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Strain tuning of highly frustrated magnets:
Order and disorder in the distorted kagome Heisenberg antiferromagnet
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Strain applied to a condensed-matter system can be used to engineer its excitation spectrum via artificial
gauge fields or it may tune the system through transitions between different phases. Here we demonstrate that
strain tuning of the ground state of otherwise highly degenerate frustrated systems can induce novel phases, both
ordered and disordered. For the classical Heisenberg antiferromagnet on the kagome lattice, we show that weak
triaxial strain reduces the degeneracies of the system, leading to a classical spin liquid with noncoplanar config-
urations, while stronger strain drives the system into a highly unconventional state which displays signatures of
both spin-glass behavior and magnetic long-range order. We provide experimentally testable predictions for the
magnetic structure factor, characterize the ground-state degeneracies and the excitation spectrum, and analyze
the influence of sample shape and boundaries. Our paper opens the way to strain engineering of highly frustrated
magnets.
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I. INTRODUCTION

The manipulation of many-body systems by external
stimuli is widely used in both the search for novel phenomena
and the realization of applications. Among the possible tools,
pressure and the resulting lattice deformations are particularly
appealing, as they do not introduce disorder—as opposed to
chemical substitution—and they can either preserve or modify
in a controlled fashion the lattice symmetries of the underlying
system. Recent experimental progress in applying uniaxial
or otherwise inhomogeneous forces has led to the notion of
straintronics, where specific strain patterns enable one to en-
gineer states and functionalities of quantum materials [1–3].

Examples of strain manipulation include the mechanical
switching of nanoelectronic graphene devices [4], the oc-
currence of strain-induced Landau levels in graphene, with
a spacing corresponding to ultralarge magnetic fields [5–7],
the creation of artificial gauge fields for ultracold atoms
and photonic crystals [8,9], the proposals to realize Landau
levels for emergent charge-neutral excitations in solids, such
as magnons or Majorana spinons in quantum antiferromagnets
[10,11], and the modification of multicomponent supercon-
ducting states [12,13]. In essentially all of these examples,
one starts from a unique microscopic state which is modified

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Open
access publication funded by the Max Planck Society.

by strain, changing either its static properties or its excitation
spectrum.

In this paper, we extend the concept of strain tuning to
highly degenerate many-body systems: Here, applying strain
can be expected to have a singular effect, i.e., even small
strain modifies the system’s properties in a qualitative fashion.
We choose to discuss the effect of inhomogeneous strain ap-
plied to highly frustrated antiferromagnets where degenerate
ground-state manifolds result from competing interactions.
We show that suitably chosen strain patterns can be used to in-
duce particular forms of magnetic order as well as spin-liquid
regimes, thus opening a fascinating arena for strain-based
engineering of states of matter. Specifically, we consider the
classical Heisenberg antiferromagnet on the kagome lattice.
Its highly degenerate ground state features Coulombic spin
correlations, and it displays remarkably complex order-by-
disorder (ObD) phenomena at finite low temperature [14–19].
Its spin-1/2 cousin is a prime candidate to realize a quantum
spin-liquid ground state [20–29]. Here we focus on the effect
of triaxial strain which partially preserves discrete lattice sym-
metries of the kagome lattice, Fig. 1, while partially relieving
strong geometric frustration. Increasing strain lifts the clas-
sical degeneracies of the unstrained system, first deforming
the spin liquid into a noncoplanar one with pronounced spin
correlations at �Q = 0. Larger strain induces a transition into a
highly unusual state, being connected with the inability to in-
dependently minimize the energy on every triangle. This state
displays characteristics of a spin glass but at the same time
its magnetic-structure factor shows sharp peaks corresponding
to �Q = 0 long-range order. While details of the ground-state
configurations and low-energy excitation modes depend on
the sample shape and boundaries, the gross features of the
strained magnetic state appear robust. We connect our findings
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FIG. 1. (a)–(d) Distorted kagome-lattice antiferromagnet, with
displacements from triaxial strain, Eq. (3), for β = 1 and |C̄| =
0.025/a0; the undistorted lattice is shown in light gray. Longer
(shorter) bonds correspond to weaker (stronger) exchange couplings
Ji j as indicated by the color code. Arrows indicate the force applied
to the sample. (a), (b) show the system with c-type boundaries; (c),
(d) with ic-type boundaries. Left (a), (c) and right (b), (d) panels
correspond to positive and negative strain, respectively. The linear
system size is N = 6. (e) Schematic phase diagram of the dis-
torted kagome-lattice antiferromagnet in the limit T → 0; for details,
see text.

to known results for homogeneous uniaxial strain applied to
the kagome Heisenberg model, and we comment on the role
of quantum effects.

The remainder of the paper is organized as follows:
In Sec. II, we introduce the inhomogeneously strained
Heisenberg model and discuss the rewriting of its Hamiltonian
as sum of complete squares. Section III describes the results
for spin configurations and the spin structure factor, obtained
from minimizing the classical energy. Section IV then dis-
cusses the complex energy landscape at finite strain, implying
glassy features, and the properties of the low-energy excita-
tions. A summary and discussion of open questions closes the
paper.

