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Finding and probing the ground states of spin lattices, such as the antiferromagnetic Heisenberg model on the
kagome lattice (KAFH), is a very challenging problem on classical computers and only possible for relatively
small systems. We propose using the variational quantum eigensolver (VQE) to find the ground state of the
KAFH on a quantum computer. We find efficient ansatz circuits and show how physically interesting observables
can be measured efficiently. To investigate the expressiveness and scaling of our ansatz circuits we used classical,
exact simulations of VQE for the KAFH for different lattices ranging from 8 to 24 qubits. We find that the fidelity
with the ground state approaches one exponentially in the circuit depth for all lattices considered, except for a
24-qubit lattice with an almost degenerate ground state. We conclude that VQE circuits that are able to represent
the ground state of the KAFH on lattices inaccessible to exact diagonalization techniques may be achievable on
near-term quantum hardware. However, for large systems, circuits with many variational parameters are needed
to achieve high fidelity with the ground state.
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Simulating and investigating quantum mechanical systems
will be one of the first applications of the noisy intermediate-
scale quantum (NISQ) computing hardware available in the
near term [1–3]. In particular, problems in quantum many-
body physics and quantum chemistry are hard to intractable
for today’s best supercomputers and of high scientific interest.

One algorithm that was devised with the low-circuit depths
and relatively high noise rates of NISQ devices in mind is
the variational quantum eigensolver (VQE) [4]. It is a hybrid
quantum-classical algorithm to produce a ground state of a
quantum Hamiltonian H . A classical optimizer is used to
minimize the expectation value 〈ψ (θ )|H |ψ (θ )〉 over a family
of states |ψ (θ )〉. If this family of states includes a ground state
of H , VQE aims to return this ground state.

In this work we focus on a quantum many-body system
that is hard to study using classical supercomputers and that
we hope is particularly suitable to be addressed using VQE on
NISQ quantum computers: the antiferromagnetic Heisenberg
model on the kagome lattice (KAFH). The phase of its ground
state is still not entirely settled. Some analytical results in-
dicate a valence bond crystal ground state [5,6] while other
results indicate an algebraic spin-liquid ground state [7,8].
More recent numerical results predict the ground state to be
a gapped [9–11] or gapless [12–14] spin-liquid state. Ex-
perimental results with herbertsmithite ZnCu3(OH)6Cl2 also
indicate a gapless spin-liquid state [15,16]. The classical,
numerical methods are limited in their ability to describe
large systems [exact diagonalization (ED)] or to describe true
two-dimensional (2D) systems instead of mimicking them
using long strips or cylinders [density matrix renormalization
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group (DMRG)]. In contrast, the KAFH maps well to NISQ
quantum hardware because the qubits can directly represent
the spin- 1

2 degrees of freedom and many NISQ devices have a
2D connectivity close to that of the kagome lattice.

Here we develop efficient quantum circuits for VQE for
KAFH targeted at nearest-neighbor quantum computing ar-
chitectures, based on the popular and physically motivated
Hamiltonian variational (HV) ansatz [17]. We then carry
out exact, classical simulations of VQE for the KAFH with
the HV ansatz on patches of the kagome lattice from 8 to
24 sites using variants of the HV ansatz with different levels
of parametrization. These extensive experiments allow us to
infer the possible scaling of VQE for larger system sizes be-
yond the capability of classical exact diagonalization. We also
show that some physically interesting observables in the states
produced by VQE match their values in the exact ground state.

We find that, similarly to previous work on VQE for
the Hubbard model [18] and interacting, spinless fermions
on a chain [19], the error as measured by infidelity de-
creases exponentially with the VQE circuit depth. Using one
ansatz parametrization, our results are largely consistent with
ground-state fidelity 0.999 being achievable using roughly
half the number of qubits, 0.5nqb, VQE layers for strip-shaped
lattices. Although we have insufficient data for lattices with
equal length in both dimensions to determine scaling, consid-
eration of entanglement spreading out linearly in the circuit
depth suggests the scaling could even be as low as

√
nqb.

We show that each VQE layer can be implemented using a
quantum circuit with two-qubit gate depth 7 on a quantum
computer with square-lattice connectivity, or only 4 on an
architecture with all-to-all connectivity.

However, this performance and the fastest exponential de-
cay in infidelity is only achieved by a variant of the HV ansatz
with one independent parameter per edge in the lattice and
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VQE layer (≈2pnqb parameters for a system of nqb qubits
and p VQE layers). The use of VQE with a large number
of parameters may be expected to suffer from the “barren
plateau” problem [20,21] of exponentially small gradients,
and indeed we do find some evidence that these become small
for large p. Also, in one case (a patch of the kagome lattice on
24 sites), VQE does not find the ground state in a reasonable
number of layers. This is because the first excited state is very
close in energy to the ground state; we find additionally that
the overlap achieved with the subspace spanned by these two
states is significantly better.

