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Magnetic field dependent thermodynamic properties of square and quadrupolar artificial spin ice
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Applied magnetic fields are an important tuning parameter for artificial spin ice (ASI) systems, as they can
drive phase transitions between different magnetic ground states or tune through regimes with high populations
of emergent magnetic excitations (e.g., monopole-like quasiparticles). Here, using simulations supported by
experiments, we investigate the thermodynamic properties and magnetic phases of square and quadrupolar ASI
as a function of applied in-plane magnetic fields. Monte Carlo simulations are used to generate field-dependent
maps of the magnetization, the magnetic specific heat, the thermodynamic magnetization fluctuations, and
the magnetic order parameters, all under equilibrium conditions. These maps reveal the diversity of magnetic
orderings and the phase transitions that occur in different regions of the phase diagrams of these ASIs, and
are experimentally supported by magnetooptical measurements of the equilibrium “magnetization noise” in
thermally active ASIs.
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I. INTRODUCTION

Artificial spin ice (ASI) systems are two-dimensional ar-
rays of lithographically defined nanomagnets, wherein the
interactions between individual elements can be engineered
by the size, spacing, and overall geometry of the lattice [1–3].
Originally conceived to emulate the frustrated magnetic inter-
actions in pyrochlore spin ice materials such as Dy2Ti2O7, the
essentially unlimited freedom to design ASI lattices has more
recently allowed explorations of novel magnetic topologies
not found in nature and in which the degrees of magnetic
frustration, extensive degeneracy, and residual entropy can be
intentionally engineered [4,5].

To date, the static and dynamic magnetic properties of
ASIs have typically been investigated in zero applied mag-
netic field. A primary reason for this is that several of the
most incisive magnetic imaging tools — for example, mag-
netic force microscopy (MFM) or photoemission electron
microscopy (PEEM) — work best in the absence of ex-
ternal fields. While transient applied fields are often used
in demagnetization protocols that help bring the ASI to its
thermodynamic ground state [6–10] or are used to establish
an initial out-of-equilibrium magnetic configuration (whose
relaxation is subsequently monitored in zero field [11,12]),
most experimental and theoretical ASI studies have been
principally concerned with their geometry- or temperature-
dependent magnetic properties in zero field. However, it is
widely appreciated that an applied magnetic field B can pro-
vide an extremely important and versatile tuning parameter
in ASIs [13–19]. Depending on its magnitude and direction,

B can be used to drive phase transitions between differ-
ent magnetic order parameters, or tune through equilibrium
regimes where magnetic quasiparticle excitations (e.g., “mag-
netic monopoles”) can readily form.

Our groups recently studied field-induced thermodynamic
effects in two different ASI geometries. In quadrupolar spin
ice, we demonstrated the existence of a field-driven phase
transition between ferro- and antiferro-quadrupolar order
[20], and in conventional square ASI we demonstrated a field-
induced monopole plasma regime [21]. Here we extend and
complement those initial studies through additional investiga-
tions of the B-dependent thermodynamic properties of these
ASI structures.

We first review the results for conventional square ASI
with additional detail beyond the original work [21] and then
we probe both degenerate square ice and the quadrupolar
system. Using Monte Carlo (MC) simulations, we map out
the equilibrium magnetization, specific heat, thermodynamic
fluctuations, and magnetic order parameters of these ASIs as
a function of applied in-plane magnetic fields Bx and By. The
calculated maps point to the rich diversity of magnetic order-
ings and phase transitions that can occur in ASIs in specific
regions of their field-dependent phase diagrams. As in the
previous work [21], we demonstrate agreement with experi-
mental magnetooptical studies of the “magnetization noise” in
quadrupolar ASI. Furthermore, the MC calculations allow us
to probe the stability of the ferro- and antiferro-quadrupolar
phases as a function of applied field and temperature; the
latter phase is shown to be comparatively fragile owing to its
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origin in weaker next-to-next neighbor coupling. Analogous
to the monopole-like quasiparticles that exist in conventional
square ASI, quadrupolar ASI is also shown to host regimes
of mobile and topologically protected magnetic excitations at
the boundaries between stable magnetic phases. These results
provide a window into a rich landscape of collective magnetic
behavior associated with the application of magnetic field to
ASI systems.

II. EXPERIMENTAL AND THEORETICAL APPROACH

Our ASI lattices were fabricated from ferromagnetic
permalloy (Ni0.8Fe0.2), following methods reported previ-
ously [22]. Each lithographically defined nano-island can be
approximated as a single Ising-like macrospin with orienta-
tion either parallel or antiparallel to the island’s long axis.
Importantly, the permalloy thickness is engineered to be suf-
ficiently small (≈3.5 nm) that the islands behave as thermally
active superparamagnets at room temperature. That is, their
magnetization direction thermally fluctuates in the absence
of a strong biasing magnetic field. These fluctuations ensure
that the ASI lattice efficiently samples the vast manifold of
possible moment configurations and remains at or near its
thermodynamic ground state and in thermal equilibrium.

