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Skyrmion clusters and chains in bulk and thin-layered cubic helimagnets
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I overview the properties of nonaxisymmetric isolated skyrmions (ISs), which arise within a cone phase of
cubic helimagnets. The nascent conical state is shown to shape skyrmion internal structure and to substantiate
the attracting skyrmion-skyrmion interaction. In bulk cubic helimagnets, skyrmion cluster formation with the
hexagonal arrangement of constituent skyrmions is explained by the reduction of the total energy due to the
overlap of skyrmion shells—circular domain boundaries with the positive energy density formed with respect
to the surrounding host phase. In thin layers, however, such a shell localizes within two bags on the opposite
sides from the skyrmion cores, which underlies the formation of polar skyrmion chains with the most effective
suppression of the shell energy. A systematic analysis of skyrmion trio-clusters and trio-chains reveals that their
thickness-dependent advantage rests on a subtle energetic balance between the “lost” negative energy of the
skyrmion rings and the “gained” energy due to the suppressed shells. Such a polar ordering of nonaxisymmetric
skyrmions was recently observed within the “schools” of liquid-crystal skyrmions powered into motion by an
applied electric field [Nat. Commun. 10, 4744 (2019)]. Thus, the fundamental insights provided by this work
imply deep physical relations and common physical features of skyrmions in different condensed-matter systems
such as chiral liquid crystals and chiral magnets.
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I. INTRODUCTION

Isolated chiral skyrmions [1–3] are smooth, topological,
and static spin textures stabilized in noncentrosymmetric
magnetic materials by a specific Dzyaloshinskii-Moriya in-
teraction (DMI) [4,5]. Phenomenologically, DMI is expressed
by the energy terms containing the first derivatives of the
magnetization M with respect to the spatial coordinates, so
called Lifshitz invariants (LIs):

L(k)
i, j = Mi∂Mj/∂xk − Mj∂Mi/∂xk . (1)

These LIs arise in certain combinations depending on the
crystal symmetry of an underlying chiral magnet. Moreover,
they lead to a unique internal structure of isolated skyrmions
(ISs) by defining their vorticity and helicity [1]. For cubic
helimagnets belonging to 23 (T) (such as MnSi [6], FeGe
[7], and other B20 compounds) and 432 (O) crystallographic
classes, Dzyaloshinskii-Moriya interactions are reduced to the
following form [1]:

WDMI = D
(
L(z)

yx + L(y)
xz + L(x)

zy

) = D M · rotM, (2)

which leads to Bloch-type skyrmions.
The relevant lengthscale of a magnetic inhomogeneity

squeezed into a skyrmionic knot is tuned by the competi-
tion between this chiral and direct exchange [1,8]. Moreover,
DMI provides a unique stabilization mechanism, protect-
ing skyrmions from radial instability and overcoming the
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constraints of the Hobart-Derrick theorem [9]. Due to the
nanometer size, topological protection, and the ease with
which skyrmions can be manipulated by electric currents, the
magnetic skyrmions are considered as promising objects for
the next-generation memory and logic devices. In particu-
lar, in the skyrmion racetrack [10–12], information flow is
encoded in isolated skyrmions [13] moving within a narrow
strip.

Skyrmionic “particles” may also be driven together to form
complex noncollinear magnetic textures—skyrmion lattices
(SkLs) [14,15], clusters [16,17], or even skyrmion superstruc-
tures composed from mutually orthogonal skyrmion tubes,
which involve so called horizontal skyrmions [18]. The for-
mation of these textures is determined by the stability of
the localized solitonic cores, their geometrical incompatibility
that frustrates homogeneous space-filling, and the tendency
to reduce their own energy. Versatile skyrmion conglomer-
ates might further extend the functionalities and underlie a
novel concept of spintronic devices based, e.g., on gapless
skyrmion motion along each other [18]. Alternatively, the den-
sity of topologically encoded information could be increased
by using densely packed and well-distinguished skyrmion su-
perstructures. In this sense, one could also mention composite
skyrmion bags—multiple skyrmions surrounded by a circular
spiral state [19,20].