It is instructive to compare the complexity of VQE for
KAFH with VQE for the Fermi-Hubbard model, which is
another plausible early application for NISQ quantum com-
puters, and was studied in detail in [18,22]. It was argued in
[18] that a 5 × 5 Fermi-Hubbard instance (50 spins) might
be solvable with high accuracy via a VQE circuit with over-
all two-qubit gate depth ≈ 550 in a square-lattice topology,
which was substantially lower than other proposed near-term
applications of quantum computers. If our numerical results
for KAFH are representative of the performance of VQE
for larger systems, a patch of the kagome lattice with 50
qubits could be solved with two-qubit gate depth only ≈ 0.5 ×
50 × 7 = 175 in the same topology, which is substantially
lower. However, the variational ansatz used in [18] would use
125 parameters for the whole circuit, whereas the ansatz we
use here would use 2500 parameters.

These points highlight the opportunities and challenges
faced by VQE for condensed-matter systems. For small-scale
versions of complex systems of significant physical interest,
VQE ansätze can well represent the ground state and can be
implemented efficiently. Yet, the VQE algorithm may struggle
with finding the ground state where there is a small energy
gap, and with handling optimization over a large number of
variational parameters.

Recently, we became aware of closely related work done
by Kattemölle and van Wezel [23]. They also study the perfor-
mance of VQE with the HV ansatz on the KAFH, including
numerical simulations on 20 qubits. However, they consider
a different embedding of the kagome lattice into the square
lattice that produces one round of the HV ansatz with one
layer of two-qubit gates less than ours at the cost of one extra
qubit per unit cell of the kagome lattice. Consequently, their
ansatz circuits are different from ours and, unlike ours, fully
respect the translational symmetry of the kagome lattice. They
report slightly better scaling of the fidelity with circuit depth
for a lattice on 20 qubits, but more detailed comparisons on
more lattices are needed to draw any definitive conclusions
regarding scaling. Other differences are the inclusion in this
work of the study of gradient scaling, to understand whether
barren plateaus are a problem in our ansatz circuits, and
comparison of local observables for VQE states and exact
ground states, to understand how well VQE states represent
ground-state properties other than the energy.

I. VARIATIONAL METHOD

The variational quantum eigensolver (VQE) [4,24] is a
method for finding ground states (or possibly also excited
states [25]) of quantum Hamiltonians by classically optimiz-

FIG. 1. The kagome lattice.

ing the parameters of a parametric unitary U (θ ). It has been
extensively studied using classical simulation [18,19,26] as
well as on superconducting quantum computers [27–29] and
with trapped ions [30–32].

At a high level, the goal is to minimize the objective
function

f (θ ) = 〈ψ (θ )|H |ψ (θ )〉 = 〈ψi|U †(θ )HU (θ )|ψi〉 , (1)

where U (θ ) is a family of unitaries parametrized by the clas-
sical parameters θ , |ψi〉 an easily prepared reference state,
and H the Hamiltonian whose ground state |ψ0〉 we wish to
prepare. If and only if U (θ ) is sufficiently expressive [21,33]
[meaning there exists some θ∗ such that |ψ (θ∗)〉 = |ψ0〉], then
f (θ ) is minimal if and only if |ψ (θ )〉 is the ground state of H .

To turn this high-level description into a concrete quantum
algorithm, we need to specify its components: We need to en-
code the system of interest, and hence the Hamiltonian H , into
a qubit system, we need to make some (informed) choice of a
sufficiently expressive yet implementable ansatz circuit U (θ ),
and we need a way to efficiently estimate the expectation value
〈ψ (θ )|H |ψ (θ )〉 from measurement samples. Unless the goal
of the experiment is to find the ground-state energy E0, we
also need to specify what to do with the found ground state,
e.g., measuring some observables of interest.

A. Encoding and lattice mapping

Our target Hamiltonian is the kagome antiferromagnetic
Heisenberg model (KAFH)

H =
∑
〈i, j〉

�Si · �S j =
∑
〈i, j〉

XiXj + YiYj + ZiZ j, (2)

where the sums run over neighboring sites 〈i, j〉 in the kagome
lattice (Fig. 1), h̄ = 1, and the usual factor of 1

2 in the defini-
tion of the spin operators �Si is omitted for simplicity.