As an aside, we note that the effect of strain on a kagome-
lattice tight-binding model has been recently studied in Ref.
[30], with focus on single-particle pseudomagnetic fields.
Also, spontaneous (instead of imposed) distortions which
relieve frustration in highly frustrated magnets have been dis-
cussed in earlier papers [31–33].

II. MODEL AND CONSTRAINTS

A. Kagome Heisenberg model

We consider a nearest-neighbor antiferromagnetic
Heisenberg model on the kagome lattice, formed by
corner-sharing triangles, with spatially varying couplings:

H =
∑
〈i j〉

Ji j �Si · �S j . (1)

We exclusively focus on the classical case and treat the �Si

as unit vectors. The homogeneous system, Ji j ≡ J , features
a ground-state manifold which includes both coplanar and
noncoplanar states [14]. Finite-temperature fluctuations tend
to select coplanar states via an order-by-disorder mechanism
[14–17] and the low-temperature regime displays weak long-
range spin order corresponding to a

√
3 × √

3 ordering pattern
[18,19].

B. Triaxial strain

Strain engineering goes back to the discussion of electron-
phonon coupling in carbon nanotubes [34] where strain-
induced modulations of hopping matrix elements can emulate
a vector potential for electrons [5]. Central to our paper is the
modification of magnetic exchange couplings due to strain.
In the distorted lattice, each magnetic ion is characterized by
a displacement vector �Ui. This results in exchange couplings
between neighboring ions, entering the Hamiltonian Eq. (1),
which we assume to follow

Ji j = J[1 − β(|�δi j |/a0 − 1)], (2)

where a0 is the reference bond length and �δi j = �Ri + �Ui −
�Rj − �Uj the length of the distorted bond. The materials pa-
rameter β encodes the strength of magnetoelastic coupling.
Realistic values of β are in the range 1 . . . 10. For instance, the
hopping matrix elements t of graphene display a bond-length
dependence with βt ≈ 2 . . . 3 [3]; for exchange couplings fol-
lowing J = t2/U where U is an on-site Coulomb repulsion,
this would mean β ≈ 4 . . . 6. Note that Eq. (2) represents a
linear approximation to the full (typically exponential) bond-
length dependence of the exchange constant; assuming an
exponential dependence yields qualitatively similar results as
shown in the Appendix. Most numerical results are shown
for β = 1.

In the following, we focus on triaxial strain where the
displacement vector is given by [5,35]

�U (x, y) = C̄(2xy, x2 − y2)T , (3)

with C̄ encoding the distortion amplitude, and we employ
�Ui = �U ( �Ri ). The dimensionless parameter C = C̄βa0 spec-
ifies of the modulation strength of the Ji j . The distortions
described by Eq. (3) increase linearly with increasing dis-
tance from the sample center. Structural stability then requires
us to consider finite-sized samples. Combining Eqs. (2) and
(3), we define—for fixed sample size—a maximum strain
Cmax beyond which the outermost couplings become formally
negative due to the linearization in Eq. (2). For β = 1, this
means that the longest (i.e., weakest) bond takes twice its
original length at maximum strain. This maximum strain is
inversely proportional to the linear system size, Cmax ∝ 1/N ,
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therefore the thermodynamic limit N → ∞ cannot be taken
at fixed strain. As our results show, it is instead meaningful
to consider the thermodynamic limit at fixed C/Cmax, i.e.,
N → ∞ with (CN ) fixed. Moreover, we will sometimes refer
to the combined limit β → ∞ and C̄ → 0, keeping C = C̄βa0

fixed, which reduces nonlinearities in the strain dependence
of couplings [36]. In fact, the results at fixed C depend only
weakly on β for β > 20.

To partially preserve the discrete lattice symmetries, we
primarily consider samples of triangular shape [36], Fig. 1.
Here, discrete rotation and mirror symmetries exist with re-
spect to the sample center. For such samples, positive and
negative strain, C̄ ≷ 0, correspond to qualitatively distinct
distortion patterns, and we will display results for both.

Since finite-size properties will depend on the structure
of the edges, we consider different types of edges: Kagome-
lattice frustration is best preserved for edges with complete
kagome triangles (dubbed c type), Figs. 1(a) and 1(b). As
a representative for different edges, we choose those with
all outer spins removed such that the outward triangles are
incomplete (dubbed ic type), Figs. 1(c) and 1(d). In both cases,
we denote the linear sample size by N , where N counts the
number of complete triangles along a sample edge. Then, the
total number of spins is Ns = (3/2)N (N + 1). Depending on
(N mod 3), the center of the sample is either formed by an
elementary triangle or hexagon.

