, z) → (z,−y, x) R([AB], π )
(B10)

in which the second and the third columns give the actions
in the spin space (where Sα is denoted as α for short) and
the geometrical meanings as symmetries of a cube in Fig. 2,
respectively, and [AB] represents the line passing through the
point that bisects the edge AB′ and the point that bisects A′B
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in Fig. 2. In obtaining Eq. (B9), we have used the following
identities:

RI R
−1
a RI Ra = R−1

a ,

R−1
a RI RaR(ŷ, π ) = R(ẑ, π/2),

RI R(ŷ, π ) = R([AB], π ). (B11)

Next, we verify the relations (rs)3 = (st )4 = (rt )2 = e.
First,

(rs)3 = (Ra)−3(T2a)3 = [R(n̂a,−2π/3)]−3T6a

= R(n̂a,−2π )T6a = T6a, (B12)

in which Ra = R(n̂a,−2π/3) is used, and clearly (rs)3 = e
modulo T6a. Second,

(st )4 = (IT−3a)4[R(ẑ, π/2)]4

= (IT−3aI )T−3a(IT−3aI )T−3aR(ẑ, 2π )

= T3aT−3aT3aT−3aR(ẑ, 2π ) = 1. (B13)

Finally,

(rt )2 = (IT−5a)2[R([AB], π )]2 = 1. (B14)

This proves that all the relations in Eq. (10) are sat-
isfied. Hence 〈r, s, t〉/〈T6a〉 is isomorphic to a subgroup
of Oh.

APPENDIX C: VERIFICATION OF EQ. (14)

(1) To verify the expression of T , using Eqs. (11) and (B9),
we calculate

(rs)−1(st )2r(st ) = (T2a)−1(IT−3a)2IT−5a(IT−3a)

× [Ra][R(ẑ, π/2)]2[RI ][R(ẑ, π/2)]T

= T . (C1)

The spatial part of Eq. (C1) can be verified to be
1. Using Eq. (B3), R(ẑ, π ) : (x, y, z) → (−x,−y, z),
R(ẑ, π/2) : (x, y, z) → (y,−x, z), and the composition
rule (B2), it is a straightforward calculation to verify
that RaR(ẑ, π )RI R(ẑ, π/2) : (x, y, z) → (x, y, z). Thus,
sr(st )2r(st ) is equal to T .

(2) To verify the expression of RI ITa, we calculate

(st )2rsts(rs)3

= (IT−3a)2(IT−5a)(IT−3a)(T2aIT−a)(T2a)3

× [R(ẑ, π/2)]2[RI ][R(ẑ, π/2)]
[
R−1

a RI Ra
][(

R−1
a

)3]
T 2

= RI ITa. (C2)

The spatial part is ITa, and T 2 = 1. For the spin part, we
can use Eq. (B2) and perform a matrix multiplication. The
result is

[R(ẑ, π/2)]2RI R(ẑ, π/2)
(
R−1

a RI Ra
) =

⎛
⎝ 0 0 −1

0 −1 0
−1 0 0

⎞
⎠,

(C3)

which is exactly RI .

(3) To verify R−1
a T2a, we calculate

rs = R−1
a T2a, (C4)

which has been demonstrated in Eq. (B9).
(4) To verify R(x̂, π ), we calculate

rtstsr = (IT−5a)(IT−3a)(T2aIT−a)(IT−5a)

× [R([AB], π )][R(ẑ, π/2)]
[
R−1

a RI Ra
]
[RI ]T

2

= R(x̂, π ). (C5)

The spatial part can be verified to be 1. By matrix multiplica-
tion, the spin part can be calculated to be exactly R(x̂, π ).

(4) To verify R(ŷ, π ), we calculate

sr(st )2rs = (T2aIT−a)(IT−5a)(IT−3a)2(T2a)

× [
R−1

a RI Ra
]
[RI ][R(ẑ, π/2)]2

[
R−1

a

]
T 2

= R(ŷ, π ). (C6)

Again, it can be verified that the spatial component is 1 and
the spin component is R(ŷ, π ).

(5) To verify R(ẑ, π ), we calculate

(st )2 = (IT−3a)2[R(ẑ, π/2)]2 = R(ẑ, π ). (C7)

APPENDIX D: GROUP EXTENSIONS AND SECOND
COHOMOLOGY GROUP

In this Appendix, we briefly review the relation between
the group extensions and the second cohomology group [56].
We start from the short exact sequence in Eq. (15). Let f be a
function from H × H to N . f is called a 2-cocycle if

f (g, h) f (gh, k) = ϕg( f (h, k)) f (g, hk), (D1)

and a 2-coboundary if there exists a function c : H → N such
that

f (g, h) = c(g)ϕg(c(h))[c(gh)]−1. (D2)

It is straightforward to verify that a 2-coboundary is also a
2-cocycle. By pointwise multiplications, the collections of 2-
cocycles and 2-coboundaries form Abelian groups Z2(H, N )
and B2(H, N ). The second cohomology group of H with co-
efficients in N is defined by the quotient group

H2(H, N ) = Z2(H, N )/B2(H, N ). (D3)

Consider an injective map x : H → G0, such that π · x =
id . For any g, h ∈ H , since π (x(g)x(h)x(gh)−1) = 1, we see
that x(g)x(h)x(gh)−1 has to be an element in N = Ker(π ).
Therefore, a function f : H × H → N can be defined from
the map x as f (g, h) = x(g)x(h)[x(gh)]−1. It can be verified
that f defined in this way satisfies the 2-cocycle condition due
to the associativity of group multiplication. Furthermore, we
do not want to distinguish among different f functions if the
values of their corresponding x maps only differ by elements
in N . That is to say, the two f functions defined from xc and
x should be viewed as equivalent for any c : H → N . It can
be verified that the difference between such two f functions
is exactly given by the expression in Eq. (D2). Therefore,
the equivalent classes of the f functions built from the x
maps correspond to elements in the second cohomology group
H2(H, N ) in Eq. (D3). This builds the relation between the
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exact sequence in Eq. (15) and the second cohomology group
H2(H, N ). Notice that f ≡ 1 if x is a group homomorphism.

Hence, in some sense, H2(H, N ) measures the extent to which
the equivalent class of x breaks the homomorphism property.
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