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Elastic study of electric quadrupolar correlation in the paramagnetic state of the frustrated
quantum magnet Tb2+δTi2−δO7
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The electric quadrupolar state in the frustrated quantum magnet Tb2+δTi2−δO7 has been studied by means
of ultrasonic and magnetostriction measurements. A single crystal showed an elastic anomaly around 0.4 K,
manifesting a long-range quadrupole ordering. By investigating the anisotropy of the magnetoelastic responses,
we found a crossover temperature for the strongly correlated quadrupole state, below which the experimental
data of the elastic constant and magnetostriction become qualitatively different from their calculations based on
a single-ion model. We suppose that relatively high onset temperature of the quadrupole correlation compared
with the transition temperature is ascribed to the geometrical frustration effect, and this correlated state seems to
be responsible for the unusual properties in the paramagnetic state of Tb2Ti2O7.
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I. INTRODUCTION

Geometrically frustrated systems have been serving as a
fertile playground for studying nontrivial magnetic phenom-
ena [1,2]. The pyrochlore lattice is a prototypical structure
having geometrical frustration, where conventional magnetic
order fails to develop and nontrivial states often emerge.
In particular, Dy2Ti2O7 and Ho2Ti2O7 exhibit a novel phe-
nomenon of spin ice, in which magnetic moments remain
disordered down to the lowest temperature, showing a zero-
point entropy [3]. The dynamics of magnetic monopoles under
magnetic fields have also attracted much attention [4]. Dis-
tinct from these classical Ising spin systems, the presence
of quantum fluctuations, or transverse interaction, in sys-
tems with weaker magnetic anisotropy provides more exotic
physics related to the quantum spin liquid (QSL) state in
the ground state [5–7]. In quests of such quantum spin ice
systems, intensive studies have been performed [8–10] based
on compounds of Yb2Ti2O7, Er2Ti2O7, Tb2Ti2O7, Pr2Zr2O7,
and so on.

Among them, Tb2Ti2O7 shows unique magnetic proper-
ties with Tb3+ ions having a total angular momentum J = 6.
The trigonal crystalline electric field (CEF) partially lifts the
degeneracy, and produces a low energy level scheme, that
consists of the ground state doublet and first excited dou-
blet separated only by ≈ 18 K [11]. The small gap allows
admixing between them, and quantum fluctuation transverse
to their local Ising axis becomes important [5,6,12]. This
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material has been thought of as a candidate of QSL. De-
spite a negative Curie-Weiss temperature of �CW = −19 K
[8,13], no magnetic long-range order was observed down to
the achievable lowest temperatures [13,14], while short-range
magnetic correlation develops below several tens of kelvins
as revealed by various methods: μSR [11,15], AC suscepti-
bility [14,16], neutron spin echo [14,17], and diffuse neutron
scattering [18–22] suggested the characteristic magnetic state
often referred to as a cooperative (or correlated) paramag-
net [13]. In addition to a magnetic dipole moment, these
doublets carry a large electric quadrupolar moment, which
couples to local strain. Recently, quadrupole order has been
discerned around 0.5 K [23,24] for Tb-rich Tb2+δTi2−δO7

crystals. These findings imply that the quadrupolar moment
plays an important role in this system; quadrupole moment O�

and strain e� are linearly coupled by a quadrupole-strain cou-
pling constant g� (� represents an irreducible representation)
as [25]

HQS = g�O�e�. (1)

Tb2Ti2O7 shows prominent magnetoelastic responses such as
significant elastic softening [24,26,27], giant magnetostric-
tion [26,28,29], suppressed thermal conductivity [30], thermal
Hall effect [31,32], and dynamical hybridization of phonon
and crystalline electric field (CEF) states [33–35]. These ex-
periments suggest that pure spin models are not enough to
capture the physics of Tb2Ti2O7, and the quadrupolar degree
of freedom and its coupling to the lattice have to be considered
carefully.