For C > 0, there are three weakest bonds located in
the sample corners. For c-type edges, we find C+

max = √
3/

(4N − 3) and for ic-type edges C+
max = √

3/(4N − 9), both
valid for arbitrary β. For C < 0, there are now six weakest
bonds in the corner triangles. Cmax is given by a lengthy
expression which is not particularly enlightening. However,
in the limit β → ∞, it simplifies to |C−

max| = √
3/(2N − 3)

for both c-type and ic-type edges.

C. Constraint satisfiability and critical strain

The homogeneous Heisenberg Hamiltonian on the kagome
lattice can be written as sum of complete squares, and this
rewriting can be generalized to inhomogeneous couplings
[37]: For each triangle α with spins i jk, we can define
γiα = (Ji jJik/Jjk )1/2 such that the Hamiltonian reads H =
(1/2)

∑
α

�L2
α + const, with �Lα = ∑

i∈α γiα �Si.
With small triaxial strain applied, the γiα will weakly de-

viate from their unstrained reference value unity, such that
the minimization constraint �Lα = 0 can be fulfilled for all
triangles of a finite sample. In contrast, for larger strain the
γiα no longer fulfill the triangle inequality for triangles α near
the sample corners or edges, depending on the sign of C.
This change defines a critical value of strain, C±

crit , where ±
correspond to positive and negative strain, respectively.

While these considerations strictly apply to samples with
c-type edges, samples with ic-type edges contain bonds not
belonging to triangles, rendering the system less frustrated.
Hence, the nature of the ground-state manifold depends on
the type of sample edges. However, this difference turns out
to be of minor importance for the magnetic structure factor for
sufficiently large samples.

FIG. 2. Critical value of triaxial strain, plotted as C±
crit/C±

max, as
function of inverse linear system size, 1/N , for different β for (a),
(b) positive strain and (c), (d) negative strain, both for samples with
(a), (c) c-type boundaries and (b), (d) ic-type boundaries. Ccrit/Cmax

approaches the value 0.4 in the limit β → ∞, N → ∞ in all cases;
for details, see text.

Numerical results for the ratio of critical and maximum
strain, Ccrit/Cmax, for triangular samples are shown in Fig. 2.
This quantity displays a mild dependence on system size N but
a stronger dependence on the magnetoelastic coupling β. For
|C| < |C±

crit|, the strained system is strongly frustrated, with
�Lα = 0 ∀α defining a degenerate manifold of liquid-like states
[37,38], while for |C| > |C±

crit| the constraint �Lα = 0 cannot be
fulfilled for all triangles. Then, the condition

∑
α

�L2
α → min

induces tendencies to magnetic order, as we will see in the
next section.

The spatial profile of constraint satisfiability can be vi-
sualized by plotting the quantity |�Lα| for each triangle α in
the ground state, this is in Fig. 3. With increasing positive
strain, the constraint is first violated in the sample corners.
For samples with c-type edges, we are able to find an ana-
lytic expression in the limit of β → ∞ which reads C+

crit =√
3/(10N − 9). Hence, in this limit we have C+

crit/C+
max =

(4N − 3)/(10N − 9) which tends to 0.4 for N → ∞. For
ic-type edges, we similarly find C+

crit = √
3/(10N − 21) for

β → ∞, such that C+
crit/C+

max = (4N − 9)/(10N − 21), which
again tends to 0.4 for N → ∞. For C < 0, the constraint can
be satisfied in the corner triangles for any strain up to Cmax.
However, the constraint first gets violated for the triangles
in the middle of the boundaries. While we have not been
able to obtain a closed-form expression, our numerical eval-
uation shows that C−

crit/C−
max → 0.4 for β → ∞ and N → ∞

for both c-type and ic-type edges, as in the case of positive
strain, Fig. 2.

For |C| > |Ccrit|, the strained system contains multiple tri-
angles where the constraint �Lα = 0 cannot be satisfied. If we
define the number of these triangles as Mus, we can con-
sider its ratio with the total number of triangles Mtot (which
is Ns/3 for c-type edges). Apparently, r ≡ Mus/Mtot is zero
(nonzero) for |C| < |Ccrit| (|C| > |Ccrit|), respectively. In the
limit of large system size, N → ∞, r approaches a finite
value which remains smaller than unity for |C| = |Cmax| as
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FIG. 3. Spatial distribution of |�Lα| in the ground state for systems
of size N = 10 with c-type edges, β = 1, and different values of
strain, C/Cmax.

triangles near the center of the sample remain weakly dis-
torted even in this limit. Numerical results for r are shown in
Fig. 4.

Parenthetically, we note that for |C| < |Ccrit| all constraints
�Lα = 0 can be satisfied, but the ground states cannot be
mapped to an origami analog as discussed in Ref. [38] be-
cause the geometric condition of Eq. (2) in that paper is,
in general, not fulfilled by the couplings of the strained
system.

