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Nuclear spin-lattice relaxation studies of Cu2O
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We report the 63Cu and 65Cu nuclear spin-lattice relaxation rate measurements of cuprous oxide Cu2O in a
zero field Cu nuclear quadrupole resonance at T = 77–325 K. From the detailed isotopic measurements of the
relaxation rates, we successfully estimated a finite magnetic relaxation rate 63WM and a predominant nuclear
quadrupole relaxation rate 63WQ. 63WQ changed as T 2.1, whereas 63WM changed as T 1.6 or T βexp(−Δ/T ) with
β = 0.6(3) and � = 190(62) K. The nuclear spin scattering process due to a nondegenerate Fermi gas was
discussed as a possible candidate of the magnetic relaxation.
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I. INTRODUCTION

Electron spin, charge, and lattice fluctuations play vital
roles in solids because these fluctuations characterize the mi-
croscopic properties of the solids. Experimental efforts have
been devoted to elucidate the individual fluctuations.

Quadrupole nuclei can be powerful probes to detect mag-
netic and lattice fluctuations in solids. Naturally abundant
quadrupole nuclei 63Cu and 65Cu have nuclear spin I = 3/2
with different nuclear gyromagnetic ratios 63,65γn (63γn <
65γn) and quadrupole moments 63,65Q (63Q > 65Q) [1]. The
nuclear spin-lattice relaxation can be due to magnetic re-
laxation via local magnetic-field fluctuations and quadrupole
relaxation via local electric-field gradient fluctuations. Ac-
cording to the general longitudinal nuclear spin-relaxation
theory, the magnetic nuclear spin-lattice relaxation rate ηWM is
proportional to (ηγn)2, whereas the quadrupole nuclear spin-
lattice relaxation rate ηWQ is proportional to (ηQ)2 (η = 63,
65 stands for 63Cu, 65Cu) [2]. The observed ηCu nuclear spin-
lattice relaxation rate in a solid of interest is denoted as ηW1.
Both magnetic and quadrupole relaxations can contribute to
ηW1. It is an experimental criterion to identify the predominant
relaxation process whether the isotopic ratio of the observed
ηCu nuclear spin-lattice relaxation rates is 63W1 / 65W1 > 1
or <1. Furthermore, the accurate isotopic measurements of
63W1 and 65W1 may enable us to quantify how much role each
relaxation plays in the nuclear spin-lattice relaxation.

Successful separation of mixed magnetic and quadrupole
relaxations is found in isotopic nuclear quadrupole reso-
nance (NQR) experiments of the chain-ladder composite
compound Sr14Cu24O41 [3], the high-Tc cuprate supercon-
ductor YBa2Cu4O8 [4], the quasi-one-dimensional conductor
PrBa2Cu4O8 [5], and the kagome lattice Heisenberg antifer-
romagnet Zn-barlowite ZnCu3(OD)6FBr [6].

Cu2O has a cubic crystal structure with inversion symme-
try. The cuprous oxide is a direct band-gap semiconductor
with monovalent Cu+ and a large band gap of ∼2 eV [7].
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Excitons in the optical spectra have attracted much attention
[8]. The exciton in Cu2O is a bound state of a 4s-character
electron and a 3d-character hole. The nature of Rydberg ex-
citons and possible exciton Bose-Einstein condensation have
been explored in Cu2O [9,10].

Cu NQR experiments have been performed for Cu2O. The
nuclear electric quadrupole spin relaxation is known to be
predominate in the Cu nuclear spin-lattice relaxation of Cu2O
[11]. Two-phonon Raman scattering process accounts for the
characteristic temperature dependence of the Cu spin-lattice
relaxation rate 1/T1 ∝ T 2 [12]. However, the original data
do not exclude the existence of a finite magnetic nuclear
spin-lattice relaxation within experimental uncertainty [11]. It
remains to be understood how much a magnetic nuclear spin
scattering process works in Cu2O.

In this paper, we report the detailed 63,65Cu nuclear spin-
lattice relaxation rates for a powder Cu2O in a zero-field Cu
NQR at T = 77–325 K. From the combination of the exper-
imental isotopic relaxation rates, we found a finite magnetic
relaxation rate 63WM separately from a predominant nuclear
quadrupole relaxation rate 63WQ. The temperature depen-
dences of the separated relaxation rates were 63WQ ∝ T 2.1 and
63WM ∝ T 1.6 or 63WM ∝ T 0.6exp(−�/T ) with � = 190 K.

II. EXPERIMENTS

Zero-field 63,65Cu NQR (nuclear spin I = 3/2, magnetic
quantum number m = ±3/2 ↔ ±1/2) experiments were car-
ried out for the powder samples of commercially available
Cu2O (99.9% purity from Rare Metallic, Co. Ltd.). The pow-
der sample was confirmed to be in single phase by powder
x-ray diffraction patterns. A phase-coherent-type pulsed spec-
trometer was utilized to perform the Cu NQR experiments.