Here we have investigated the quadrupole correlation in
Tb-rich Tb2+δTi2−δO7 (δ ≈ 0.02) by measuring the detailed
temperature and magnetic field dependencies of the elastic
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constant and magnetostriction. The elastic constant [25] and
the strain [36] are expressed as

C� = C0
� − Ng�

∂ 〈O�〉
∂e�

∣∣∣∣
e�=0

, (2)

e� = Ng�

C�

〈O�〉 . (3)

Here C0
� is the elastic constant without considering

quadrupole-strain coupling, 〈O�〉 represents statistical aver-
age of quadrupolar moment, and N is the number of Tb ions in
a unit volume. These equations mean that two methods in this
study are complementary and suitable for probing quadrupole
fluctuation and quadrupole moment, respectively. By perform-
ing ultrasound measurement down to below 0.4 K, we have
found a clear anomaly in elastic constant at the quadrupole
ordering temperature of 0.44 K, being consistent with previ-
ous works [23,24]. We show strong quadrupolar correlation
persists up to ≈ 10 K by comparing experimental data and
calculation.

II. EXPERIMENT

A single crystal of Tb2Ti2O7 was grown by the floating-
zone method under 1 atm O2 atmosphere. The color of the
single crystal is reddish brown. Laue photographs were used
to determine the crystallographic orientation. X-ray diffrac-
tometer (XRD) measurements (SmartLab, Rigaku) were also
performed to determine the lattice parameter. We also con-
firmed single-crystallinity and the absence of impurity phase
in our sample by these measurements. The sample was cut
and carefully polished to obtain rectangular shape with flat
and parallel {100} surfaces. In order to characterize the sam-
ple, specific heat measurements were performed based on the
quasiadiabatic method using a dilution refrigerator. We used
the same piece of the single crystal as the ultrasonic measure-
ment mentioned below, and focused on the low-temperature
region at 0 T.

The size of the sample for ultrasonic measurements
is 4.2 × 3.3 × 1.7 mm3. Polyvinylidene difluoride (PVDF)
films with thickness of 9 μm were attached on (001) surfaces
by room-temperature-vulcanizing (RTV) silicone. Longitudi-
nal ultrasound of about 100 MHz is generated/detected by
these PVDF transducers. Based on the pulse-echo method, an
elastic constant of C11, where both wave vector k and polariza-
tion vector u are parallel to [001], was obtained. Ultrasound
echoes and reference signal were directly converted to digital
data using an oscilloscope (RTO1004, Rohde & Schwarz),
and phase comparison analysis was numerically performed.
Note that magnetostriction of Tb2Ti2O7 was so large that
adhesion between transducer and sample was easily broken
under large magnetic fields when a hard transducer such as
LiNbO3 was used. Therefore, we used the organic PVDF film
that can be applicable even under large magnetostriction. Only
the longitudinal mode is available for the PVDF transducer.
Magnetostriction measurement was carried out by a conven-
tional strain-gauge technique. We simultaneously measured
longitudinal and transverse strains by orthogonally attaching
two strain-gauges with external magnetic field applied along
[001]. In order to eliminate false strain due to magnetore-

FIG. 1. (a) δ-T phase diagram of Tb2+δTi2−δO7. The composi-
tion of present study is estimated to δ ≈ 0.02 based on XRD and
specific heat measurements. Circles were data taken from Ref. [37].
(b) Experimental setup of ultrasound measurement. (c) Temperature
dependence of compressive elastic constant C11 at 0 T. The insets
show low-temperature region of C11(top) and specific heat (bottom).
Temperature derivative of the specific heat was also displayed in the
bottom inset. Deflection of C11 at 0.44 K is close to the peak of
−dC/dT , indicating the ordering of quadrupole moment.

sistance of strain gauge, a reference sample (glass) was also
measured by the same settings. True magnetostriction was
derived by subtracting the magnetoresistance from raw data.
Ultrasonic measurement below 2 K was performed by using
a 3He refrigerator at the Center for Low Temperature Science
in Tohoku University. The lowest temperature achieved was
0.38 K. Detailed magnetic field angle dependence was mea-
sured above 2 K using a 4He refrigerator equipped with a
rotation stage.

III. RESULTS

As shown in Fig. 1(a), stoichiometric Tb2Ti2O7 locates
close to the boundary of a QSL and a quadrupolar or-
dered phase, and the ground state is very sensitive to the
off-stoichiometric parameter δ [37,38]. As discussed below,
our crystals seem to have δ ≈ 0.02. Therefore, the ground
state may show a quadrupolar ordering. Figure 1(c) exhibits
temperature dependence of compressive elastic constant C11.
Large elastic softening was observed with decreasing temper-
ature followed by the hardening below 0.44 K. The softening
is caused by quadrupole fluctuation while the hardening sug-
gests that the ground state degeneracy was lifted by a phase
transition. This upturn is consistent with the previous reports
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FIG. 2. Magnetic field dependence of (a)–(h) experimental and (i)–(p) calculated elastic constant C11(φ) at various temperatures under
magnetic field applied parallel (φ = 0◦) and perpendicular (φ = 90◦) to the propagation direction of ultrasound.