As a spin model, the Heisenberg model (2) has a canonical
mapping to qubits: simply assign one spin to each qubit.
Finding an efficient mapping from the kagome to the square
lattice is more challenging. The HV ansatz requires time evo-
lution generated by the terms in the Hamiltonian. Hence, we
seek a mapping that can implement a Trotterized version of
e−itH , that is, to implement time evolution by all of the terms
in H individually, with as few layers of parallel two-qubit
gates as possible on a square lattice. The chosen mapping
is shown in Fig. 2 and with it a Trotterized version of e−itH

can be implemented in seven layers of two-qubit gates on a
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FIG. 2. Mapping the kagome lattice onto a square lattice. The
colors of the lines show which interactions exist only in the kagome
lattice, only in the square lattice and which exist in both. The line
types show which pairs of qubits must be swapped to implement
the interactions existing in the kagome lattice but missing in the
square lattice while the numbers group the interactions that can be
implemented in parallel.

nearest-neighbor architecture, as shown in Fig. 3. In a system
with all-to-all connectivity, such as certain ion trap architec-
tures, the two-qubit gate depth can even be reduced to four
layers. This is because the edges of the kagome lattice can
be colored with four colors such that no two edges with
the same color share a vertex, as shown in Appendix C 3.
Then, all terms in H corresponding to the same color can
be implemented in parallel. Kattemölle and van Wezel [23]
implemented this ansatz for periodic lattices on 12, 18, and 24
qubits and found results comparable to ours shown in Fig. 6.

B. ansatz circuits

The barren plateau problem [20,21] shows that for VQE
to be practical even at larger system sizes or for deeper cir-
cuits it is imperative to make use of prior knowledge about
the problem in the ansatz circuits U (θ ). One such ansatz is the
Hamiltonian variational (HV) ansatz [17]. It is based on the
adiabatic theorem of quantum mechanics: If a system is pre-
pared in the ground state of an (simple) initial Hamiltonian H0

and then evolved under a time-dependent Hamiltonian H (t ),
changing sufficiently slowly from H0 into a target Hamilto-
nian H , the system will remain in the ground state and we end
up with the ground state of H1. Setting H (t ) = (1 − t

T )H0 +
t
T H the time evolution can be approximately implemented by
Trotterization, i.e., alternatingly applying e−iH0�t and e−iH�t

for short times �t and possibly also Trotterizing e−iH0�t and
e−iH�t . To turn this intuition into a variational circuit the short
�t’s are replaced by longer evolution times θi which are then
optimized. This makes the ansatz circuit with 2p layers:

U (θ ) =
p∏

i=1

e−iθi,0H0 e−iθi,1H . (3)

We call this ansatz the “per hamiltonian” ansatz because it has
one parameter per application of H0 and H . In our case, e−itH

cannot be directly implemented because the individual terms
in Eq. (2) do not commute. Instead, we split H = ∑5

j=1 Hj

according to the five subgraphs labeled in Fig. 2. This yields

FIG. 3. One full round of two-qubit interactions needed to im-
plement all interactions of the kagome lattice in the square lattice.
Here we usually assume that any two-qubit gate can be implemented
as one elementary operation. With a

√
iSWAP native gate, as used

in some architectures, the interaction gates take two two-qubit gates
and the SWAPs take three two-qubit gates.

an alternative parametrization with 6p parameters:

U (θ ) =
p∏

i=1

⎡
⎣e−iθi,0H0

∏
j∈[3,2,1,5,4]

e−iθi, j Hj

⎤
⎦, (4)

where
∏

j∈[ j1,..., jn] Uj = Uj1 . . .Ujn denotes the product order-

ing. Because the decomposition H = ∑5
j=1 Hj corresponds to

an edge coloring of the lattice we call this ansatz the “per
edge color” ansatz. A variant of this ansatz is the “per edge
color ii” ansatz, where we drop the e−iθi,0H0 factors because
we choose H0 = H1. The “per edge color” ansatz can be made
even more expressive by allowing different evolution times for
all interaction terms in Eq. (2) and using

U (θ ) =
p∏

i=1

[
e−iθi,0H0

∏
〈k,l〉

e−iθi,kl �Sk ·�Sl

]
. (5)

Here, the terms in the inner product are in the same order as
in Eq. (4). Now each parameter corresponds to an edge in the
lattice, hence, we dub this ansatz the “per edge” ansatz. Note
that the circuits described by Eqs. (3)–(5) are all the same. The
ansätze only differ in the number of independent parameters.

As an initial Hamiltonian H0 we use the Heisenberg
Hamiltonian on the dimer covering induced on the dimer
covering induced by the terms acting in the first step of Fig. 3.
Its ground state |ψi〉 is the product of singlets |s = 0〉 =

1√
2
[|↓↑〉 − |↑↓〉] on all connected pairs of spins. It can be

prepared via

|s = 0〉kl = Zk Xl CNOTkl Hk |↓↓〉 (6)

and it is in the same Sx = ∑
i Xi = 0, Sy = ∑

i Yi = 0, and
Sz = ∑

i Zi = 0 symmetry sector as the ground state for the
lattices considered by us (shown in Figs. 4 and 13) with an
even number of qubits. For lattices with an odd number of
qubits the ground state was always twofold degenerate in the
Sα = ± 1

2 (α = x, y, z) sectors and we prepared the initial state
in the Sα = − 1

2 sectors. The exact ground states were found
using the Lanczos algorithm.