The field-dependent thermodynamic properties of these
ASI lattices were calculated via standard Glauber MC sim-
ulations, which considered nearest, next-nearest, and (where
necessary) next-to-next-nearest neighbor interactions. These
interaction parameters Ji are defined below and are cho-
sen to have ratios with each other and with the thermal
energy kT that correspond to the actual systems studied.
The MC simulations used lattices with 32 × 32 elements,
periodic boundary conditions, and considered single-spin up-
dates only (no cluster flips). Spins were chosen randomly
and were flipped with probability p = (1 + e�/kT )−1, where
� is the energy difference resulting from a spin flip. At
each value of (Bx, By), approximately 105 annealing steps
were performed and then the calculated magnetization was
recorded for ∼106 MC time steps. The average magnetiza-
tion M, the magnetic specific heat Cm (∝ 〈[δE (t )]2〉, where
E is the energy of the system), and the thermodynamic
magnetization fluctuations 〈[δM(t )]2〉 about the average mag-
netization were determined from the computed time series.
Additional details of the MC simulations are given in the
Appendix.

For direct comparison with MC simulations, the intrinsic
magnetization fluctuations in each ASI lattice were exper-
imentally measured using a recently developed broadband
magnetooptical noise spectrometer [21,23]. This “magnetiza-
tion noise” was detected under equilibrium conditions over a
wide frequency range (typically 250 Hz to 250 kHz) and was
spectrally integrated to give a total noise power that can be
directly compared with MC simulations.

III. CONVENTIONAL SQUARE LATTICE

To introduce our approach we first discuss results for the
archetypal square ASI lattice [6,24], shown in Fig. 1(a). The
essential phenomenology of conventional square ASI can be
understood by considering only the coupling J1 between or-

thogonal nearest-neighbor islands and the weaker coupling J2

between parallel next-nearest-neighbor islands, as depicted.
Figure 1(b) shows a map of the calculated equilibrium mag-
netization M versus Bx and By, where the color and brightness
indicate the direction and magnitude of M. This map can
be intuitively understood by considering the field-dependent
energies of different magnetic configurations at the vertices
of the square lattice. The lowest-energy configurations near
zero applied field are “type-I” vertices that have two-in/two-
out moment configuration and no net magnetization. In this
low-field regime, which corresponds to the central black re-
gion of the map where M ≈ 0, the stable ground state is an
ordered tiling of type-I vertices, as depicted. In contrast, if
both |Bx| and |By| are sufficiently large, then one of the four
possible “type-II” vertices becomes lowest in energy. Type-II
vertices also have two-in/two-out configuration, but possess
a net magnetization along one of the four lattice diagonals. In
these regimes, which correspond to the four colored regions of
Fig. 1(b), the magnetic ground state is simply a fully polarized
tiling of type-II vertices, with stable saturated magnetization
oriented along the diagonal that most closely aligns with B.

Crucially, type-I and type-II vertices, which have energies
εI = −4J1 + 2J2 and εII = −2J2 − μ(Bx + By), must become
energetically degenerate at some intermediate field. As shown
previously [21], this crossover field is given by |Bx| + |By| =
Bc = 4(J1 − J2)/μ, where μ is the magnetic moment of a
single nano-island. This defines the diamond-like shape of
the central region where M ≈ 0, and the size of this region
is given by the difference between J1 and J2. This intuitive
picture highlights the utility of a field-dependent magnetiza-
tion map for revealing different stable phases of the system,
which — as will be shown later for the case of quadrupolar
ASI — is especially helpful when considering more complex
ASI geometries.

Figure 1(c) plots the energies of the various types of ver-
tices in conventional square ASI, for B applied along the
45◦ diagonal indicated by the dashed line in Fig. 1(b). As
discussed above, type-II vertices (with the appropriate orien-
tation) become the lowest-energy vertex type at the crossover
field Bc. Also shown are the energies of the type-III vertices,
which have unbalanced three-in/one-out or three-out/one-
in arrangement and therefore possess an effective magnetic
charge. As such, they can be considered as “monopole-like”
quasiparticle excitations of the square ASI lattice whose static
and dynamics properties were studied in detail in many earlier
works [13–17,25–29] and whose crucial role in the equilib-
rium thermodynamics of square ASI will be discussed shortly.

Going beyond previous work [21], we also calculate the
magnetic specific heat Cm from our simulations, which pro-
vides an incisive diagnostic because divergences of Cm are
typically linked to phase transitions and the emergence of
new magnetic order parameters. Figure 1(d) shows a field-
dependent map of Cm in conventional square ASI. The central
low-field region is enclosed by a boundary exhibiting large
Cm, outside of which additional weaker maxima occur. A
cross-section of Cm along the 45◦ diagonal is shown in
Fig. 1(g); it shows two distinct maxima on either side of the
crossover field Bc.

The sharp maximum of Cm corresponds to the known
phase transition to long-range type-I “antiferromagnetic”
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FIG. 1. (a) SEM image of conventional square ASI. Lateral island dimensions are 220 nm × 80 nm. Monte Carlo (MC) simulations
were used to model its equilibrium thermodynamic properties as a function of applied in-plane magnetic fields Bx and By, considering only
the interaction between nearest (adjacent orthogonal) and next-nearest (adjacent parallel) neighbors J1 and J2, respectively. Simulations in
this figure used J1 = 1.8J2 and temperature kT = 1.2J2. (b) Calculated map of the normalized average magnetization M(Bx, By). The color
and brightness indicate the direction and magnitude of M. The central black region where M ≈ 0 corresponds to type-I “antiferromagnetic”
order (depicted by white arrows). The regions toward the corners of the map correspond to the four orientations of polarized type-II tiling
(black arrows). (c) Field-dependent energies of type-I, type-II, and type-III (monopole) vertices in square ASI, for the case where Bx = By