The recovery curves of the 63,65Cu nuclear magnetiza-
tion were measured by recording the free-induction decay
signal F (t) following a sequence of π − t − π/2 pulses.
The experimental recovery curves η p(t ) ≡η F (∞) −η F (t )
of ηCu nuclear magnetization ηF (t ) (η = 63, 65) (integrated
free-induction decay) were analyzed by a single exponential
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FIG. 1. (a) Fourier-transformed 63,65Cu NQR frequency spectra
of the free-induction decay signals (m = ±3/2 ↔ ±1/2) at 300 K.
(b) 63,65Cu NQR frequencies 63,65 fNQR against temperature T .

function,
η p(t ) = η p(0)exp(−ηW1t ), (1)

where η p(0) and a nuclear spin-lattice relaxation rate ηW1 are
the fitting parameters [2].

III. EXPERIMENTAL RESULTS

A. Cu NQR spectrum and isotopic nuclear spin-lattice
relaxation rates

Figure 1(a) shows the Fourier-transformed 63,65Cu NQR
frequency spectra of the free-induction decay signals at 300 K.
The ratio of the NQR frequencies is that of the Cu nuclear
quadrupole moments [13]. We obtained

63 fNQR
65 fNQR

=
63Q
65Q

= 1.080 61(3), (2)

which is consistent with the reported value [14].
Figure 1(b) shows the 63,65Cu NQR frequencies 63,65 fNQR

plotted against temperature T . They are consistent with the
reported T dependences [15].

Figure 2 shows the recovery curves 63,65 p(t) of the 63,65Cu
nuclear free-induction decay signals at T = 295 K in the Cu
NQR. The solid lines are the least-squares fitting results using
Eq. (1).

The upper panel in Fig. 3 shows the isotopic 63,65Cu
nuclear spin-lattice relaxation rates 63,65W1 against

FIG. 2. Recovery curves 63,65 p(t) of the 63,65Cu nuclear free-
induction decay signals at T = 295 K in the Cu NQR. Solid curves
are the least-squares fitting results using Eq. (1).

temperature T . The lower panel shows the ratios 63W1 / 65W1

plotted against T . The closed triangles are the previous
data (JA1966) adopt from Ref. [11]. In the lower panel, the
present ratios of 63W1 / 65W1 are close to but slightly smaller
than (63Q/65Q)2 = 1.168 for a pure QR and larger than
(63γn /65γn)2 = 0.8714 for a pure MR. We found a finite
deviation from the pure quadrupole relaxation ratio by more
accurate measurements than the JA1966 measurements.

B. Quadrupole and magnetic relaxation rates

In a zero-field Cu NQR (m = ±3/2 ↔ ±1/2), the the-
oretical recovery curve with mixed magnetic and quadrupole
relaxation is a single exponential function with a time constant
T1 [2]. The magnetic dipole transition probability with �m =
±1, the quadrupole transition probabilities with �m = ±1
and ±2 are additive in the single relaxation rate W1 ≡ 1/T1.
Thus, the experimental relaxation rates ηW1 are expressed by
the sum of the nuclear magnetic relaxation rate ηWM and the
nuclear quadrupole relaxation rate ηWQ as

63W 1 = 63WM +63 WQ, (3)

65W1 = M63
r WM + Q63

r WQ, (4)

where the coefficients Mr = (65γn/
63γn)2 and Qr =

(65Q/63Q)2 act as conversion factors.
Using the above two equations, the quadrupole component

63WQ and the magnetic component 63WM in the 63Cu nu-
clear spin-lattice relaxation are expressed by the experimental
63,65W1 as

63WQ = 1

Mr − Qr
[Mr

63W1 − 65W1], (5)

63WM = 1

Mr − Qr
[65W1 − Qr

63W1], (6)
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FIG. 3. Isotopic 63,65Cu nuclear spin-lattice relaxation rates
63,65W 1 against temperature T (upper panel). The ratio 63W1 / 65W1

against T (lower panel). “JA1966” are the data (closed triangles)
reproduced from Ref. [11]. In the lower panel, (QR) stands for a
pure quadrupole relaxation (the relaxation ratio of 1.168), and (MR)
stands for a pure magnetic relaxation (the relaxation ratio of 0.8714).

where Mr = 1.1475 and Qr = 0.856 39. Substitution of the
experimental values for 63,65W1 in Eqs. (5) and (6) leads to
63WQ and 63WM .

The upper panel in Fig. 4 shows the magnetic 63Cu nu-
clear spin-lattice relaxation rate 63WM and the nuclear electric
quadrupole spin-lattice relaxation rate 63WQ against tempera-
ture T . The lower panel shows the log-log plots of 63WM and
63WQ against T . The temperature dependence of 63WQ is of a
power-law type, whereas that of 63WM is somewhat different
from the power law of 63WQ.