[24], and can be attributable to the quadrupolar ordering
transition [23]. As shown in the lower inset of Fig. 1(c),
specific heat measurement was also performed at 0 T. The
anomaly can be ascribed to the broadened second-order phase
transition. Because the specific heat jump corresponds to the
transition temperature in a conventional second-order phase
transition, the peak temperature in −dC/dT can be assigned
to the transition temperature. It almost corresponds to the kink
in C11. Our specific heat data are similar to that of δ = 0.026
reported in [37]. On another front, our XRD measurement
revealed that δ = 0.012 ± 0.012 (see Appendix A for details).
Therefore, combining them, δ of our sample is considered to
be around 0.02. In order to investigate how the quadrupole
correlation evolves toward the transition temperature, we
have studied the elastic constant C11 in the para-quadrupole
state. Figures 2(a)–2(h) show C11 at various temperatures
under magnetic field applied parallel (φ = 0◦) or perpen-
dicular (φ = 90◦) to the propagation direction of ultrasound
[see Fig. 1(b) for the definition of φ]. When the magnetic
field is applied, the quadrupole fluctuation is suppressed and
C11 increases owing to the polarization of magnetic dipole
moment. The polarization also induces the anisotropy of the
elastic constant. The magnitude of anisotropy is larger in the
higher magnetic field and lower temperature. In particular,
C11 shows large anisotropy below 4 K; C11(φ = 0◦) steeply
increases with increasing magnetic field, but C11(φ = 90◦)
remains nearly constant below 2 T. Below 1 K, a small cusp
was observed for φ = 90◦ in the low magnetic field region. To
show the effect of quadrupole correlation, we have performed
the calculation of the elastic constant based on a single-ion
model as shown in Figs. 2(i)–2(p). In this calculation, CEF,
Zeeman field, and the quadrupole-strain coupling were taken
into account, while any interaction between Tb3+ moments
was not (the details of the calculation procedure are shown
in Appendix B). The difference between the experimental
data and the calculation should be ascribed to the correla-

tion effect. The calculated elastic modulus at 0 T diverges
toward the zero-temperature following the Curie-type elastic
softening [25]. As a result, the elastic constant shows un-
physical negative value below 0.45 K. This is partly because
higher-order elastic constants and inter-quadrupolar coupling
are neglected. Apart from the negative divergence, the cal-
culated C11 of the two orthogonal configurations is almost
isotropic below 2 T irrespective of temperature. On the other
hand, the experimental elastic constant shows large anisotropy
in the low-temperature region while the experiment and the
calculation are similar above 10 K. In particular, C11 below
4 K shows gradual kinks as indicated by arrows only for
the 90◦ experimental data. The signatures different from the
single-ion calculation seem to be owing to the quadrupole
correlation effect.

In order to investigate the elastic anisotropy at low mag-
netic fields in more detail, we have systematically studied
magnetic field angle dependence of �C11(φ) = C11(φ) −
C11(φ = 0◦). We show experimentally measured and calcu-
lated angular dependencies under various magnetic fields at a
fixed temperature of 4 K in Figs. 3(a) and 3(b), respectively.
In a low field, the experimental data of the elastic constant
vary with the angle as cos 2φ while the calculation does as
cos 4φ. The φ = 0◦ and 90◦ data are different for the cos 2φ

dependence while they are same for the cos 4φ dependence.
Therefore, the difference between the experimental and calcu-
lation is consistent with that shown in Fig. 2. As the magnetic
field is increased, both of the angular dependencies become
similar to each other.