(i.e., along the 45◦ dashed diagonal line). Type-I and type-II vertices become energetically degenerate when Bx + By = Bc. (d) Calculated
map of the magnetic specific heat Cm. (e) Calculated map of the thermodynamic magnetization fluctuations along the x̂ axis 〈[δMx (t )]2〉. The
diamond-shaped feature indicating large noise reveals the boundary between type-I and type-II tilings and arises from the kinetics of type-III
monopole vertices (see text). (f) Experimentally measured map of the frequency-integrated magnetization noise power along x̂, acquired at
−10◦ C, showing good agreement with the simulations. Data from Ref. [21]. (g) Cross sections of the calculated magnetization, specific heat,
and total noise power along the 45◦ diagonal where Bx = By. Sharp peaks in Cm indicate phase transitions, while broader peaks typically reveal
Schottky anomalies that arise when the field-dependent energies between different vertex types are commensurate with kT . (h) Field-dependent
phase diagram of conventional square ASI, showing type-I tiling with long-range AF order at small fields, type-I tiling without long-range
order at intermediate fields, and polarized type-II tiling at large fields. Monopole regimes emerge along the dashed lines.

(AF) magnetic order [24–26,30,31]. Importantly, at nonzero
temperatures, this phase transition occurs at applied field BAF

that is smaller in magnitude than Bc. In the narrow region
between |BAF| and Bc, type-I vertices are still energetically
favored, but long-range AF order is not established. Precisely
at Bc, Cm exhibits a local minimum because the type-I and
type-II vertex energies are degenerate. At slightly larger ap-
plied fields, however, Cm exhibits a broader second maximum
due to the Schottky-type anomaly that arises when the energy
difference between type-I and type-II vertices is compara-
ble to the thermal energy kT (and therefore, large changes
of entropy occur for small changes in temperature). Field-
dependent maps of Cm therefore provide a powerful tool to
identify potential phase transitions to ordered magnetic states
and to help pinpoint degeneracies occurring within the field-
dependent manifold of energy levels in ASI.

Our simulations also give us the intrinsic magnetization
fluctuations δM(t ) in thermal equilibrium, which are also

experimentally measurable through the magnetooptical Kerr
effect [21]. Figure 1(e) shows a map of the calculated power
of thermal fluctuations along the x̂ direction, 〈[δMx(t )]2〉. The
map is characterized by narrow regions of significant noise
along the diamond-shaped boundary that separates type-I and
type-II tiling (the noise map lacks the four-fold symmetry
of the square lattice because only fluctuations along x̂ are
shown; a map of 〈[δMy(t )]2〉 is identical, but rotated 90◦).
Regimes of magnetization noise in square ASI are intimately
linked to the proliferation and kinetics of type-III monopole
vertices [21]. Within the central dark region of the noise map,
fluctuations are suppressed because the system exhibits stable
AF type-I magnetic order. In the four corners of the map
where both |Bx| and |By| are large, all moments are pinned
by B and the system exhibits stable type-II tiling. However,
crossing over between these regimes near Bc requires flipping
individual nano-islands, which necessarily creates type-III
monopole vertices. Once created, these monopole excitations
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FIG. 2. Effect of temperature on the field-dependent thermody-
namic properties of conventional square ASI. The left, middle, and
right columns show calculated maps of Cm, noise power, and the
long-range type-I “antiferromagnetic” (AF) order parameter (de-
fined in the Appendix), respectively. The top, middle, and bottom
rows are calculated using kT/J2 = 1.0, 1.5, and 2.0, respectively.
Field-dependent features in Cm and noise blur with increasing tem-
perature and the low-field region exhibiting long-range type-I AF
order shrinks in size.

can readily diffuse along a staggered diagonal direction. This
motion flips spins (causing fluctuations) and converts type-I to
type-II vertices (and vice versa). This process costs no energy
at Bc because type-I and type-II vertices are energetically
degenerate [see Fig. 1(c)]. As was also shown previously in
Ref. [21], our MC simulations are validated by direct ex-
perimental measurements of magnetization noise, shown in
Fig. 1(f).

Figure 1(g) directly compares the magnetization, specific
heat, and fluctuations along the 45◦ diagonal line where
Bx = By. By the fluctuation-dissipation theorem, the
frequency-dependent power spectrum of thermodynamic
magnetization fluctuations, S(ω), is linked to the dissipative
(imaginary) part of the ac magnetic susceptibility χ ′′(ω)
[namely, S(ω) ∼ kT χ ′′(ω)/ω]. Using Kramers-Kronig
relations for the zero-frequency dc magnetic susceptibility
χ (ω ∼ 0) = (2/π )

∫
dω′χ ′′(ω′)/ω′, we note that the dc

susceptibility χ = dM/dB ∝ ∫
S(ω)dω, which is just the

total (frequency-integrated) noise power calculated and
measured in Figs. 1(e) and 1(f). Figure 1(g) confirms that the
noise is indeed peaked at the crossover field Bc where M(B)
varies most rapidly.

The temperature-dependent properties of ASIs at B = 0
were explored in many prior studies [12,17,18,30–37]. As
such, Fig. 2 highlights how temperature affects the full B-
dependent maps of Cm, noise, and long-range magnetic order.