All three ansätze (3)–(5) preserve all those three sym-
metries, meaning we stay in the correct symmetry sector
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throughout the whole circuit. Additionally, this also gives a
way to postselect samples: If a sample does not satisfy Sα = 0,
we know that an error must have occurred and we can discard
that sample.

C. Measurements

Reducing the number of measurements needed to esti-
mate expectation values in VQE has been extensively studied
[34–36]. Most strategies are based on cleverly grouping the
terms of the Hamiltonian such that all the terms in one group
can be measured simultaneously, possibly after changing the
measurement basis with some simple, local unitaries. In our
case, the Hamiltonian can be decomposed as

H =
∑
〈i, j〉

XiXj +
∑
〈i, j〉

YiYj +
∑
〈i, j〉

ZiZ j (7)

and each of the three terms can be estimated separately by
measuring all qubits in the X , Y , or Z basis.

D. Probing observables

If VQE succeeds in preparing the ground state of the
KAFH, that state can be further used to investigate the nature
of this ground state. Many of the observables used in classical
numerical or experimental studies are also readily measurable
on quantum computers, such as the ground-state energy or
correlation functions. Others, e.g., entanglement entropies or
energy gaps, are more challenging to measure on a quantum
computer.

1. Ground state and spin gap

The ground state energy is trivially measurable; 〈H〉 is
exactly the cost function minimized by VQE. In contrast, the
energy of the first excited state, and hence the energy gap,
is not as easy to obtain. There exist several proposals for
VQE algorithms to find excited energy states of Hamiltonians.
The proposals most feasible on NISQ hardware are based
on augmenting the Hamiltonian with projectors on the k − 1
lowest-lying states to find the kth eigenstate,

Hk = H +
k−1∑

j

α j |ψ j〉 〈ψ j | with α j > 0 (8)

such that the kth eigenstate is now the ground state of Hk and
can be found by the usual VQE method. However, to estimate
the expectation value of the second term in Eq. (8) one needs
to either double the circuit depth [25] or double the number
of qubits needed [37]. The subspace-search VQE algorithm
[38] does away with the need of doubling the number of
qubits or circuit depth, but potentially needs more complex
ansatz circuits that are not as well motivated as the HV ansatz.
Overall, none of the methods reviewed in [39] have as low
requirements as the original VQE problem. Thus, if we are
only just able to prepare the ground state with VQE we will
be unable to prepare excited states for the same system.

But, because the Heisenberg model as well as our ansatz
circuits conserve the total Sx, Sy, and Sz spin it is possible to
obtain the ground states and energies within each symmetry
sector separately by simply choosing |ψi〉 to be in that sym-

metry sector. This makes measuring the spin gap

�ES =
{

E0(Sz = 1) − E0(Sz = 0) even N,

E0
(
Sz = 3

2

) − E0
(
Sz = 1

2

)
odd N

(9)

as easy (or hard) as the original VQE problem. For con-
sistency with the literature we used the spin operators with
eigenvalues ± 1

2 here, unlike in the rest of this paper.
In principle, VQE could use coherent noise in the gates to

break the spin conservation to get from a Sα = 1 into a Sα =
0 sector and thus lower the energy. However, postselection
of the samples in the correct spin sectors ensures the energy
cannot be lowered through this process.

2. Correlation functions and structure factors

The presence or absence of long-range order is indicated
by the decay of the spin-spin

CS (�i, �j) = ∣∣〈Sz
i Sz

j

〉∣∣ (10)

and dimer-dimer correlations

CD( �i j, �kl ) = 〈�Si · �S j �Sk · �Sl〉 − 〈�Si · �S j〉 〈�Sk · �Sl〉 , (11)

where �i and �j are on adjacent sites and similarly for �kl .
In this section, �i denotes the real-space location of the ith
qubit on the lattice and difference vectors are written as �i j.
One sample of all spin-spin correlations can be obtained by
measuring all qubits in the computational basis once. The
dimer-dimer correlation between two edges that share no qubit
can be measured by running the reverse circuit of Eq. (6) on
each of the dimers and then measuring in the computational
basis, the result |↓↓〉i j means �Si · �S j = −3 while the three
other outcomes mean �Si · �S j = +1. Note that the first term in
Eq. (11) cannot be reconstructed from the measurements in

FIG. 4. The six graphs used for classical simulations. The graphs
are mapped to a square lattice as described in Figs. 2 and 3. Because
we chose the dimer covering the dimer covering on all edges con-
nected in step 1 of Fig. 3 connected qubits as the initial state for
VQE and want to start in the right Sx, Sy, and Sz sectors we had to
restrict ourselves to even numbers of columns. In the 2 × 6, 2 × 10,
and 3 × 8 lattices we marked the qubits between which we computed
the correlations in Sec. II D with bigger nodes.