Figures 4(a) and 4(b) show experimental and calcu-
lated �C11(φ) at 1 T for various temperatures. Clear angle
dependencies gradually appear upon cooling for both the ex-
perimental and calculated data. On the other hand, the main
part of experimentally observed angular dependence contains
a cos 2φ dependent component while the calculation shows
cos 4φ dependence, which is consistent with the results in

094414-3



Y. NII et al. PHYSICAL REVIEW B 105, 094414 (2022)
20 20

�C
   

 (G
Pa

)
11

�C
   

 (G
Pa

)
11

K 4K 4 )b()a(

fitting

× 2 × 10
fitting

7 T

5 T

3 T

1 T

7 T

5 T

3 T

1 T

FIG. 3. Magnetic field angle dependence of (a) experimental
and (b) calculated �C11(φ) under various magnetic fields at 4 K.
Magnetic field is rotated with respect to the [100] axis as shown in
Fig. 1(b). Data are shown with offset for clarity. Experimental and
calculated data at 1 T are multiplied by 2 and 10, respectively. The
black solid lines represent fitting curves of �C11(φ) = A2φ cos 2φ +
A4φ cos 4φ at 1 T.

� C
   

 (G
Pa

)
11

�C
   

 (G
Pa

)
11

2

2 20 K

10 K

6 K

4 K

2.5 K

20 K

10 K

6 K

4 K

2.5 K

fitting fitting

T 1T 1 )b()a(

FIG. 4. Magnetic field angle dependence of (a) experimental and
(b) calculated �C11(φ) at various temperatures. Magnetic field is as
large as 1 T and rotated with respect to the [100] axis as shown
in Fig. 1(b). Data are shown with offset for clarity. Each solid line
represents fitting curves of �C11(φ) = A2φ cos 2φ + A4φ cos 4φ.

A 
   

(G
Pa

)
4�A 
   

(G
Pa

)
2�

1 T1 T

)b()a(

FIG. 5. Temperature dependence of fitting parameters (a) A2φ

and (b) A4φ for the experimental (blue triangle) and the calculation
(gray square) at 1 T.

Fig. 3 at low field. Note that this discrepancy does not merely
originate from the unoptimized parameters used in our cal-
culation. The cos 2φ dependence cannot be reproduced even
when the quadrupolar-strain coupling parameters (g22 and gyz)
were varied over a wide range. Thus, the cos 2φ dependence
can be viewed as a measure of quadrupole correlation, and
it is useful to estimate the onset temperature of correlation.
To evaluate these angular dependencies, we fitted them by
�C11(φ) = A2φ cos 2φ + A4φ cos 4φ, where A2φ and A4φ are
fitting parameters at 1 T. Figures 5(a) and 5(b) represent
the temperature dependence of these fitting parameters. The
most apparent disagreement between experiment and calcu-
lation appears in A2φ below ≈ 10 K. This onset temperature
of quadrupole correlation is quite large compared with the
quadrupolar-ordering transition temperature of ≈ 0.4 K.

To investigate the correlation effect from a different
probe, we have measured magnetic field induced strain, i.e.,
magnetostriction. Complementary to elastic response, mag-
netostriction probes the quadrupolar moment induced by
magnetic field. Figure 6(a) shows magnetostriction measured
at various temperatures. Magnetic field was applied along
the [001] direction, and the longitudinal (ezz ‖ [001]) and the
transverse (exx ‖ [100]) strains were measured simultaneously
[see Fig. 6(b)]. Being consistent with the previous studies
[26,28,29], ezz is positive while exx is negative, and the mag-
nitudes were as large as order of 10−3. As the temperature
is decreased, the magnitude of magnetostriction gradually
increases. This is reflected by the evolution of magnetic sus-
ceptibility. We have also calculated the magnetostrictions for
both configurations using the same single-ion model and pa-
rameters as in the case of elastic constant (see Appendix B). It
well reproduces the experimental data in the high-temperature
region, but discrepancy between the experiment and calcula-
tion becomes apparent in the low-temperature region below
10 K. This can also be ascribed to the quadrupole correlation
effect. To evaluate this discrepancy, the difference between
experiment and calculation was exhibited in Fig. 6(c). Similar
to the previous case of the elastic constant, it evolves rapidly
below around 10 K. The most obvious discrepancy is the
magnetostriction perpendicular to the magnetic field; the mag-
nitude of experimental data is almost half of the calculated
value. In this direction, the experimental elastic constant is
also small compared with the calculation. These discrepancies
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correspond to each other and are considered to be related to
quadrupolar correlation.