As anticipated, the boundaries between different ordered
magnetic tilings become less sharp with increasing temper-
ature. Moreover, BAF and therefore the region exhibiting
long-range type-I AF order shrinks in size, as shown explicitly
by the calculated maps of the AF order parameter. We empha-
size, however, that Bc and the location of the monopole-rich
regime are unaffected by temperature since Bc depends only
on the difference J1 − J2.

Interestingly, the region where AF order appears not only
shrinks as temperature increases, but changes shape (see
Fig. 2). We can understand this phenomenon in the context of
approaching the effective ordering temperature, i.e., the Néel
temperature for the ordered type-I phase. At zero temperature,
the AF region must be diamond-shaped because its boundary
must coincide with the degeneracy line between type-I and
type-II vertices. This is dictated by considerations of energy
balance and the boundary shape reflects the anisotropy of
the square lattice. As the temperature increases, however, the
anisotropy of the diamond-shaped AF region is lost and its
shape becomes more circular. A possible explanation can be
found in the nature of critical behavior and scale invariance
at a second-order phase transition [38]. As the type-I ordered
phase approaches criticality at the Néel temperature, the cor-
relation length of fluctuations grows to be much larger than
the lattice constant and the order parameter fluctuations are
no longer impacted by the underlying square lattice structure.
As a result, the field anisotropy to the order parameter is
eliminated.

Taken together, these simulations and experiments allow
us to construct the field-dependent phase diagram of conven-
tional square ASI, shown in Fig. 1(h). Specific heat identifies
the phase boundaries denoting the onset of long-range
type-I order (solid line). Magnetization and noise maps help to
pinpoint the crossover between type-I and type-II tiling, and
also between type-II tilings with different orientation (dashed
lines), where a high density of magnetic monopoles emerge.
The case of conventional square ASI highlights the utility of
this methodology, which we now apply to degenerate square
ASI and to the recently introduced quadrupolar ASI lattice.

IV. DEGENERATE SQUARE ASI

A special case of square ASI that attracts much attention is
that of “degenerate square ice,” which occurs when the lattice
is designed so that J1 ≈ J2 (for example, by engineering a
height offset between the horizontal and vertical islands, as
demonstrated in pioneering recent experiments by Perrin et al.
[39] and Farhan et al. [40]). In this case, the energies of type-I
and type-II vertices are equal at B = 0. The lowest-energy
magnetic configuration at B = 0 is therefore a disordered mix
of the six possible type-I and type-II vertices, with concomi-
tant extensive degeneracy and large residual entropy. As such,
degenerate square ice approximates the magnetic interactions
in pyrochlore spin ice materials such as the rare-earth titanates
Dy2Ti2O7 and Ho2Ti2O7 [41–44], including the thermal cre-
ation, annihilation, and motion of monopole-like quasiparticle
excitations (i.e., type-III vertices).

Following our approach for conventional square ice, we
use MC calculations with J1 = J2, and kT = 1.2J2. Figure 3
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FIG. 3. MC simulations of “degenerate” square ASI, where J1 = J2 and kT = 1.2J2. Here, type-I and type-II vertices have equal energy
at zero applied field. (a) Calculated map of the field-dependent average magnetization M. (b) Field-dependent energies of type-I, type-II, and
type-III (monopole) vertices, along the 45◦ diagonal line where Bx = By [cf. Fig. 1(c)]. (c) Calculated map of the magnetic specific heat Cm.
(d) Calculated map of the thermodynamic magnetization noise along the x̂ axis. (e) Cross sections of M, Cm, and noise along the 45◦ diagonal
where Bx = By (red, green, and blue lines, respectively). (f) Cross sections of M, Cm, and noise along the horizontal dashed line where By = 0.8.

shows the resulting field-dependent maps of the thermo-
dynamic properties. In line with expectations, the map of
M(Bx, By) is similar to that for conventional square ASI
[cf. Fig. 1(b)], but with the central region (where stable type-I
order exists when J1 > J2) shrunk to zero size. Stated dif-
ferently, the crossover field where type-I and type-II vertices
have equal energy, Bc = 4(J1 − J2)/μ, now occurs at zero
field [see also the field-dependent vertex energies shown in
Fig. 3(b)]. Application of both |Bx| > 0 and |By| > 0 uniquely
lifts this degeneracy and favors the type-II vertex with moment
most closely aligned with B, leading to a saturated M. A cross
section through this map is shown in Fig. 3(e) for B applied
along a 45◦ diagonal. The characteristic field scale at which
M saturates is given by the ratio of kT/J2.

A map of the specific heat Cm [Fig. 3(c)] shows only broad
features associated with Schottky anomalies that occur when
the difference between vertex energies εI − εII is commensu-
rate with kT . No sharp or divergent features are observed on
this map, in accordance with the expectation that degenerate
square ASI does not exhibit any phase transitions to an or-
dered magnetic state.

The calculated map of the thermodynamic noise power
〈[δMx(t )]2〉 indicates significant fluctuations only along the

vertical stripe where Bx ≈ 0 [see Fig. 3(d)]. Similar to M
and Cm, this map is reminiscent of that from conventional
square ice, but with the central region shrunk to zero size.
Fluctuations at zero field in degenerate square ice arise from
the thermal creation, annihilation, and motion of type-III
monopole vertices. Once created, these monopoles can diffuse
within the lattice without cost in energy at B = 0, leading
to fluctuations. Note, however, that monopole diffusion in
degenerate square ice at zero field can occur in any direction,
whereas monopole diffusion in conventional square ice at Bc

occurs primarily along the staggered lattice diagonal that is
most closely aligned with B.