FIG. 4. Fraction r ≡ Mus/Mtot of triangles where the constraint
�Lα = 0 cannot be satisfied in the ground state, plotted as function
of C/Cmax for different β for C > 0 (a), (b) and C < 0 (c), (d).
The results are for samples with c-type boundaries; those for ic-type
boundaries are similar.

III. NUMERICAL RESULTS: CONFIGURATIONS AND
SPIN STRUCTURE FACTOR

We now turn to our core numerical results, obtained for
finite-size triaxially strained kagome-lattice Heisenberg sys-
tems using system sizes up to N = 24.

A. Iteration scheme

We use an iterative scheme to find spin configurations cor-
responding to local minima of the total energy in configuration
space. For given values of N , β, and C which determine the
Hamiltonian, we start from a random initial spin configu-
ration and iteratively minimize the total energy by aligning
each spin according to its mean field, supplemented by ap-
propriate random mixing. The iteration is aborted once the
average energy per bond, ε, changes less than a threshold εconv

in one step. For εconv = 10−8J , this happens after typically
104 . . . 105 iteration steps. The iteration is repeated for Ninit =
105 different initial conditions. For the state with the globally
lowest energy, Emin, we denote by εmin its energy per bond,
εmin = Emin/Nb, where Nb is the number of bonds. Given the
SU(2) spin symmetry of the underlying Hamiltonian, two of
the resulting spin configurations are considered equivalent if
they match (within a numerical threshold) up to global SU(2)
rotations.

Convergence tends to be slow for large systems due to
the glassy nature of the energy landscape, see Sec. IV below.
Computation time therefore limits our ability to reach larger
system sizes, and most calculations are restricted to N � 20.

B. Ground-state spin configurations

For any finite strain, C = 0, we find that noncoplanar spin
configurations are energetically preferred over coplanar ones:
We have verified this tendency by comparing the ground-state
energies between those for the SU(2)-symmetric model and
models with varying degrees of easy-plane anisotropy, ob-
tained by reducing the prefactor of the SzSz coupling. The
easy-plane models yield a consistently higher ground-state
energy, except at zero strain where the ground-state energy
does not depend on the anisotropy.

Representative ground-state configurations near maximum
strain are shown in Fig. 5. While the spin configurations are
naturally inhomogeneous, a clear tendency toward local three-
sublattice 120◦ order is visible near the sample center; for the
unstrained kagome lattice such order is known as Q = 0 order
[16]. In contrast, near the sample corners (for C > 0) or edges
(for C < 0), triangles with ferrimagneticlike configurations
(↑↑↓) prevail. This can be rationalized by noting that, in these
strongly distorted regions, the spatial distribution of coupling
constants, Fig. 1, corresponds to locally uniaxial strain.

In fact, uniaxially strained kagome antiferromagnets have
been investigated before [39–42] and display regimes of fer-
rimagnetism. Denoting the couplings along one direction by
J and along the two others by J ′, the situation J � J ′ cor-
responds to chains weakly coupled via middle spins, while
the case J � J ′ realizes a square lattice with spin-decorated
bonds. In the classical limit, the ground state is a collinear
ferrimagnet for J/J ′ < 1/2, while for J/J ′ > 1/2 there is
an infinite family of degenerate canted ferrimagnetic ground
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FIG. 5. Ground-state spin configurations at |C/Cmax| = 0.95 for
β = 1 and N = 6 for c-type boundaries: (a) positive and (b) negative
strain; and ic-type boundaries: (c) positive and (d) negative strain.

states. While the former state is stable also for quantum spins
S = 1/2, the latter is most likely replaced by a spiral state for
large J/J ′ [41] and a spin liquid is present in the intermediate
regime. The J/J ′ < 1/2 ferrimagnet is of obvious relevance
to our triaxially strained system and we will get back to this
below.

C. Spin-structure factor

We have analyzed the strain-induced states quantitatively
by determining their static spin structure factor, defined as

S(�q) = 1

Ns

∑
i j

〈�Si · �S j〉ei �q·( �Ri− �Rj ), (4)

where 〈. . .〉 denotes an average over the ground-state mani-
fold. For a state with magnetic LRO at wave vector �Q, the
value of m2 = S( �Q)/Ns corresponds to the squared order pa-
rameter m in the thermodynamic limit.

In practice, we use Ninit different initial conditions to
find local minima in the energy landscape as described
in Sec. III A. For each converged configuration, we deter-
mine the average energy per bond, ε = E/Nb. The averaging
in Eq. (4) is then performed over those of the Ninit con-
verged states whose energy per bond ε falls in the window
[εmin, εmin + �ε]. The finite energy window �ε accounts for
inaccuracies in convergence and may be interpreted in terms
of a finite temperature; it is chosen sufficiently small, �ε =
10−6J , unless noted otherwise.