IV. DISCUSSION AND CONCLUSION

In conclusion, we have revealed strong quadrupole correla-
tion in a frustrated quantum magnet Tb2+δTi2−δO7 by means
of ultrasound, magnetostriction, and specific heat measure-
ments. Figure 7 summarizes the obtained results. Consistent
with the previous reports [23,24], our Tb-rich single crystal
showed anomalies of elastic constant and specific heat around
0.4 K, manifesting a long-range quadrupole ordering. We have
compared the observed elastic constant and magnetostric-
tion with the calculated data based on a single-ion model.
The discrepancy between the observed and calculated data
was discerned below about 10 K, indicating breakdown of
single-ion picture and strong quadrupole correlation in the
paramagnetic state. The onset temperature is far above the
long-range quadrupolar ordering temperature of 0.44 K. The
magnetic field range of the strong correlation is not clear but
supposedly of tesla order judging from the magnetic field
dependencies of the elastic constant [Figs. 2(a)–2(e), 3(a)
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FIG. 7. Phase diagram of Tb2+δTi2−δO7 (δ ≈ 0.02). QO stands
for a long-range quadrupolar ordered phase. Squares indicate the
onset temperature of the quadrupolar correlation determined by A2φ

and magnetostriction. Red circles represent deflection points of C11

shown by arrows in Figs. 2(a)–2(e). The boundary fields between
the strong correlation and induced magnetic state should be larger
than them. Red and green triangles correspond to the quadrupolar-
ordering temperature determined by the C11 and specific heat shown
in Fig. 1(c).

and 3(b)] and magnetostriction [Fig. 6(a)]. In the correlated
region, the difference between experiment and calculation
was confirmed clearly in the response along the direction
perpendicular to the magnetic field. In this direction, the
magnetostriction (i.e., exx) becomes negative and the elastic
response (at φ = 90◦) remains soft at low magnetic field.
These imply that quadrupolar moment tends to avoid the
perpendicular direction and quadrupolar fluctuation persists
under magnetic field. Although previous theoretical studies
took the quadrupole degree of freedom and its correlation into
account [6,23], the related magnetoelastic responses were not
reported so far. The observations in this study seem useful for
the future development of theoretical investigation.

Gritsenko et al. estimated a rather small quadrupolar in-
teraction (−0.055 K) based on the Curie-Weiss-like fitting
of ultrasound data [24] but such estimation is not accurate
even in some simple cases [39]. In fact, several previous stud-
ies also suggested the importance of quadrupolar correlation.
Klekovkina et al. identified the order of magnitude difference
between the experimentally observed elastic constants and
those calculated based on a single-ion model. They speculated
that it is caused by the effect of intersite interaction [36]. Ruff
et al. observed a substantial broadening of Bragg peaks below
20 K, and attributed it to structural fluctuation caused by
the quadrupolar correlation [40]. Inelastic neutron scattering
experiments showed that the first excited CEF mode becomes
dispersive below about 20 K, suggesting CEF levels among
adjacent Tb3+ ions are interacted [33,41]. Moreover, in a sister
compound Tb2Ge2O7, recent comprehensive study showed
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that significant correlations between quadrupolar moments of
Tb3+ ions are present above 1.1 K [42]. These also suggest
that the onset of quadrupolar correlation is much higher than
the long-range quadrupolar ordering temperature.

The anomalous physical properties in the paramagnetic
state such as the giant thermal Hall effect [31,32], magnetoe-
lastic hybrid excitation [33,34], and vibronic state between
phonon and CEF states [35] may be related to the effect
of quadrupole correlation. While the strong quadrupolar cor-
relation effect persists up to several tens of kelvins, the
geometrical frustration seems to suppress the long-range
quadrupolar ordering similarly to other pyrochlore systems.
The characteristic of Tb2Ti2O7 clarified in this work is that the
strong correlation effect shows up in the sector of quadrupole
or lattice dynamics. The nature of geometrical frustration
effect on the quadrupole degree of freedom is not clear so
far. Pioneering theoretical investigations by Khomskii and
Mostvoy introduced the concept of orbital (i.e., quadupolar)
frustration [43]. This may cause the situation observed in this
study. However, there are no established methods that probe
quadrupolar frustration, and few experimental investigations
are reported [44–46]. Further investigations are needed to clar-
ify the nature of this unexplored but fascinating phenomenon.
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APPENDIX A: ESTIMATION OF THE
OFF-STOICHIOMETRIC PARAMETER δ