The energy contributions phenomenologically analogous
to the DMI also arise in chiral liquid crystals [21,22], and
they are rooted in the acentric shape of underlying molecules.
Studies of different naturally occurring and/or laser-generated
topological objects began in chiral liquid crystals (CLCs)
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[23–25] long before magnetic skyrmions attracted a great deal
of attention in chiral magnets (ChMs). In particular, the above-
mentioned horizontal skyrmions [18] have long been known
in the physics of CLCs as Lehmann clusters [26]. Nowadays,
CLCs are considered to be highly accessible model systems
[27] for probing the behavior and topology of various three-
dimensional (3D) knotted structures even with singular field
configurations such as torons [28].

Topologically, skyrmions are elements of the second ho-
motopy group [19] π2(S2) = Z, and they represent smooth
and topologically nontrivial structures in the alignment field
of constituent rodlike molecules, the director field n(r), or the
magnetization M(r). They are characterized by integer-valued
topological invariants, i.e., the skyrmion numbers Q [2,19],
which also indicate that skyrmions cannot be continuously
morphed into a homogeneous state without introducing point
defects [29]. Q = 1

4π

∫
m( ∂m

∂x × ∂m
∂y )dx dy. I notice, however,

that in CLCs, nonpolar skyrmions are represented by the
homotopy group π2(S2/Z2) = Z and wrap around the order
parameter space (S2/Z2) twice. But being vectorized, the
director field becomes analogous to the magnetization field,
although the topological charge in this case can be defined
only up to the sign [27]. Remarkably, in CLC layers with
thickness slightly smaller than the spiral pitch, skyrmions
were shown to cohere into single-file lines or chains—another
type of skyrmion conglomerate. By using ambient-intensity
unstructured light, the authors of Refs. [30,31] demonstrated
large-scale multifaceted transformations between such chains
and skyrmion clusters, dubbed skyrmion “schools.”

The promising technological potential offered by ISs and
their superstructures at reduced dimensions mainly hinges on
the effective use of two key ingredients: (i) chiral surface
twists, and (ii) skyrmion-skyrmion interaction.

(i) Due to additional surface twists, skyrmions gain their
stability in thin layers of chiral magnets for a broad range
of applied out-of-plane magnetic fields and nanolayer thick-
nesses T [32,33]. Indeed, in bulk helimagnets only the Lifshitz
invariants L(x,y)

x,y compel the magnetization rotation in the xy
plane. In cubic helimagnets and CLCs, these LIs fix the
skyrmion helicity at the value γ = π/2 (Bloch-like fashion of
rotation). In magnetic nanolayers, on the contrary, the LI L(z)

x,y
with the magnetization derivative along z comes into play. For
skyrmions, L(z)

x,y leads to the gradual change of the skyrmion
helicity [γ = π/2 ± δ(z)] toward upper and lower surfaces
[32,33]. This effect accumulates additional negative energy
compared with the cones not decorated by the additional sur-
face twists [32,33], and it leads to the SkL stability (up to the
confinement ratio ν = T/λ ≈ 8, where λ is a spiral pitch).

(ii) The character of IS-IS interaction as well as the intri-
cate three-dimensional internal structure of ISs are imposed
by a surrounding “parental” state. Being surrounded by the
saturated phase, skyrmions acquire an axisymmetric shape
and exist as ensembles of weakly repulsive particles [34–36].
The spins in the homogeneous state are parallel and point ei-
ther to an applied magnetic field or to an easy axis of a uniaxial
anisotropy. The detailed behavior of such isolated skyrmions
has been reported in PdFe/Ir(111) bilayers with the induced
DMI and a relatively high value of the uniaxial anisotropy
[36]. On the other hand, being embedded in the cone

phase of chiral ferromagnets, isolated skyrmions acquire a
nonaxisymmetric shape, become mutually attractive, and thus
tend to produce skyrmion superstructures including clusters
and chains [16,17,30,31]. The same regimes of skyrmion
interaction are experimentally observed in CLCs [27]. In par-
ticular, an analog of the conical phase can be achieved as a
result of the competition between the director’s tendency to
twist, and the surface anchoring accompanied by the confine-
ment at finite sample thickness [37].