For c-type edges, this procedure ensures averaging over
a representative set of configurations from the continuously
degenerate ground-state manifold. For ic-type edges, the sam-
pling is over the ground states plus a small number of
low-energy excited states to improve statistics due to the
glassy energy landscape, which is characterized by many local
minima close to the ground-state energy, see Sec. IV below.
In calculating S(�q), we have varied �ε for selected parameter

sets and found that choosing smaller �ε changes the values of
S(�q) by less than 5% for the system sizes used.

In general, the calculated spin structure factor displays
qualitatively similar behavior for positive and negative strain
for different values of β and for different sample edges, as
illustrated in Figs. 6–8. At small strain, Figs. 6(a), 6(e), 7(a),
and 7(e), the structure factor has the broad shape familiar
from the classical kagome Heisenberg model [18,43], with
pinch points located at reciprocal wave vectors �Q = �′, the
centers of higher Brillouin zones, characteristic of the U(1)
spin liquid. These pinch points remain sharp under strain, but
gain weight with increasing strain, Figs. 6(b) and 6(f). At
larger strain, Figs. 6(c), 6(d) and 6(h), pronounced peaks at
�′ emerge, which grow with increasing |C| and correspond
to three-sublattice Q = 0 order. Differences between positive
and negative strain appear minor. Individual differences, e.g.,
between Figs. 7(b) and 7(f), can be attributed to the different
values of C/Ccrit which can be read from Fig. 2.

D. Q = 0 order

Finite-size scaling for the height of the peaks in S(�q) at
�q = �′ and fixed C/Cmax is demonstrated in Figs. 9(a) and
9(b) for β = 1. The data clearly show that S( �Q)/Ns scales to
zero as N → ∞ for small |C|, but tends to a finite value at
larger |C|. This signals the existence of a magnetically ordered
state at large |C|, with the transition being located at C = Ccrit

within our accuracy, Figs. 9(c) and 9(d). Consistent with this,
we find that the width of the peaks in S(�q) scales to zero as
N → ∞ for |C| > |Ccrit|.

Figure 9 also illustrates nonmonotonic N dependencies
which can be traced back to commensurability effects of in-
homogeneous spin arrangements near the sample boundaries.
A finite-size-scaling comparison between samples with c-type
and ic-type edges for positive strain is shown in Fig. 10, here
for β = 100. While finite-size systems with ic-type edges tend
to have a larger order parameter and a smaller nonmonotonic
N dependence, the extrapolated data show only minor differ-
ences, partially related to the different C/Ccrit . Together, this
underlines that the Q = 0 order is a robust bulk phenomenon,
with boundary effects being subleading.

To rationalize the appearance of the Q = 0 order, we re-
call that the triaxially strained kagome flake realizes bond
configurations at the corners (at the midedges) for C > 0
(C < 0) which correspond to a uniaxially strained system with
J/J ′ < 1/2. The latter displays ferrimagnetic order [39–42]
with magnetic Bragg peaks at two of the �′ momenta, namely,
those perpendicular to the J bond direction. Therefore, the
six �′ peaks present for |C| > |Ccrit| in the triaxially strained
sample can be thought of as a superposition of three domains
of ferrimagnetic configurations. We note, however, that this
picture is oversimplified, as (i) the entire sample contributes to
the Bragg peaks and (ii) the local spin configurations deviate
significantly from the collinear ferrimagnet.

A particular situation arises for samples with ic-type edges
and C < 0: Here, the sample edges tend to have configura-
tions of the form ↑↑↓↓, Fig. 5(d), because—compared to
c-type edges—the outer triangles with strong bonds have
been removed, producing pairs of effectively strongly cou-
pled spins along the edge. The ↑↑↓↓ configurations in turn
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FIG. 6. Numerical results for the static spin structure factor S(�q), shown as function of qx and qy and calculated for β = 1 and samples of
size N = 20 (Ns = 630) with c-type edges. (a)–(d) Different values of positive strain C. (e)–(h) Different values of negative strain C. Note that
all panels have individual intensity scales. White dashed lines indicate the periodic Brillouin-zone scheme of the kagome lattice.

lead to structure-factor peaks at incommensurate locations,
see Figs. 8(f)–8(h). As these configurations are restricted to
the boundary row, their influence on the structure factor di-
minishes with increasing N , such that for sufficiently large
samples commensurate peaks in S(�q) are restored, Fig. 11.

For strongly distorted lattices, it makes a difference
whether the lattice coordinates used to calculate S(�q) in
Eq. (4) are taken as the unstrained �Ri or the strained �Ri + �Ui;
a neutron-scattering experiment would probe the latter. For
simplicity, Figs. 6–11 have been calculated with unstrained

coordinates. A comparison of the structure factors calculated
with both unstrained and strained coordinates is shown in
Fig. 12 for a large-strain case and a realistic value of β = 3:
One sees that the strain-induced change in lattice geometry
leads to a broadening of the Bragg peaks. For larger β, the
geometric lattice distortion at a given C/Cmax is smaller and
hence the difference between the two cases diminishes.