FROM X-RAY DIFFRACTION

As reported in Refs. [37,38], the off-stoichiometric param-
eter δ of Tb2+δTi2−δO7 is proportional to lattice parameter a.
Thus, precise determination of the lattice parameter allows
us to estimate δ. Here we performed XRD measurement at
22 ◦C using a powder sample crushed from a piece of a
single crystal. The calibration was also performed using a
standard Si powder sample, in which the lattice parameter of
5.43123 ± 0.00008 Å at 22.5 ◦C [47] and thermal expansion
coefficient of 2.56 × 10−6 K−1 at 293 K [48] were used. By
performing least-squares fitting of the Bragg peaks followed
by the calibration, we obtained the lattice parameter of the
sample at 22 ◦C to 10.1539 ± 0.0015 Å. Then, using that
the thermal expansion coefficient of Tb2Ti2O7 is 10.3 × 10−6

K−1 at about 280 K [49], the lattice parameter at 26 ◦C
of 10.1543 ± 0.0015 Å was obtained. Finally, δ = 0.012 ±
0.012 was deduced according to the relation a(Å, 26 ◦C) =
0.124418δ + 10.15280 [37].

APPENDIX B: SINGLE-ION BASED CALCULATION

Here we show the details of calculation for the elastic
constant and magnetostriction. This is based on a single-ion
model without intersite interaction. As shown in Fig. 8(a),
Tb3+ ions have four inequivalent sites on a pyrochlore lattice.
There is no interaction between them in this model. To ob-
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hedron at site 2 in (a). (c) Magnetic field dependence of low-energy
CEF levels. The level schemes of every four sites are equivalent when
magnetic field is applied along [001]. (d) Magnetic field dependence
of electric quadrupole moments at the site 2.

tain the elastic constant and magnetostriction, we separately
calculated these quantities for each site and then averaged the
four values.

1. Local coordinate

The local coordinates (xm, ym, zm) of the four sites m =
1, 2, 3, 4 are defined using the global axes as shown in Table I
and Figs. 8(a) and 8(b). Using this relation, physical tensors
represented by local axes at the m site can be transformed.
For instance, the strain tensors em

i j described at a local coor-
dinate m and the strain tensor ei j defined in the global frame
are transformed by em

αβ = ∑
i, j Rm

αiR
m
β jei j , where the rotation

TABLE I. Correspondence between local orthonormal axes and
global cubic axes. m stands for the four inequivalent Tb3+ sites
shown in Fig. 8(a).

m xm ym zm

1 1√
6
(1, 1, 2) 1√

2
(−1, 1, 0) 1√

3
(−1, −1, 1)

2 1√
6
(−1, −1, 2) 1√

2
(1, −1, 0) 1√

3
(1, 1, 1)

3 1√
6
(−1, 1, −2) 1√

2
(1, 1, 0) 1√

3
(1, −1, −1)

4 1√
6
(1, −1, −2) 1√

2
(−1,−1, 0) 1√

3
(−1, 1, −1)
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TABLE II. The Bi j parameters used in the present study. The
parameters were taken from Ref. [50] and are shown in meV units.
In Ref. [50], CEF Hamiltonian is defined as HCEF = ∑

k,q B̃k
qC

k
q ,

where Ck
q are Wybourne tensor operators. B̃k

q is converted to Bi, j

by using relations of B20 = αJλ
0
2B̃2

0, B4q = βJλ
q
2B̃4

q, and B6q =
γJλ

q
2B̃6

q, where αJ = −1/99, βJ = 2/16335, γJ = −1/891891, λ0
2 =

1/2, λ0
4 = 1/8, λ3

4 = √
35/2, λ0

6 = 1/16, λ3
6 = √

105/8, and λ6
6 =√

231/16.