The application of nonzero Bx and By induces the
monopoles to move toward the edges of the lattice, leaving
behind a polarized and stable type-II lattice tiling with satu-
rated M, in which fluctuations are suppressed. Exceptions to
this trend occur when the field is applied exactly along the
horizontal or vertical direction. In this case, two of the four
possible type-II vertices remain degenerate and the Ising-like
moments of the islands that are oriented orthogonal to B
remain unbiased and free to fluctuate thermally. Consider the
case where Bx = 0 and By > 0 (i.e., the vertical stripe on the
noise map). Here, all vertical islands are polarized, but the
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FIG. 4. (a) SEM image of quadrupolar ASI. Lateral island dimensions are ≈ 220 nm × 100 nm. MC simulations consider the interactions
Jα (between parallel adjacent islands), Jβ (between perpendicular adjacent islands), and Jγ (between parallel next-nearest islands), as depicted.
These simulations use kT = 1.2Jβ and Jα = 2Jβ = 3Jγ (in approximate accordance with micromagnetic simulations which give Jα = 2.3Jβ =
4.3Jγ ). (b) Calculated map of M(Bx, By). Arrows depict the magnetic ordering in different regions. (c) Energies of different quadrupole
moment configurations, versus applied field along a 45◦ diagonal (Bx = By). The crossover field between FQ and polarized tiling is Bq.
(d) Calculated map of the magnetic specific heat Cm. (e) Calculated map of the magnetization noise along x̂. (f) Experimentally measured
map of the magnetization noise along x̂, acquired at +7◦ C, showing good agreement. Note the reduced noise at Bx = 0 and large |By|, which
corresponds to the AFQ phase (the sidebar compares vertical cross sections through both simulated and measured noise). (g,h) Comparing
M, Cm, and noise along a 45◦ line cut (Bx = By) and along a horizontal line cut (By = 1). (i) Field-dependent phase diagram of quadrupolar
ASI, showing regimes of polarized tiling and long-range FQ and AFQ order. In the green and blue regions, FQ and AFQ tiling is energetically
favored (respectively), but long-range magnetic order cannot stabilize due to the nonzero temperature. Crossovers between regimes with
different favored tilings are indicated with dashed lines (along which different tilings are energetically degenerate), and are rich in topologically
protected magnetic excitations.

horizontal islands do not “feel” any net bias and can still
fluctuate thermally, giving large noise. This process can be
regarded as an effective dimensional reduction, where ther-
mally created type-III monopoles are constrained to diffuse
along the one-dimensional (1D) chains of horizontal islands.
We note that a similar regime of 1D monopole diffusion exists
in conventional square ASI when Bx = 0 and |By| > Bc.

Figure 3(e) shows cross-sectional plots through the maps
of M, Cm, and noise along the 45◦ diagonal line where
Bx = By. These can be compared with the analogous 45◦
line cuts shown in Fig. 1(g) for conventional square ASI.
As in conventional square ASI, Cm achieves a minimum —
and fluctuations are most pronounced — when the energies
of type-I and type-II vertices are degenerate and monopole-
like type-III vertices can proliferate and diffuse freely. Also
shown [Fig. 3(f)] are cross sections along the horizontal line
cut where By = 0.8. As discussed in the previous paragraph,
along this line all vertical islands are polarized by By and the
noise power 〈[δMx(t )]2〉 achieves a maximum at Bx = 0 when
the horizontal islands are effectively unbiased and are free to
fluctuate. While we do not have experimental results to com-

pare with the MC simulations in this case, the results show the
utility of simulations to predict the magnetic phase diagram
of this system, including the regimes densely populated with
monopoles.

V. QUADRUPOLAR ASI LATTICE

The quadrupolar ASI lattice, introduced in 2019 by Skle-
nar et al. [20] and shown in Fig. 4(a), consists of pairs of
parallel nano-islands, arranged horizontally and vertically in
a checkerboard pattern. As shown previously [20], in the ab-
sence of applied magnetic fields, the strong coupling between
the two islands within a pair maintains their opposite moment
orientation; such a configuration has no net dipole moment but
does possess a quadrupole moment. Weaker coupling between
orthogonal islands in adjacent pairs can lead to long-range
“ferroquadrupolar” (FQ) order of the entire lattice. That pre-
vious study demonstrated that a field aligned with one of
the principal axes of the lattice can drive a transition from
ferroquadrupolar to antiferroquadrupolar (AFQ) order, mark-
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ing the first thermodynamic mapping of a field-dependent
phase diagram in ASI, albeit along only a single field
direction.

We now expand upon that previous work with the same
approach of MC simulations and noise measurements as de-
scribed above for square ASI. To avoid confusion with initial
studies [20], which considered the pairs as fundamental units
and used “J1,2” to denote couplings between different pair
units, here we use the parameter Jα to indicate the coupling
between an individual island and its parallel neighbor within a
pair, and Jβ to indicate the weaker coupling between an island
and each of the four orthogonal islands in adjacent pairs,
as indicated in Fig. 4(a). We also consider the still-weaker
coupling Jγ between parallel islands in next-nearest neighbor
pairs. Jγ permits the emergence of long-range AFQ ordering
at certain applied fields.