For completeness, we have also considered kagome
flakes of shapes different from triangular, in particular
hexagonal and circular. For sufficiently large samples, the

FIG. 7. Spin structure factor S( �q) as in Fig. 6, but now for β = 100. The results are qualitatively similar to that shown in Fig. 6 for β = 1,
with the quantitative differences reflecting the β dependence of Ccrit .
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FIG. 8. Spin structure factor S( �q) as in Fig. 6, but now for samples with ic-type edges and β = 100. For positive strain (top), the results are
qualitatively similar to that for c-type edges, Fig. 7, apart from a slightly smaller value of Ccrit . In contrast, for negative strain incommensurate
correlations dominate for |C| > |C−

crit|; those become commensurate only for larger systems, as shown in Fig. 11 below.

structure-factor results are similar to those for triangular-
shaped samples. We illustrate this in Fig. 13, which shows
spin configuration and structure factor for a hexagonal-shaped
system under triaxial strain. We note that, for such samples,
positive and negative strain are equivalent by symmetry.

IV. GLASSY ENERGY LANDSCAPE

Our iterative minimization scheme keeps track of a large
set of local minima in the energy landscape. For the problem
at hand, we hand found the latter to be surprisingly complex.
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FIG. 9. (a), (b) Finite-size scaling of S( �Q)/Ns, corresponding to
the Bragg-peak intensity in the static structure factor, for samples
with c-type edges and β = 1. (c), (d) Extrapolated peak height as
function of |C|/|Cmax|. These results indicate order-parameter-like
behavior with a transition located at Ccrit . (a), (c) correspond to
positive and (b), (d) to negative strain.

A. Local minima and their energy distribution

For very small systems, N � 5, we find that essentially all
iterations converge to states with the same lowest energy. In-
specting the spin configurations for |C| > |Ccrit| indicates the
existence of few discrete degenerate ground states for ic-type
boundaries, whereas systems with c-type boundaries appear
to display continuously degenerate ground states (except at
C = Cmax), as repeated iterations find inequivalent states with
identical energies.

The situation is drastically different for larger systems.
While convergence to the same lowest energy is still com-
mon for |C| < |Ccrit|, the iteration scheme finds local minima
with widely distributed energies for |C| > |Ccrit|. Sample dis-
tributions for the energy per bond, ε − εmin, are shown in
Fig. 14: The distributions appear effectively continuous for
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FIG. 10. (a), (b) Finite-size scaling of S( �Q)/Ns for β = 100 and
(c), (d) extrapolated peak height as function of C/Cmax for samples
with β = 100, comparing (a), (c) c-type and (b), (d) ic-type edges.
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FIG. 11. Spin structure factor S( �q) for samples with ic-type edges, C/|C−
max| = −0.8, and β = 100. Results are shown for linear system

sizes (a) N = 12, (b) 16, (c) 20, and (d) 24, demonstrating the evolution from peaks at incommensurate locations to commensurate ones with
increasing system size, for details see text.

large systems, with a width reaching up to 10−4J . Naturally,
the distribution width increases with increasing strain C, while
for C → 0 the width tends to zero.

These results signal a complex energy landscape for
|C| > |Ccrit|, with abundant local minima which are sepa-
rated by energy barriers. This behavior is well-known for
spin glasses where randomness and frustration conspire to
produce complex low-energy states without long-range order
[44]. Remarkably, we find a glassy energy landscape here
in a system free of quenched disorder (but with inhomoge-
neous couplings), and our structure-factor results show that
this glassy behavior coexists with signatures of magnetic long-
range order.

B. Ground-state degeneracy

We made an attempt to estimate the ground-state
degeneracy—up to global SU(2) rotations—by monitoring the
number of different [45] converged spin configurations, Ndiff ,
whose energy equals the minimum energy within a small
window �ε = 10−9J . For samples with c-type boundaries, we
find that Ndiff scales with Ninit for all values of C and system
sizes N , indicating that the ground states are continuously
degenerate. This is consistent with the finding of nontrivial
zero modes reported below.

In contrast, for samples with ic-type boundaries, we ob-
serve that Ndiff tends to saturate with increasing Ninit , at least
for strain values |Ccrit| < |C| < |Cmax|. The actual number of
ground states depends on both C and N , with nonmonotonic
variations, see Table I. We point out, however, that counting
true ground states is a numerically expensive task for large

FIG. 12. Comparison of the spin structure factor calculated with
(a) unstrained and (b) strained coordinates for β = 3, shown for
N = 20 samples with c-type edges and maximum positive strain,
C = C+

max.

systems due to the glassy nature of the energy landscape, and
a compromise between runtime, convergence accuracy, and
selection window �ε is required. Based on the available data,
we are not able to determine how the ground-state degeneracy
of ic-type samples scales with system size; the results clearly
point toward a nonextensive number.

C. Low-energy modes

To further characterize the states of the strained kagome
Heisenberg magnet, we determine the quadratic energy cost of
fluctuations around ground-state configurations. To this end,
we construct the Hessian matrix for a given minimum-energy
state and determine its eigenvalues and eigenvectors.