094409-4



PROBING GROUND-STATE PROPERTIES OF THE KAGOME … PHYSICAL REVIEW B 105, 094409 (2022)

the X, Y , and Z bases that were used to estimate 〈H〉 because
it also contains terms of the form XiXjYkYl .

The spatial structure of the ground state is revealed by the
static spin structure factor

Sz(�q) = 1

N

∑
i, j

eı �q·(�i−�j)〈Sz
i Sz

j

〉
, (12)

which can also be obtained from measurements of all qubits
in the computational basis. In fact, all data needed to compute
this static spin structure factor and the spin-spin correlations
are already available from the VQE optimization; to measure
the

∑
〈i, j〉 ZiZ j part of the Hamiltonian we already needed to

measure all qubits in the computational basis.

II. RESULTS

We carried out extensive numerical simulations to in-
vestigate the performance of our ansatz circuits. We were
mainly interested in whether our ansatz circuits are expres-
sive enough to represent the ground state and, if yes, at
which depth. Since the end goal is to determine the nature
of the ground state by measuring different observables, we
also studied how closely the states found by VQE represent
these observables. Because of this focus on expressibility we
computed exact expectation values f (θ ) = 〈ψ (θ )|H |ψ (θ )〉
from the full wave functions and also exact, analytical gra-
dients ∂θμ f (θ ) using Yao.jl’s [40] automatic differentiation
algorithms. As a classical optimization algorithm, we used the
L-BFGS algorithm from the NLopt optimization suite. Note
that this is only a good choice for exact, classical simulations.
On real hardware, or if the expectation value is computed from
measurement samples instead of from the full wave function,
it does not work because it relies on the knowledge of exact
gradients. As a reference, we also computed the exact ground
state for each Hamiltonian using the Lanczos algorithm im-
plemented in ARPACK from a sparse representation of the full
Hamiltonian. The simulations were carried out on the Google
Cloud Platform using 16 × 2.8 GHz Intel Xenon CPUs for the
lattice sizes �16 qubits and on 2× NVIDIA Tesla T4 GPUs
for the larger lattices.

To study the scaling of the attainable fidelity as a function
of the number of ansatz layers p and lattice size we ran clas-
sical simulations of VQE on the 6 different lattices shown in
Fig. 4, ranging in size from 8 to 24 qubits. For all simulations,
we ran all three different ansatz circuits (3)–(5) with different,
random initial parameters multiple times and also once with
initial parameters corresponding to a discretized annealing
schedule.

A. Different parametrizations

Figure 5 shows the difference between the three ansatz
circuits (3)–(5) and a modified “per edge color ii” ansatz
circuit where the e−iθi,0H0 was omitted on the 2 × 8 lattice. The
infidelity with the true ground state decays exponentially as a
function of ansatz layers for the first three ansatz circuits. As
expected, the more expressive “per edge” ansatz represents the
ground state better at lower depths than the “per edge color”
or “per hamiltonian” ansätze. The “per edge color ii” ansatz
saves one layer of two-qubit gates per ansatz layer, but at the

FIG. 5. Infidelity with the ground state after parameter optimiza-
tion as a function of ansatz layers p for the four different ansatz
circuits on the 2 × 8 lattice. Results are shown for 20 runs per data
point with the initial parameters chosen uniformly random within
[0, 1

p ]. The error bars reflect the standard deviation between the 20
different runs.

cost of significantly worse fidelities, compared with the “per
edge color” ansatz. This remained true for other lattice sizes
and hence we omit the results for this ansatz circuit from now
on.

Figure 6 compares the expressiveness of the ansatz circuits
between the different lattice sizes for the “per edge color”
ansatz in Fig. 6(a) and the “per edge” ansatz in Fig. 6(b).
Generally, the ground state of smaller lattices is better rep-
resented by shallow circuits than for larger lattices. In fact, for
the 3 × 8 lattice 16 ansatz layers were not enough to achieve
substantial overlap with the ground state even for the most
expressive ansatz circuits. This is due to the fact that for this
particular lattice the gap between the ground state and the
first excited state is very small compared to the energy. More
details are found in Appendix A 1. Except for the 3 × 8 lattice,
the exponential decay of the infidelity as a function of p holds
still true.