In the present paper, I will examine the principles of IS con-
densation into skyrmion clusters and skyrmion chains in chiral
magnets and liquid crystals. The remainder of the manuscript
is organized as follows. In the next section (Sec. II), I in-
troduce a phenomenological model and the algorithms used
for simulations. Within the continuum and discrete models
under consideration, the applied magnetic field and the film
thickness are the only two control parameters. First, I plot
the phase diagram of spiral states (Sec. III), which exhibits
one-dimensional (1D) conical states, i.e., straight and oblique
spirals. I discuss the first- and second-order phase transi-
tions between these modulations. In Sec. IV, I examine the
internal structure of IS tubes in bulk cubic helimagnets. I
argue that skyrmion trio-clusters in this case represent an
energetically favorable configuration as compared with the
skyrmion trio-chains. The constructed 3D skyrmion models
provide a straightforward explanation of the attractive nature
of skyrmion-skyrmion interaction. I further deduce that the
process of skyrmion condensation into clusters is ruled by the
two competing mechanisms: although skyrmions lose some
low energy of skyrmion rings, they effectively eliminate the
high-energy edge area in the interskyrmion region, which
underlies skyrmion attraction. Finally, I illustrate the process
of cluster and chain formation in thin films of chiral magnets
(Sec. V) with the energetic advantage of the latter state.

II. THE MODEL

A. A continuum energy functional

Within the phenomenological theory introduced by
Dzyaloshinskii [5,38], the magnetic energy density of a
noncentrosymmetric ferromagnet with spatially dependent
magnetization m can be written as

W (m) = A (grad m)2 + D m · rot m − μ0 Mm · H, (3)

where A > 0 and D are coefficients of exchange and
Dzyaloshinskii-Moriya interactions, H is an applied magnetic
field along the z-axis, and xi are the Cartesian components
of the spatial variable. To describe skyrmionic states, I will
also use cylindrical coordinates (ρ, ϕ) for the spatial vari-
able. Moreover, only skyrmions with Q = 1 are thoroughly
scrutinized. Functional (3) includes only basic interactions
essential to stabilize skyrmion and helical states. The temper-
ature is assumed to be much below the ordering temperature.
Then, the order parameter can be presented as a continuous
unit-vector field m = (sin θ cos ψ ; sin θ sin ψ ; cos θ ) along
the magnetization vector M = mMs, where Ms is the satura-
tion magnetization.

The first two terms in model (3) also correspond to the
elastic energy contributions in the Franck free energy of CLCs
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that pertain to splay K1, twist K2, and bend K3 distortions
of the director provided that the one-constant approximation
K1 = K2 = K3 = K is utilized [21,22]: A → K/2, D → Kq0.
(q0 = 2π/λ is the chiral wave number of the ground-state
chiral nematic mixture.) Indeed, the values of elastic constants
in common CLCs are comparable, and this one-constant ap-
proximation is commonly used. The absence of a Zeeman-like
term in CLCs in the elastic (Franck) free energy is compen-
sated by the interplay of the electric field and the surface
anchoring. As a result, the CLC conical phase acquires the
angle varying across the layer thickness. These arguments
facilitate the discussion of topological phases in CLCs and
ChMs on the same footing [27,28,39], and similar phenom-
ena and structures can be expected in both condensed-matter
systems.

I investigate the functional (3) in a film of thickness T in-
finite in the x and y directions and confined by parallel planes
at z = 0; T . This means that periodic boundary conditions
are applied along x and y only, whereas the free boundary
conditions are considered at both surfaces. In the modeling of
CLCs, surface interactions (e.g., the Rapini-Papoular surface
energy density and/or saddle-splay deformations K24) often
play a crucial role in the stability of modulated states [28,39].
In the present manuscript, however, the surface-induced ef-
fects are omitted.

The equilibrium magnetic states within the model (3) have
been obtained by a numerical energy minimization procedure
using finite-difference discretization on rectangular grids with
adjustable grid spacings. The minimization procedure is de-
scribed in detail in Ref. [40]. The solutions depend on the
two control parameters of the model (3), namely the reduced
magnetic field h = H/HD, and the thickness ν = T/λ. Here,
LD = A/|D| is the characteristic length unit of the modulated
states. In the following, the spatial coordinates are measured
in units of LD. The value λ = 4πLD for H = 0 is the helix
period for bulk helimagnets (e.g., 18 nm for the bulk MnSi).
μ0HD = D2/(AM ) is the critical field. For a conical phase in
bulk helimagnets, the saturation field in units of HD equals
h = 0.5. At H = 0.5HD, the cone phase transforms into the
saturated state with θ = 0 and thus underlies the crossover
between two regimes—interskyrmion attraction and repulsion
[16]. The equilibrium parameters for the cone phase are ex-
pressed in analytical form [38] as

ψc = 2πz

λ
, cos θc = 2|H|

HD
, (4)

where z is the spatial variable along the applied field.