B20 B40 B43

−0.282323 0.00474441 0.0412876
B60 B63 B66

−4.51288 × 10−6 0.000120922 −0.000137393

matrices Rm are given by

R1 =

⎛
⎜⎜⎝

1√
6

− 1√
2

− 1√
3

1√
6

1√
2

− 1√
3√

2
3 0 1√

3

⎞
⎟⎟⎠,

R2 =

⎛
⎜⎜⎝

− 1√
6

1√
2

1√
3

− 1√
6

− 1√
2

1√
3√

2
3 0 1√

3

⎞
⎟⎟⎠,

R3 =

⎛
⎜⎜⎝

− 1√
6

1√
2

1√
3

1√
6

1√
2

− 1√
3

−
√

2
3 0 − 1√

3

⎞
⎟⎟⎠,

R4 =

⎛
⎜⎜⎝

1√
6

− 1√
2

− 1√
3

− 1√
6

− 1√
2

1√
3

−
√

2
3 0 − 1√

3

⎞
⎟⎟⎠.

2. Hamiltonian

The local Hamiltonian at the m site (m = 1–4) is given by

Hm = Hm
CEF + Hm

Z + Hm
QS, (B1)

where

Hm
CEF = B20Om

20 + B40Om
40 + B43Om

43 + B60Om
60

+ B63Om
63 + B66Om

66,

Hm
Z = −gJμBμ0Jm · H,

Hm
QS =

∑
�

g�Om
� em

� . (B2)

Here Hm
CEF , Hm

Z , Hm
QS are Hamiltonians representing CEF,

Zeeman energy, and quadrupolar-strain coupling, respectively.
Bi j and Om

i j are CEF parameters and the Stevens operators at
the m site. We have taken CEF parameters from Ref. [50] (see
Table II). gJ = 3/2, μB, μ0, Jm, and H represent Lande’s g
factor, Bohr magneton, permeability in a vacuum, total angu-
lar momentum, and magnetic field, respectively. Om

� , em
� , and

g� are irreducible quadrupolar operator, strain tensor, and the
coupling constant belonging to the symmetry �, respectively.
Here Jm, Om

i j , Om
� , and em

� are defined in its local frame at the

m site. The explicit form of the Stevens operators is given by
[51]

Om
20 = 3

(
Jm

z

)2 − J (J + 1),

Om
40 = 35

(
Jm

z

)4 − 30J (J + 1)
(
Jm

z

)2 + 25
(
Jm

z

)2

− 6J (J + 1) + 3J2(J + 1)2,

Om
43 = {

Jm
z

[
(Jm

+ )3 + (Jm
− )3

]
+ [(

Jm
+

)3 + (Jm
− )3

]
Jm

z

}
/4,

Om
60 = 231

(
Jm

z

)6 − 315J (J + 1)
(
Jm

z

)4 + 735
(
Jm

z

)4

+ 105J2(J + 1)2
(
Jm

z

)2 − 525J (J + 1)
(
Jm

z

)2

+ 294
(
Jm

z

)2 − 5J3(J + 1)3 + 40J2(J + 1)2

− 60J (J + 1),

Om
63 = {[

11
(
Jm

z

)3 − 3J (J + 1)Jm
z − 59Jm

z

]
×[

(Jm
+ )3 + (Jm

− )3
] + [

(Jm
+ )3 + (Jm

− )3
]

×[
11

(
Jm

z

)3 − 3J (J + 1)Jm
z − 59Jm

z

]}
/4,

Om
66 = [(Jm

+ )6 + (Jm
− )6]/2.

Considering the local D3d symmetry at the Tb3+ site, HQS can
be reduced as

Hm
QS =

∑
�

g�Om
� em

�

= g20Om
20em

20 + g22
(
Om

22em
22 + Om

xyem
xy

)
+ gyz

(
Om

yze
m
yz + Om

zxem
zx

)
,

where irreducible representations of Om
� and em

� are given by

Om
20 = 3

(
Jm

z

)2 − J (J + 1),

Om
22 = [(

Jm
x

)2 − (
Jm

y

)2]
/
√

2,

Om
xy = (

Jm
x Jm

y + Jm
y Jm

x

)
/
√

2,

Om
yz = (

Jm
y Jm

z + Jm
z Jm

y

)
/
√

2,

Om
zx = (

Jm
z Jm

x + Jm
x Jm

z

)
/
√

2,

em
B = em

xx + em
yy + em

zz,

em
20 = (

2em
zz − em

xx − em
yy

)
/3,

em
22 = (

em
xx − em

yy

)
/
√

2.

By diagonalizing the Hamiltonian shown in Eq. (B1), eigen-
states and eigenenergies are obtained. Figure 8(c) shows the
obtained eigenenergies as a function of magnetic field. Al-
though only the four CEF levels are represented, all of the
thirteen eigenstates are taken into account in the following
calculation.