B. Required circuit depths

In Fig. 6 we saw that larger lattices needed deeper ansatz
circuits to accurately represent the ground state. This is made
more quantitative in Fig. 7, where we show the depth required
to reach a given fidelity as a function of qubits. For the 2 × x
lattices these data are consistent with the needed depth scaling
linearly with the lattice diameter. Because VQE for the 3 × 8
lattice failed to converge to the ground state we do not have
enough data to extrapolate the scaling of the required depth
for lattices with equal length in both dimensions. But, if we
assume that entanglement spreads linearly with the circuit
depth, then a scaling as low as

√
nqb seems possible. Still,

given that we obtained high fidelity for only five different
lattices, Fig. 7 should be interpreted with caution.

C. Barren plateaus?

The results in [41] indicate that the HV ansatz exhibits
only mild barren plateaus in the case of the XXZ and trans-
verse field Ising model (TFIM) on 1D chains. To investigate
whether the same is true for our ansatz circuits for the KAFH,
we evaluated the cost function gradients at the first five
points during each optimization run, i.e., at essentially uni-
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FIG. 6. Infidelity with the ground state after parameter optimization as a function of ansatz layers p for different lattice sizes. (a) The “per
edge color” ansatz with one parameter per layer. (b) The more expressive “per edge” ansatz with one parameter for each gate. Results are
shown for 10, 10, 4, 2, 2, 2, and 2 runs per data point for the 2 × 4, 2 × 6, 2 × 8, 3 × 6, 2 × 10, and 3 × 8 lattice, respectively. As for Fig. 5 the
initial parameters were chosen uniformly random within [0, 1

p ] and the error bars reflect the standard deviation between the different runs. The

2 × 4 data are not fully shown because p = 5 was enough to produce the ground state with an infidelity of only 10−15, the machine precision.

formly random points within [0, 1/p]nparams and long before the
optimization had converged. The results for the “per edge”
and the “per edge color” parametrization are shown in Fig. 8.

We see in the upper row of Fig. 8 that the variance of the
first component of the gradient of the cost function does decay
as a function of circuit depth. From the figures it is not clear
if it is indeed an exponential decay, but the decay rate appears
to lie between the fast decay reported by McClean et al. [20]
for the random circuits and the much slower decay reported
by Wiersema et al. for the TFIM. To understand the scaling
of the magnitude of the gradient as a function of the number
of qubits, we would need to consider much deeper circuits
(cf. Fig. 4 of [20]) that were out of the scope of this work.
It is also important to note that in the case of the “per edge”
parametrization the number of parameters scales as nparams ∼
pnqb compared with the other two parametrizations, where it
scales as nparams ∼ p. This means that each individual entry of
the gradient in the lower right pane of Fig. 8 is much smaller
than in the lower left pane.

FIG. 7. Number of ansatz layers p needed to represent the ground
state with a threshold fidelity T as a function of qubits for the three
different ansatz circuits and different thresholds. For the 3 × 6 and
2 × 10 lattices we ran the simulations only for p = 1, 4, 7, . . . . The
missing intermediate points are obtained via linear interpolation from
the data shown in Fig. 6. The 3 × 8 data are not shown here because
significant fidelity with the ground state was only attainable with
deep circuits and an informed choice of initial parameters. For more
details see Appendix A 1.

D. Observables

The results in Figs. 6, 7, and 14 indicate that fairly deep
circuits with many parameters are needed to obtain fidelities
larger than 99.9% for larger lattices. However, the fidelity is a
global figure of merit that gives error bounds on all observ-
ables, not only on local ones. And, ultimately, the goal of
the experiments will be to measure mostly local observables,
like those mentioned in Sec. I D. To understand how well the
states found by VQE reproduce local observables of the exact
ground state, we compare the spin-spin correlation function
and the static structure factor in the VQE states for different

FIG. 8. The variance of the first component of the gradient
(upper row) and norm of the whole gradient (lower row) as a function
of the number of ansatz layers p for the “per edge color” (left
column) and “per edge” (right column) parametrization for different
lattices. In all cases, we rescaled with the number of qubits nqb be-
cause the number of terms in the Hamiltonian scales with the number
of qubits. For the norm of the whole gradient we also rescaled with
1/p because the number of parameters scales with p. The color and
marker shape coding are the same as elsewhere in this paper (e.g.,
Fig. 6).
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FIG. 9. Spin-spin correlation along the straight lines marked with
bigger nodes in the 2 × 6, 2 × 10, and 3 × 8 lattices in Fig. 4 for the
state found by VQE with different ansatz depths (colored) and for the
exact ground state (black) as well as the first excited state (dashed),
for the 3 × 8 lattice.

ansatz depths with the exact spin-spin correlation function and
static structure factor of the exact ground state. The results are
shown in Figs. 9,10.