Figure 4(b) shows the calculated map of M(Bx, By). The
map exhibits a low-field region where M ≈ 0, consistent with
stable FQ magnetic order wherein islands within every pair
are oriented oppositely (due to Jα) and where neighboring
pairs have a specific relative orientation (due to Jβ). How-
ever, when both |Bx| and |By| are sufficiently large (i.e.,
in the four corners of the map), both islands within every
pair necessarily become polarized along the direction most
closely aligned with B and the lattice exhibits trivial polar-
ized order, as depicted. Figure 4(c) shows the field-dependent
energies of different moment configurations along the 45◦
line where Bx = By. At zero field, FQ tiling is favored, but
at a crossover field Bq the energies of FQ and (a specific)
polarized moment configuration become degenerate. (Note,
however, that a thermodynamic phase transition to long-range
FQ order occurs precisely at Bq only at zero temperature;
analogous to long-range type-I order in conventional square
ice, the phase transition to long-range FQ order occurs at
fields smaller than Bq when T > 0.) The crossover field Bq

occurs when |Bx| + |By| = Bq = (2Jα + 4Jβ − 4Jγ )/μ. How-
ever, in contrast to the diamond-shaped boundary separating
type-I and type-II tiling in conventional square ASI, these
diagonal boundaries in quadrupolar ASI are truncated such
that the boundary enclosing the low-field FQ tiling region is
approximately octagonal. The vertical (horizontal) sides of
this boundary are given by |Bx|(|By|) = (Jα + 4Jβ − 4Jγ )/μ,
respectively.

Returning to the map of M, we note that for the special
case of large B applied along (or nearly along) a principal axis
where Bx ≈ 0 or By ≈ 0, pairs of islands oriented parallel to
B become polarized, but orthogonally oriented pairs do not.
This leads to relatively wide regions, shown, for example,
by the yellow and aqua colors, where the net magnetization
remains relatively constant. We show below that the AFQ
ordered phase emerges in these regimes.

The specific heat map shown in Fig. 4(d) exhibits a closed
boundary where Cm is large and divergent [see also the cross
section shown in Fig. 4(g)], indicating the thermodynamic
phase transition to long-range FQ order within the enclosed
low-field region. Analogous to conventional square ASI, this
phase transition occurs at an ordering field less than Bq at
nonzero temperatures. Outside this region, additional weak
maxima and minima of Cm reveal Schottky anomalies and
level crossings, respectively, due to the field-dependent ener-

gies of the different moment configurations [as shown, e.g., in
Fig. 4(c)].

Especially interesting are the four additional U-shaped re-
gions revealed by boundaries of large and divergent specific
heat at the edges of the map in Fig. 4(d), where |Bx| is large
(and |By| is small), or where |By| is large (and |Bx| is small).
These boundaries reveal the phase transitions to long-range
AFQ order, wherein next-nearest pairs of islands order relative
to one another, driven by Jγ . These phase transitions manifest
clearly in Cm and also (to a lesser extent) in the magnetization
noise.

As shown in Fig. 4(e), the calculated noise 〈[δMx(t )]2〉
does exhibit dark regions of low noise, not only in the low-
field FQ phase and in the fully polarized regimes, but also
when |By| is large and |Bx| ≈ 0, indicating stable AFQ mag-
netic order. This regime is separated from the large central FQ
regime by a boundary of additional noise at intermediate |By|.
Crucially, the experimental noise data validate the MC simu-
lations and fully support the presence of stable AFQ ordering
in our thermally active quadrupolar ASI sample. Figure 4(f)
shows that the measured noise not only clearly reveals the
large region of stable FQ order at small B, but also shows
additional regions of low noise at the upper and lower edges
of the map where |By| 	 0 and |Bx| ≈ 0, in good agreement
with simulations. Both the calculated and measured noise
maps along the Bx = 0 vertical cross section show clear local
minima at large |By|, consistent with stable AFQ order. These
minima are separated from the FQ phase by a local maximum
in the magnetization fluctuations where stable long-range or-
der does not occur.

Cross sections of M, Cm, and noise, along the diagonal
and horizontal line cuts indicated are shown in Figs. 4(g)
and 4(h). As before, sharp peaks in Cm demarcate phase
transitions to different magnetic order parameters and noise
peaks reveal degeneracies between different magnetic config-
urations. These data allow us to construct a two-dimensional
field-dependent phase diagram for quadrupolar ASI, shown in
Fig. 4(i). Regions exhibiting long-range FQ and AFQ order
are indicated, as are high-field regions exhibiting trivial po-
larized order. Separating these phases are narrower regimes
where particular magnetic configurations are energetically fa-
vored, but where long-range order is not stable due to the
nonzero temperature. As shown below, crossovers between
those regimes [dashed lines in Fig. 4(i)], at which different
magnetic configurations are energetically degenerate, exhibit
a high density of magnetic excitations, in analogy to the case
of square ASI.