B. A classical spin model

To investigate the solutions for nonaxisymmetric
skyrmions within the conical phase, I will mainly use
the discretized version of Eq. (3):

w = J
∑

〈i, j〉
(Si · S j ) −

∑

i

H · Si

− D
∑

i

(Si × Si+x̂ · x̂ + Si × Si+ŷ · ŷ + Si × Si+ẑ · ẑ).

(5)

The classical spins of the unit length are placed in the knots
of a three-dimensional cubic lattice. 〈i, j〉 denotes pairs of
nearest-neighbor spins. The minimization scheme remains es-
sentially the same as was introduced for the continuum energy
functional and described in Ref. [40]. However, only the en-
ergy minimization with respect to the spin orientation takes
place. A point (xn, yn, zn) on a grid is chosen randomly. Then,
the spin in the point is rotated without a change of its length. If
the energy change associated with such a rotation is negative,
the new orientation is kept. Otherwise, it may be accepted
probabilistically. In contrast to the continuum model, in which
the characteristic spacings �x,�y,�z are also adjusted to
promote energy relaxation, the distance between the points of
the discrete numerical grid is considered by convention to be
of unit length. In this case, coordinates of the point (xn, yn, zn)
just represent some ordinary numbers showing in which col-
umn or string the point is located. In principle, both models
are the same, especially for a large characteristic length, since
the continuum model is obtained from the discrete one under
conditions of smooth magnetization rotation. The discrete
model, however, allows us to address spin distributions of a
few lattice constants (in particular, those including defects). In
the following, the discrete model is used to address skyrmion
clusters, whereas the continuum model was used to plot the
phase diagram in Fig. 1.

The first term in (5) describes the ferromagnetic nearest-
neighbor exchange with J < 0 (in the numerical simulation,
J = −1 is used). The DMI constant D defines the period of
modulated structures λ via the following relation:

D/J = tan(2π/λ). (6)

Or vice versa, one chooses the period of the modulations λ for
the computing procedures and defines the corresponding value
of the DMI constant. Indeed, for a helix Si = (cos θi, sin θi, 0)
propagating along the x-axis at zero field (H = 0), model (5)
is reduced to

w =
∑

i

[−J cos(θi − θi+x̂ ) − D sin(θi − θi+x̂ )], (7)

which yields the equilibrium period λ = 2π/ arctan(D/J ) (λ
is the number of magnetic ions corresponding to �θ = 2π ).
In what follows, the Dzyaloshinskii-Moriya constant is set to
0.2126, which corresponds to one-dimensional modulations
with a period of 30 lattice spacings in a zero field [41]. For
simulations within the continuous model, the same value of λ

is chosen for the discretization schemes. The size of a numer-
ical grid is set to 300 × 300 × T (it might be incommensurate
as well), which is sufficient to accommodate skyrmion trio-
chains and trio-clusters within the conical phase and to take
into account all the subtleties of their internal structure. In
this case, one may even use free boundary conditions at both
planes xz and yz, since the edge states [42] formed at the sides
of the numerical cube will not intersect with the skyrmion
profiles and will not distort their profiles. In some figures,
zoomed images of a part of the grid will be used. Then, the
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FIG. 1. (a) The magnetic phase diagram of spiral states corresponding to the global minima for model (3) in reduced variables for the film
thickness ν = T/4πLD and the applied magnetic field h = H/HD. Filled areas indicate the regions of global stability for the helicoid (green),
cones (red), and oblique spirals (hatched). The white area in (a) designates the ferromagnetic state (FM) fully saturated along the field. The
solid line A − B stands for the first-order phase transition between cones and helicoids, whereas the dotted lines a − b and c − d confine the
area of the oblique spiral. (b),(c) Magnetic structure of a helicoid (b) with period λ and an oblique spiral in nanolayers of cubic helimagnets. In
the surface area, both spirals acquire additional surface twists of the magnetization. (d) The color plots for mz-components of the magnetization
within an oblique spiral state during its transformation from the helicoid into the conical phase, ν = 1.6. mx and mz components are shown with
thin black arrows. The tilt angle α defined in (c) smoothly varies as shown by the inset in (a). (e) The in-plane component of the magnetization
〈m⊥〉 within the conical state in dependence on the field for different ratios ν. (f) Oscillations of 〈m⊥〉 depending on the film thickness for zero
field h = 0. (g),(h) Magnetization curves for the out-of-plane (g) and in-plane (h) magnetization components demonstrate jumps at the lines of
the phase transitions according to the phase diagram in (a).