IV. DISCUSSIONS

The solid curves in Fig. 4 are the least-squares fitting re-
sults for 63WQ and 63WM using a power law as

63WQ,M = aT b, (7)

where a and b are the fitting parameters.

FIG. 4. Separated magnetic 63Cu nuclear spin-lattice relaxation
rate 63WM and nuclear electric quadrupole spin-lattice relaxation rate
63WQ against temperature T (upper panel) and versus T in log-log
plots (lower panel). Solid curves are the least-squares fitting results
using a power law of Eq. (7) for 63WQ and 63WM . Dashed curves are
the least-squares fitting results using Eq. (8) for 63WM .

From the least-squares fitting result using Eq. (7), we
obtained b = 2.1(1) for 63WQ. This exponent of 63WQ is con-
sistent with the original result and points to the two-phonon
Raman scattering [11,12]. The nuclear spin scattering process
due to lattice vibrations is the primary mechanism in the
fluctuations of electric-field gradients.

From the least-squares fitting result using Eq. (7), we
obtained b = 1.6(1) for 63WM . The exponent b = 1.6(1)
of 63WM is the same as that of the 29Si nuclear spin-lattice
relaxation rate 1/T1 ∝ T 1.6 in doped Si:P semiconductors,
which is analyzed by a nondegenerate Fermi gas model [16].
The mechanism in 63WM is due to dilute electron and hole
scatterings in semiconductors [2]. Theoretically, the degener-
ate Fermi gas at T < TF (the Fermi temperature) yields the
Korringa law, whereas the nondegenerate Fermi gas at T > TF

yields 1/T1 ∝ √
T due to the electron density of states ρ(E ) ∝
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√
E [2,17]. The Korringa law is insensitive to the shape of the

density of states ρ(E ) but the power of
√

T depends on the
shape of ρ(E ) [1/T1 ∝ T n for ρ(E ) ∝ En with an arbitrary
number n] [2].

A product function with fitting parameters (α, β and �) of

63WM = αT βe−�/T (8)

was also found to reproduce the experimental 63WM against T
as shown by the dashed curves in Fig. 4. Equation (8) includes
Eq. (7). From the least-squares fitting result using Eq. (8), we
obtained the exponent β = 0.6(3) and � = 190(62) K. The χ2

distribution using Eq. (8) was slightly smaller than that using
the single power law of Eq. (7). The exponent β = 0.6(3)
is close to 1/T1 ∝ √

T for the nondegenerate Fermi gas with
ρ(E ) ∝ √

E . Then, � is a crossover temperature at which the
effect of a thermal activation process changes.

Let us assume that � is an energy gap in the non-
degenerate Fermi gas. Excitons may play a role at lower
temperatures T < �. Excitons are electrically neutral so that
they carry no charge. The spin states consist of the singlet
state (paraexciton) and the triplet state (orthoexciton). Since
the ortho-to-paraexciton transition can flip a nuclear spin, we
expect that the ortho-to-paraexciton transition can contribute
to the magnetic nuclear spin-lattice relaxation rate. The ex-
change split energy between the orthoexciton state and the
paraexciton state is 12 meV [18], which is the same order
of magnitude as � = 19 meV. The magnetic energy gap �

may be associated with the low exchange energy of the ortho-
to-paraexcitons. The other energy scales, such as an exciton

binding energy and the band gaps are far larger than � [9,10].
In principle, the orthoexcitons can couple with electric-field
gradients, but the effect of the excitons on the quadrupole
relaxation may be no match for that of the lattice vibrations.

We believe that the difference between the present data
and the JA1966 is primarily due to experimental accuracy.
However, we should point out a possibility that the vacancy
concentration in our sample might be different from that in the
previous sample in Ref. [11]. Heat treatments may introduce
some deficiency and carriers into Cu2O [7]. An enhancement
in 63( 1/T1) is reported in a low-temperature prepared Cu2O
[19]. The magnitude of the magnetic relaxation rate 63WM may
be associated with the carrier concentration in Cu2O.

V. CONCLUSIONS

In conclusion, we found a finite magnetic Cu nuclear
spin-lattice relaxation in Cu2O. The Cu nuclear spin-lattice
relaxation in Cu2O results from a predominate nuclear
quadrupole relaxation and a small magnetic relaxation. The
separated nuclear quadrupole relaxation rate 63WQ ∝ T 2.1 can
be due to lattice vibrations. The magnetic nuclear spin-lattice
relaxation rate 63WM as a function of temperature was 63WM ∝
T 1.6 or 63WM ∝ T βexp(−�/T ) with β = 0.6(3) and � =
190(62) K. We discussed the power law, β and � using a
nondegenerate Fermi gas model.
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