The effect of temperature, particularly on the AFQ phase,
is shown in Fig. 5. For kT > 1.4Jβ , MC simulations show that
long-range AFQ order disappears, whereas the more robust
FQ phase remains (albeit diminished in size). At elevated tem-
perature, the boundary of large Cm that formerly surrounded
the AFQ phase no longer appears and the equilibrium noise
no longer exhibits a broad local minimum in this regime, but
is instead uniform. Calculations of the AFQ and FQ order
parameters indicate that long-range AFQ ordering no longer
exists by kT = 1.6Jβ . The size and stability of the AFQ phase
depends largely on Jγ , which is considerably smaller than
Jα and Jβ , and therefore the fragile AFQ phase is corre-
spondingly much less stable against increasing temperature.
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FIG. 5. Effect of temperature on quadrupolar ASI, showing the
collapse of the AFQ phase as temperature kT increases from 1.2Jβ

to 1.4Jβ to 1.6Jβ (top, middle, and bottom rows, respectively). Left,
middle, and right columns show maps of Cm, noise, and both FQ and
AFQ order parameters (see Appendix), respectively.

A detailed animation showing how the Cm map varies with
temperature in quadrupolar ASI can be found in the Supple-
mental Material [45].

Finally, we note similarities between the regions of large
magnetization noise that occur near Bc in square ASI [cf.
Fig. 1] — which revealed phases rich in magnetic monopoles
— and the regions of large noise that occur near Bq in
quadrupole ASI. In both cases, crossing between the two
degenerate magnetic configurations (namely, between type-I
and type-II vertices at Bc in square ASI, or between FQ and
polarized arrangements at Bq in quadrupolar ASI), necessar-
ily requires the creation of pairs of higher-energy magnetic
configurations. In square ASI these are the topologically pro-
tected type-III monopole vertices. In quadrupole ASI, these
“type-C” excitations are in sets of four moments that are anal-
ogous to vertices of the pinwheel lattice [46] and the trident
lattice [47].

Figure 6(a) depicts the relevant moment configurations in
quadrupolar ASI. Type-A and -B configurations have the low-
est energy in the FQ and polarized regions, respectively. The
higher-energy type-C excitations are generated in pairs, are
topological, and can diffuse freely through the lattice when
|B| = Bq. Furthermore, as charged pairs of type-C excitations
separate, they leave a line of type-A or -B in between, in direct
analogy again to the square ice monopole plasma discussed
above. The analogy between square and quadrupolar ASI
stems from the fact that they are topologically equivalent,
with J1 and J2 in square ASI being equivalent to Jβ and Jγ ,
respectively. In this mapping, the AF phase in the square
lattice corresponds to the FQ tiling in the quadrupolar lattice,

FIG. 6. (a) Schematic of different moment configurations in
quadrupolar ASI (type-A, -B, and -C), analogous to the type-I,
-II, and -III vertices in square ASI. Blue/red dots indicate type-C
configurations with three moments pointing towards/away from the
center, respectively. (b) A map of the equilibrium density of type-C
excitations when kT/J2 = 1.0. Analogously to the case of square
ASI (see Fig. 4 in Ref. [21]), regions of high excitation density
track crossovers between different magnetic orderings [dashed lines
in Fig. 4(i)]. (c) A depiction of how these excitations form and
can diffuse at (Bx, By ) = (0.5Bq, 0.5Bq ) (specifically, as FQ tiling
switches to polarized tiling and where type-A and -B configurations
are energetically degenerate). In this case, pairs of type-C excitations
diffuse along a staggered diagonal direction. Red arrows denote
spins that have flipped. (d) Same, but at (Bx, By ) = (0.35Bq, 1.0Bq )
(specifically, as polarized order switches to AFQ order). In this case
the type-C excitations diffuse primarily along a horizontal direction.
Switching between ordered tilings of type-A and type-B config-
uration, or between differently polarized type-B tilings, requires
generation and motion of type-C configurations.

whereas AFQ tiling in the quadrupolar lattice corresponds to
square ice with (for example) all vertical islands polarized in
the same direction and polarized rows of horizontal islands
oriented in alternating directions. Note that in actual realiza-
tions of square ASI, the equivalent of Jα is much less than
J1 and J2, and thus the equivalent of an AFQ phase is never
observed.

Because of this topological equivalence, the kinetic path-
ways for single-spin dynamics are identical. In other words,
just as a single spin flip within type-I or type-II ordered
square ASI creates a pair of type-III monopoles that can be
further separated by additional spin flips, in quadrupolar ASI
a single spin flip within FQ or AFQ tiling creates a pair of
type-C excitations. Thus, type-C excitations drive the kinetics
in quadrupolar ASI, much as type-III monopole kinetics drive
the kinetics in square ASI. Therefore, similar to the case of
square ASI, the maximum noise power corresponds to the
maximum density of type-C excitations.

Figure 6(b) shows a field-dependent map of the calculated
average density of these excitations in thermal equilibrium. As
expected, they exist primarily along the boundaries separating
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regions of differently favored magnetic tiling, again in anal-
ogy to the case of square ASI. Figures 6(c) and 6(d) illustrate
how these excitations can propagate through the quadrupole
lattice at two different points on the magnetic phase diagram.
The first depicts the system at the boundary between FQ and
polarized tiling (Bx = By = 0.5Bq); in this case the excita-
tions can readily diffuse along a staggered lattice diagonal.
The second case depicts the system at the boundary between
AFQ and polarized tiling (Bx = 0.35Bq, By = 1.0Bq); here the
excitations diffuse primarily along a horizontal direction. We
note that the commonality of the boundary regime of mobile
charged excitations in both lattice geometries suggests that
this may be a generic feature in artificial spin ices, associated
with the transition from an ordered state with no net polariza-
tion to a polarized ordering.