size of this area will be additionally indicated, for example
150 × 150. Still, the size of the grid remains the same.

III. THE PHASE DIAGRAM OF SPIRAL STATES

First of all, I identify the following modulated phases to
be included in the phase diagram: helicoids, cones, oblique
spirals, and the homogeneous state. Although the skyrmion
lattice occupies a vast area of the phase diagram as found
by previous studies [33,43], I omit this state in the present
consideration. First of all, SkL represents an ideal construct
that does not include an energetically costly domain boundary
with respect to the conical phase. Moreover, in real experi-
ments, skyrmions undergo nucleation processes: in Ref. [33]
in particular, SkL appeared at the edge of a sample and in-
evitably created a mentioned transient region, which resulted

in much smaller critical film thicknesses ν for SkL stability as
opposed to the value originally predicted by the theory in the
same manuscript. Indeed, already for ν = 1.29 the skyrmion
lattice does not arise; instead, the helicoid directly transforms
into the cone phase.

The helicoid [also called a chiral soliton lattice (CSL)] oc-
cupies the green-shaded area of the phase diagram [Fig. 1(a)].
The wave vector of CSL lies within the plane xy (for definite-
ness, along the x-axis) [Fig. 1(b)]. For low field values, such
spirals have lower energy as compared with the conical state,
which is readily explained by the additional surface twists in
thin-film nanosystems, i.e., due to the same LIs L(z)

x,y, which
also underlie skyrmion stability. In the same way, whereas
the LIs with the derivatives along the x and y axes govern
the magnetization rotation in spiral states, the LI with the
derivative along z leads to the gradual change of the spiral
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helicity toward upper and lower surfaces with the penetration
depth 2πLD. This effect accumulates additional negative en-
ergy compared with the cones [32,33]. The area of surface
twists within the helicoid is schematically shown in Fig. 1(b).
Moreover, the surface twists endow such a helicoid with the
topological charge: although the total charge calculated in the
plane xz within one spiral period is zero, half-periods of a
helicoid bear topological charges Q ≈ ±0.2 with the opposite
signs.

Cones in this geometry [schematically shown in the inset
of Fig. 1(e)] are oriented along the field and inhabit the red-
shaded region at the phase diagram [Fig. 1(a)]. Since usually
the film thickness is a noninteger multiple of the helical wave-
length, the magnetization of the cones has an uncompensated
value of the in-plane component m⊥ even in zero magnetic
field. Figure 1(e) shows the field dependence of the average
value 〈m⊥〉 for the film thickness in the range ν ∈ [2, 2.5]. In
zero field [Fig. 1(f)], 〈m⊥〉 oscillates depending on ν with the
lowering amplitude of the oscillations. This effect provides
an additional leverage over, e.g., the orientation of skyrmion
clusters and chains within the conical phase, and thus it may
impart a correct direction for their current-driven movement
in spintronic devices.

Along the line A–B [Fig. 1(a)], the CSL transforms into
the conical state. Since it is the first-order phase transition,
it must be accompanied by the coexisting domains of both
phases, which are readily resolved experimentally by Lorentz
transmission electron microscopy investigations in thin layers
of cubic helimagnets, e.g., in FeGe (see Fig. 4 in Ref. [33]).
The domain of the conical state nucleates and broadens along
the lines of mz = 1 within the helical state and leads to gradual
unzipping and drift of two spiral loops from each other.