The Hessian is constructed as described in Ref. [46]: For
a spin configuration {si}, we choose an orthonormal local
basis (si, ui, vi ) at every lattice site and parametrize fluctu-

ations as s̃i =
√

1 − ε2
i si + εuiui + εvivi with εi = (εui, εvi ),

which takes into account the spin normalization condition.
The quadratic energy cost of fluctuations around a ground
state is given by E = εT Mε, where M is the Hessian ma-
trix with dimension 2Ns × 2Ns. Diagonalizing the Hessian
matrix gives us the eigenvalues λ j and the corresponding
eigenvectors.

The spectrum of the Hessian always contains three trivial
zero modes (Goldstone modes) due to the SU(2) symmetry
of the underlying Hamiltonian. Interpreting all eigenvalues
below 10−6J as zero modes, we find that samples with c-type
boundaries generically display additional, i.e., nontrivial zero

FIG. 13. Results for hexagonal-shaped kagome flakes with
c-type edges subject to triaxial strain. Left: Spin configuration for
a system with Ns = 90 sites and C = 0.95Cmax. Right: Spin-structure
factor for C/Cmax = 0.7, β = 1, and Ns = 462 sites.
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FIG. 14. Histograms of converged energies per bond, ε, repre-
senting local minima of the energy landscape. Data are shown for
different values of C/Cmax and different system sizes N for sam-
ples with c-type boundaries and β = 1. The horizontal axis shows
the energy relative to the global minimum, �ε = ε − εmin, on a
logarithmic axis, the vertical axis the frequency out of 104 random
initial conditions.

modes implying a continuous ground-state degeneracy, except
for C = C+

max. The zero-mode count is shown Table II. The
number of zero modes increases with linear system size N
for |C| < |Ccrit|, while it appears to saturate for |C| > |Ccrit|.
We have analyzed the zero-mode eigenvectors by calculating
their inverse participation ratio and by inspecting their spatial
distribution (not shown) and concluded that the nontrivial
modes primarily live near the c-type sample boundaries for
any nonzero strain. Boundary-induced zero modes are in fact
consistent with the analysis of bond-disordered kagome an-
tiferromagnets in Ref. [37], which concluded that no zero
modes should exist in the bulk for inhomogeneous distribu-
tions of magnetic couplings.

In contrast, samples with ic-type boundaries do not feature
nontrivial zero modes, except at C = C−

max, where the corner
spins are disconnected and can be trivially rotated. This im-
plies that the ground states display discrete degeneracies only
(apart from global rotations), again consistent with Ref. [37].

The character of the finite-energy spectrum can be an-
alyzed via the cumulative distribution function F (λ) =
1/(2Ns)

∑
j �(λ − λ j ) of the Hessian eigenvalues λ j for a

particular local minimum. Plots of the cumulative distribution
function are shown in Figs. 15 and 16.

TABLE I. Number of different degenerate lowest-energy states
for samples with ic-type edges and β = 1 for different N and C/Cmax,
obtained from Ninit = 105 initial configurations’ for details see text.

Size C/|Cmax|
N 0.5 0.6 0.7 0.8 −0.5 −0.6 −0.7 −0.8
6 3 3 1 1 380 396 1025 7
8 1 2 1 4 26 20 306 51
10 1 1 1 1 17 2 52 15

TABLE II. Number of Hessian zero modes for samples with
c-type edges and β = 1 for different N and C/Cmax; for details, see
text.

Size C/|Cmax|
N 0.1 0.4 0.7 1.0 −0.1 −0.4 −0.7 −1.0
6 18 18 6 3 18 18 6 9
8 24 24 12 3 24 24 9 9
10 30 30 10 3 30 30 10 9

Independent of the edges, the spectrum appears gapless
for large N : existing gaps in the spectrum get filled with
increasing N , indicating that these are finite-size effects. Inter-
estingly, for c-type (ic-type) edges the density of low-energy
modes increases (decreases) with increasing |C|. This can
be rationalized by considering that, with increasing |C|, for
c-type edges zero modes are converted into low-E modes,
whereas for ic-type edges all modes are shifted to higher
energy.

V. SUMMARY AND OUTLOOK

Non-uniform strain can be used to drive highly frustrated
magnets into novel states: We have demonstrated this for
triaxial strain applied to the classical kagome Heisenberg
antiferromagnet: While this model system, in the absence of
strain, is in a highly degenerate classical spin-liquid state,
weak strain partially lifts the degeneracies. The system enters
a noncoplanar spin-liquid state with pronounced strain-driven
short-range spin correlations. Larger strain drives a phase
transition into a state with Q = 0 long-range order, and we

FIG. 15. Cumulative distribution function F (λ) of the Hessian
eigenvalues plotted on a log-log scale, for different values of
(a), (b) positive and (c), (d) negative strain. The data have been
obtained for samples with different N , β = 1, c-type edges and
averaged over ten different ground-state configurations.
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FIG. 16. Same as Fig. 15, but now for samples with ic-type edges.

have connected this to the tendency toward ferrimagnetism
in the uniaxially strained kagome antiferromagnet. Most in-
terestingly, the inhomogeneously ordered state at large strain
displays a rugged energy landscape akin to that of a spin glass.