VI. SUMMARY

In summary, we investigated the magnetic-field-dependent
equilibrium thermodynamic properties (magnetization, spe-
cific heat, fluctuations, and magnetic order parameters) in
both square ASI (including the degenerate square lattice)
and quadrupolar ASI, using both MC simulations and di-
rect experimental measurements of magnetization noise. The
B-dependent maps reveal the rich diversity of magnetic order-
ings and phase transitions that can occur in ASIs in specific
regions of their field-dependent phase diagrams, which we
are able to reconstruct using these different thermodynamic
properties. Both calculated and measured maps show regions
of stable long-range magnetic order, which are typically sep-
arated by boundaries where topologically protected magnetic
excitations can readily proliferate and diffuse. We reveal the
nature of those excitations in quadrupolar ASI and discuss
their similarities to the magnetic monopole quasiparticles
that emerge in square ice. These results motivate further
exploration of how applied magnetic fields can drive novel
magnetic phases in more complex ASI lattice geometries and
especially the possibilities of mobile magnetic charges in sys-
tems with different geometrical configurations.
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APPENDIX: MONTE CARLO SIMULATIONS
AND ORDER PARAMTERS

Typical lattices used in our MC simulations had 32 × 32
islands in the case of the square ASI and 32 × 32 pairs of
islands in the case of the quadrupolar ASI, both with periodic
boundary conditions. The energy of the square lattice was
calculated as

εs =
∑

i

( ∑
j∈NN

J1sis j

2
+

∑
j∈NNN

J2sis j

2
+ B · si

)
,

where si is the orientation of the ith spin, that is, si = ±1 when
the island’s moment is parallel/antiparallel to its long axis,
while NN and NNN denote the four nearest neighbors (adja-
cent orthogonal) and the two next-nearest neighbors (adjacent
parallel) of the ith spin, respectively [see also Fig. 1(a)].

The energy of the quadrupolar lattice was calculated as

εq =
∑

i

( ∑
j∈NN

Jαsis j

2
+

∑
j∈NNN

Jβsis j

2

+
∑

j∈NNNN

Jγ sis j

2
+ B · si

)
,

where NN is the nearest neighbor of the ith spin (i.e., its
sole parallel neighbor within a pair), NNN are its next-nearest
neighbors (the four orthogonal islands in adjacent pairs), and
NNNN are its next-next-nearest neighbors [the two parallel
islands in next-nearest neighbor pairs — see also Fig. 4(a)].

The MC simulations used single-spin updates only (no
cluster or loop flips). Spins were chosen randomly, and were
flipped with probability p = (1 + e�/kT )−1, where � is the
energy difference resulting from a spin flip. At each value of
(Bx, By), approximately 105 annealing steps were performed
and then the calculated magnetization was recorded for
∼106 MC time steps. The average magnetization M, the mag-
netic specific heat Cm (∝ 〈[δE (t )]2〉, where E is the energy
of the system), and the thermodynamic magnetization fluctu-
ations 〈[δM(t )]2〉 were determined from the computed time
series.

For the annealed lattices we also calculated order parame-
ters. For the square lattice, the AF order parameter was defined
as

ηAF = 1

n

∣∣∣∣∣
∑
x,y

(hx,y − vx,y)(−1)x+y

∣∣∣∣∣,
where hx,y and vx,y denote the moment of the horizon-
tal and vertical island at coordinates (x, y) [see Fig. 7(a)],
and n is the total number of spins in the simulated
system.

For the quadrupolar lattice, the FQ order parameter was
defined as

ηFQ = 1

n

∣∣∣∣∣
∑
x,y

(ix,y − jx,y)(−1)x+y

∣∣∣∣∣,
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FIG. 7. Numbering of the islands in the (a) square and
(b) quadrupolar lattices, used for calculation of AF, FQ, and AFQ
order parameters as described in the Appendix.

where ix,y is the orientation of the upper/left island in the
horizontal/vertical pair located at coordinates (x, y) and jx,y
is the orientation of the lower/right island in the same pair
[see Fig. 7(b)].

For the AFQ phase in which horizontal islands are fully
polarized, we defined the AFQ order parameter as

ηAFQx = 4

n2

∣∣∣∣∣∣∣
∑
x,y

x+y∈E

ix,y + jx,y

∣∣∣∣∣∣∣ ·

∣∣∣∣∣∣∣
∑
x,y

x+y∈O

(ix,y − jx,y)(−1)x

∣∣∣∣∣∣∣,
where E and O are sets of even and odd integers, respectively,
which means that the first sum runs over horizontal pairs of
islands, while the second one runs over vertical pairs [see
Fig. 7(b)]. Analogously, we defined the AFQ order parameter
for the AFQ phase with vertical islands fully polarized as

ηAFQy = 4

n2

∣∣∣∣∣∣∣
∑
x,y

x+y∈O

ix,y + jx,y

∣∣∣∣∣∣∣ ·

∣∣∣∣∣∣∣
∑
x,y

x+y∈E

(ix,y − jx,y)(−1)y

∣∣∣∣∣∣∣,
and so the global AFQ order parameter was defined as

ηAFQ = ηAFQx + ηAFQy .
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