As expected, the more expressive ansätze or deeper circuits
reproduce the exact ground-state spin-spin correlations better.
Reassuringly, the spin-spin correlations for 0 � j � 3 of the
VQE states for the 2 × 6 and the 2 × 10 lattices match the

FIG. 10. Comparison of the static structure factors Sz( �q) =
1
N

∑
�i,�j eı �q·(�i−�j) 〈Sz

i Sz
j〉 of the VQE states for different ansatz depths

p and the exact ground state for the 2 × 10 and the 3 × 8 lattices
with the “per edge color” parametrization. �q is measured in units
of the inverse lattice spacing, hence, we show a little more than the
first Brillouin zone here to make the periodicity more clear. As in
Fig. 9 the 2 × 10 and the 3 × 8 lattices showed the biggest difference
between the VQE state and the exact ground state.

FIG. 11. Infidelity with the ground state and the ground state
+ first excited state as a function of ansatz layers p for the three
different ansatz circuits on the 3 × 8 lattice. The “random” initial
parameters are, again, chosen uniformly random within [0, 1

p ] while
the “linear ramp” initial parameters are chosen according to a dis-
cretized, Trotterized annealing schedule.

exact spin-spin correlations equally well, even though the
global fidelity of the 2 × 6 VQE states with the exact ground
state is much better than that of the 2 × 10 lattice (see Fig. 6).
We found the same to be true for the 2 × 8 and the 3 × 6
lattices. This implies that even though it is hard to reach
high fidelity with the exact ground state for large lattices, the
VQE states may still represent local observables well. For the
3 × 8 lattice, on the other hand, there is a marked discrepancy
between the spin-spin correlations of the VQE states and of
the exact ground state, presumably because in this case the
VQE state has a large fidelity with the first excited state and
not with the ground state (cf. Fig. 11).

The VQE states reproduce the static structure factors of the
ground state closely, as can be seen from Fig. 10. On larger
lattices, we expect the peaks of the static structure factor to
not lie on the corners of the first Brillouin zone, like they do
here, but within the first Brillouin zone, if the periodicity of
the ground state is larger than one unit cell, as it is for the
ground state conjectured in [5]. It is important to note that
the locations of the peaks in Fig. 10 are simply at the loca-
tions of the Fourier-transformed lattice. Instead, the features
that indicate closeness between the VQE state and the exact
ground state are the shapes of the peaks and the secondary
peaks between the main peaks.

III. DISCUSSION AND OUTLOOK

In this work we investigated the performance of the VQE
with the HV ansatz on the KAFH for different lattice sizes
numerically. We also considered whether the fidelity of the
states produced by VQE with the exact ground state is a too
restrictive figure of merit by comparing different local, phys-
ically interesting observables in the VQE states and the exact
ground state. Furthermore, we calculated the cost function
gradients at random points in the parameter space to study
how severe the barren plateau problem is with our ansatz.

In accordance with the results in [18,19], we find again that
the relative energy error and infidelity with the ground state
decay exponentially as a function of ansatz depth. We also

094409-7



JAN LUKAS BOSSE AND ASHLEY MONTANARO PHYSICAL REVIEW B 105, 094409 (2022)

FIG. 12. Scaling of the relative energy error as a function of
p for the 3 × 8 lattice with different ansatz circuits. Results are
shown for three runs per data point and with the initial parameters
chosen uniformly random within [0, 1

p ]. The error bars reflect the
standard deviation between the different runs.

find, again in accordance with above results, that the number
of layers needed to get to a fixed fidelity grows with the system
size (see Fig. 7) and that in the presence of small energy gaps
VQE may fail to find the ground state altogether (see Fig. 11).
Furthermore, the results in Sec. II D show that even at lower
fidelities the states found with VQE represent the values of
local observables well. If this remains true for larger lattices
and other local observables, this hints that requiring to find the
ground state with a given fidelity is too strict a requirement, if
one is mainly interested in the values of local observables.

Even though the barren plateaus of our ansatz are not
as pronounced as for the hardware-efficient ansatz [20], the
gradients still decay as a function of circuit depth (and
presumably also as a function of system size). This is particu-
larly true for the more expressive ansatz circuits with more
free parameters. On real hardware, if the cost function is
estimated from noisy samples, this opens up the question of
the best classical optimization algorithm to use within VQE.
To the best of our knowledge, there exist no classical opti-
mization algorithms that are known to perform well for noisy,
derivative-free problems with hundreds of parameters.

With the depth of 228 two-qubit gates reported in [42] as
a circuit depth budget and ∼50 qubits as a system size that is
not feasible to simulate using exact, classical methods [43,44];
useful quantum advantage seems in reach with VQE for the
KAFH. It should be noted, nevertheless, that approximate
methods like DMRG [9,10,14] have been used to investi-
gate the ground-state properties of the KAFH for systems
with hundreds of sites, while other tensor-network-based ap-
proaches claim to handle thousands [11] of sites or even give
infinite-size results [13]. However, most tensor-network-based
approaches are biased towards low-entanglement solutions
and they all have, by design, limited expressibility. Therefore,
we hope that VQE can serve as an intermediate tool between
exact diagonalization, which is limited to small system sizes,
but gives exact results for these and can express arbitrary
states, and tensor-network methods, which work for much
larger systems, but have limited expressibility and known
biases towards certain solutions.