Our results demonstrate an intriguing coexistence of mag-
netic long-range order and a glassy energy landscape in a
classical nonrandom spin system. This calls for a deeper
understanding of its dynamic properties, not only at the linear-
response level but also concerning relaxation and quenches.
In this context, the role of the zero modes present for c-type
boundaries needs particular attention. At finite temperatures,
strain effects will compete with thermal order by disorder,
which may drive novel types of phase transitions.

A notoriously difficult question is that for quantum ef-
fects at T = 0. Perhaps most interesting is the physics of
the strained S = 1/2 kagome Heisenberg antiferromagnet.
Provided that the unstrained system is a topological Z2 spin
liquid, it features a gap to Z2 vortex excitations (visons) and
hence can be expected to be stable at least against small
strain. However, numerics indicates that the unstrained system
is sensitive to small perturbations, related to its proximity
to one or more transitions between different ground-state
phases [25–27,29]. Hence, moderate strain is likely sufficient

to modify the quantum ground state: Given the rugged energy
landscape, we believe the strained kagome quantum antifer-
romagnet presents a fascinating platform to study quantum
glassiness and aspects of many-body localization.

Our paper suggests considering strain engineering of de-
generate states on a more general level and, in particular,
prompts generalizations to other strain patterns as well as
highly frustrated magnets on other lattices, such as pyrochlore
or hyperkagome. While this is left for future work, we
speculate here that large strain generically induces ordering
tendencies, and it will be extremely interesting to study the
emergence of corresponding ordering transitions, both at zero
and finite temperatures.
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APPENDIX: EXPONENTIAL VERSUS LINEARIZED
BOND-LENGTH DEPENDENCE OF COUPLING

CONSTANTS

The results presented in the body of the paper employ the
simplified geometry dependence of the magnetic exchange
couplings given in Eq. (2). In a real material, this dependence
is not linear and will in general also depend on bond angles.
The angle dependence arises from anisotropic orbitals as well
as from superexchange paths via intermediate ions and is
clearly material dependent.

Here we illustrate the robustness of our findings by as-
suming an exponential bond-length dependence instead of the
linearized one, i.e., we use

Ji j = J exp[−β(|�δi j |/a0 − 1)]. (A1)

As these couplings are always positive, our previous definition
of Cmax ceases to be well-defined. Therefore, we now use
CN = C̄Nβa0 as size-independent dimensionless measure of
the strain effect on the coupling constants.

FIG. 17. Spin structure factor S( �q) as in Fig. 6, but here for strained samples with c-type edges, β = 3, and exponential length dependence
(A1) of coupling constants J . The results are similar to that obtained using the linearized length dependence, Eq. (2).
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FIG. 18. (a), (b) Finite-size scaling of S( �Q)/Ns and (c), (d) ex-
trapolated peak height as function of CN for (a), (c) positive and
(b), (d) negative strain, here for strained samples with c-type edges,
β = 3, and exponential (instead of linearized) length dependence of
coupling constants.

We have performed numerical simulations using Eq. (A1)
instead of Eq. (2) and find the results to be qualitatively
unchanged: Upon increasing the strain, both the noncoplanar
spin liquid and the glassy �Q = 0 ordered state appear in an

essentially unchanged fashion. This is illustrated in Figs. 17
and 18, showing the spin structure factor and the finite-size
scaling for its peak height; these figures can be compared to
Figs. 6, 7, 9, 10(a), and 10(c).

The robustness can be rationalized as follows: Compared
to its linearized version, the exponential coupling depen-
dence Eq. (A1) leads to somewhat larger couplings for long
(i.e., weak bonds) and to significantly larger couplings for
short (i.e., strong bonds), while undistorted bonds remain
unchanged. As a result, elementary triangles whose linearized
couplings Eq. (2) strongly violate the triangle inequality
γiα + γ jα > γkα , see Sec. II C, and thus cannot satisfy the
constraint �Lα = 0, continue to do so for an exponential depen-
dence Eq. (A1). As unsatisfied triangles force the emergence
of the ordered glassy phase, its appearance and character
remains unchanged. Switching from linearized to expo-
nential coupling dependence shifts, the transition location
Ccrit by about 15% (recall, e.g., C+

maxN = √
3/4 ≈ 0.433 for

N → ∞).
We conclude that the linearization of the couplings’ length

dependence, Eq. (2), is a permissable approximation in the
regime of interest. We note that the same linearization ap-
proximation is frequently used in the literature on strained
graphene where it has been shown to remain reasonably ac-
curate for sample deformations up to 10–15% [35,47].
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