3. Elastic constant

To get the magnetoelastic responses, total free en-
ergy of F = Felas + Felec is considered [25]. The Felas =∑

i, j,k,l (1/2)C0
i jkl ei jekl is the elastic part of the free energy

and Felec = −(N/β ) ln Z is the electronic part of the free
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FIG. 9. Temperature dependence of (a) experimental and (b) cal-
culated elastic constants C11 above 2 K at various magnetic fields
along [001].

energy. Here C0
i jkl , N , and β = 1/kBT represent elastic stiff-

ness tensors without electronic contribution, total number of
Tb4 tetrahedrons in a unit volume, and inverse temperature,
respectively. Z = ∑

n,m e−βEn,m is the partition function, where
En,m is the nth eigenenergy at the m site. Then C11 is given by
taking a second derivative of the total free energy with respect
to strain ezz as [25,36]

C11 = ∂2F

∂e2
zz

= C0
11 − N

4∑
m=1

∑
�

g�

∂
〈
Om

�

〉
∂ezz

(
∂em

�

∂ezz

)
. (B3)

The first term is the background elastic constant corre-
sponding to the contribution from the purely elastic energy,
and the second term is the modification by the quadrupole-
strain coupling. For simplicity, C0

11 is approximated to be
constant and temperature independent. The 〈O〉 represents
the statistical average of the quadrupole moment defined as
〈O〉 = ∑

n 〈n|O|n〉 e−βEn . Here |n〉 are the nth eigenstates. The
derivative term ∂ 〈Om

� 〉 /∂ezz was approximated to (〈Om
� 〉

�ezz
−

〈Om
� 〉0)/�ezz, where �ezz was set to small finite value of

the order of 10−6. The 〈Om
� 〉

�ezz
and 〈Om

� 〉0 mean 〈Om
� 〉 with

and without the small �ezz. Figure 9 shows comparison of
experimental and calculated C11 as a function of temperature.
Our calculation reproduces the overall behavior including a
broad dip at above 3 T. This supports our calculation and
estimated parameters are reasonable.

4. Magnetostriction

By minimizing the free energy with respect to the strain
tensors [28,36] (i.e., ∂F/∂exx = ∂F/∂eyy = ∂F/∂ezz = 0),
one gets coupled equations as follows:

C0
11exx + C0

12(eyy + ezz ) = N
4∑

m=1

∑
�

g� 〈Om
� 〉

(
∂em

�

∂exx

)
,

C0
11eyy + C0

12(ezz + exx ) = N
4∑

m=1

∑
�

g� 〈Om
� 〉

(
∂em

�

∂eyy

)
,

C0
11ezz + C0

12(exx + eyy) = N
4∑

m=1

∑
�

g� 〈Om
� 〉

(
∂em

�

∂ezz

)
.

Then, three strain tensors can be given by

exx = S0
[(

C0
11 + C0

12

)
σ̃xx − C0

12(σ̃yy + σ̃zz )
]
,

eyy = S0
[(

C0
11 + C0

12

)
σ̃yy − C0

12(σ̃zz + σ̃xx )
]
,

ezz = S0
[(

C0
11 + C0

12

)
σ̃zz − C0

12(σ̃xx + σ̃yy)
]
,

where

S0 = [(
C0

11

)2 + C0
11C

0
12 − 2

(
C0

12

)2]−1
,

σ̃i j = N
4∑

m=1

∑
�

g�

〈
Om

�

〉 (∂em
�

∂ei j

)
.

Figure 8(d) shows the magnetic field induced evolution
of electric quadrupolar moments at m = 2. Here O� ≡
〈0|Om=2

� |0〉 and |0〉 represents the lowest CEF level at each
magnetic field. The trigonal crystalline field inherent in the
pyrochlore systems induces O20 moment even at zero field.
The confirmed magnetostriction can be attributable to the
magnetically induced local quadrupolar moments of O20, Ozx,
and O22.

The best-fitting parameters used in the present calcula-
tion are C0

11 = 315 GPa, C0
12 = 175 GPa, g22 = −80 K, and

gyz = 150 K. The signs of g22 and gyz are determined from
longitudinal and transverse magnetostrictions. g20 cannot be
determined since it does not contribute C11, exx, and ezz.
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