FIG. 13. Three lattices with 1, 2, and 3 completely enclosed
triangles on 15, 19, and 23 sites, respectively.

To get close to the ground state with relatively shallow
circuits, one will almost certainly need parametrizations with
one parameter per gate which yields hundreds of parameters to
be optimized. Previous VQE experiments have not considered
cost functions with that many free parameters and, hence, the
best classical optimization algorithm for such problems is yet
to be found.

Computing properties of the ground state accurately will
require the use of error-mitigation techniques or small-scale
quantum error correction. As discussed above, the symme-
tries of the KAFH allow a simple notion of error detection,
by checking the total spin in each direction. Many other
techniques targeted at NISQ-era quantum computers are now
known [45].

On the 3 × 8 lattice we found that VQE consistently finds
instead of the ground state the first excited state, which hap-
pens to be closer to the dimer covering state that we chose
as an initial state. This hints that choosing an initial state that
is already close to the ground state (if such a state is known
and easily preparable) can help the performance of VQE.
Kattemölle and van Wezel [46] observed similar behavior for
a periodic lattice with six spins. However, minimizing the in-
fidelity instead of energy, the recovered exponential decay of
the infidelity with p is observed on all other lattices. Although
measuring the fidelity with the true ground state is not possible
in the real experiment, this still shows that the circuits are
expressive enough to represent the true ground state with high
fidelity, although it may be hard to find if the gap to the first
excited state is only small.

Independently, Kattemölle and van Wezel [23] also studied
VQE with the HV ansatz on the KAFH, albeit with a different
ansatz circuit and initial state. Unlike ours, their ansatz circuit
does not break the translational symmetry of an infinite lattice.
Still, their initial state necessarily does because there exists no
dimer covering of the kagome lattice that does not break the
translational symmetry. They report slightly better scaling of
the infidelity as a function of p for a 20-site lattice. This hints
at the possibility that the performance of VQE with the HV
ansatz also depends on the exact ansatz circuits and one might
want to experiment with different mappings of the kagome
lattice onto the square lattice of the hardware.
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FIG. 14. Infidelity with the ground state as a function of ansatz
layers p for the three different ansatz circuits on the lattices shown
in Fig. 13. As before, the initial parameters are chosen uniformly
random within [0, 1

p ].
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APPENDICES

1. Details about the 3 × 8 lattice

VQE was only able to find the ground state of the 3 × 8
lattice with the most expressive “per edge” ansatz with p � 19
ansatz layers and using initial parameters corresponding to
a Trotterized annealing schedule. However, changing the y
axis in Fig. 6 from infidelity to relative energy error Efinal−E0

|E0|
we observed the same exponential decay for the 3 × 8 lattice
as for the other lattices, until the energy of the first excited
state E1 is reached (see Fig. 12). The reason is the very small
relative energy gap E1−E0

|E0| ≈ 0.0008 between the ground state
and the first excited state. Among all other lattices considered

FIG. 15. An edge 4-coloring of the kagome lattice.

by us, “lattice 3” from Fig. 13 had the smallest energy gap
of E1−E0

|E0| ≈ 0.005. And, in fact, when considering not only
the projection onto the ground state, but also onto the first
excited state, we get much better fidelities, as is shown in
Fig. 11. Moreover, we found that the first excited state is close
to a dimer covering that shares many dimers with the dimer
covering that we use as an initial state.

2. Results for other large lattices

Outside of the six lattices shown in Fig. 3 that fit into a
rectangular part of a square lattice, we also considered three
other large lattices shown in Fig. 13. For these lattices the
terms acting in the first step of Fig. 3 do not form a dimer
covering of the lattice and hence we added edges to H0 such
that it acts on nqb−1

2 edges and has its ground states in the
Sα = ± 1

2 sectors, the same symmetry sectors as the ground
state of H . We ran the same simulations as for Fig. 6 for these
three graphs as well and show the results in Fig. 14.

For lattices 2 and 3 we see the same exponential decay in
infidelity as before for all three parametrizations. But for lat-
tice 1 and the “per edge” parametrization the infidelity decays
much slower for p � 7, similar to what we see in Fig. 11 for
p � 10.

3. An edge 4-coloring of the kagome lattice

Figure 15 shows an edge 4-coloring of the kagome lattice
which can be used to Trotterize time evolution with H in only
4 layers on hardware with all-to-all connectivity.
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