Besides, the thin-film geometry permits a stable oblique
spiral [Figs. 1(c) and 1(d)], which originates from the in-
terplay between the exchange and rotational DMI energy.
Whereas the negative energy associated with the surface twists
remains almost unchanged, the canting leads to the lowering
of the DMI energy, although with some accompanying in-
crease of the exchange energy. Such an oblique spiral exists
in the hatched region of the phase diagram bounded by the
lines a − b and c − d and thus serves as an intermediate state
between cones and helicoids. For ν = 1.6, the canting angle
of rotational planes gradually changes from α = 90◦ in the he-
licoid to 0 in the conical state [inset of Fig. 1(a)]. Interestingly,
being unidentified in experiments on thin layers of chiral
helimagnets (although predicted theoretically in Ref. [44] for
epitaxial films of MnSi [45]), oblique spirals are known in
CLCs under the term “nonsingular fingers of CF1 type.” In
Ref. [46] in particular, a periodic finger pattern composed of
CF1s was experimentally shown to transform into a conical
state called translationally invariant configuration (TIC) with
uniform in-plane twist because of the weak in-plane anchor-
ing. The fingers gradually widened and then merged in order
to form the modulated TIC.

Experimentally, an oblique spiral state can be identified at
the magnetization curves for the magnetization components
parallel [Fig. 1(g)] and perpendicular [Fig. 1(h)] to the field.
Whereas CSL has zero 〈m⊥〉 and almost linearly increasing
〈mz〉 until it jumps into the conical state, an oblique spiral
clearly exhibits a growing 〈m⊥〉-component with the sign of

derivative opposite to the conical one and a gradually varying
〈mz〉, which merges with the conical one.

IV. ISOLATED SKYRMIONS WITHIN THE CONICAL
STATE OF BULK CUBIC HELIMAGNETS

The oblique spiral phase in thin layers represents an in-
teresting environment to accommodate ISs and to shape their
intrinsic properties. One may then envision two varieties of
mutually orthogonal skyrmions and their field-driven rotation:
an isolated skyrmion with its axis along z within the helical
phase would become an IS along x within the conical phase.
Such an intriguing skyrmion reorientation, however, will be
considered elsewhere. In the present manuscript, I concentrate
exclusively on ISs within the conical state with their axes ori-
ented along the field. In this case, the phase diagram provides
some useful information on appropriate control parameters to
avoid undesirable skyrmion deformations. Then, I start the
analysis from isolated skyrmions in bulk ChMs.

A. The nature of skyrmion shells in bulk helimagnets

Below the saturation field [H < 0.5HD, Fig. 1(a)], the
structure of 2D ISs is imposed by the arrangement of the cone
phase (4). I note that the value of the critical field is the same
for bulk and thin-film helimagnets, which is explained by the
undistorted rotation of the magnetization within the conical
phase. Only the energy term L(z)

x,y stipulates the magnetiza-
tion rotation within the conical phase with the wave vector
along z.

The skyrmion solutions should then be periodic with the
period 4πLD along the z-axis (although in Ref. [40] it was
shown that there is a small deviation from this periodicity
meant to reduce the positive energy of metastable skyrmions).
Moreover, skyrmions are confined by the following boundary
conditions:

θρ=0 = π, θρ=∞ = θc, ψρ→∞(z) = ψc(z). (8)

The solutions for θ (ρ, ϕ, z), ψ (ρ, ϕ, z) are derived by min-
imization of the energy functional (3):

w = AJ (θ, ψ ) + DI (θ, ψ ) − μ0MH cos θ, (9)

with the boundary conditions (8), where the exchange (J )
and Dzyaloshinskii-Moriya (I) energy functionals are [41] as
follows:

J (θ, ψ ) = θ2
ρ + θ2

z + 1
ρ2 θ

2
ϕ + sin2 θ (ψ2

ρ + ψ2
z +

1
ρ2 ψ

2
ϕ ),

I (θ, ψ ) = sin(ψ − ϕ)(θρ + 1
ρ

sin θ cos θ ψϕ ) +
sin2 θ ψz + cos(ψ − ϕ)( 1

ρ
θϕ + sin θ cos θ ψρ ).

Figure 2 shows the results of numerically minimizing the
energy functional (9) for bulk helimagnets with λ = 30. The
equilibrium structure of such a nonaxisymmetric skyrmion is
reached by the incompatibility of the axisymmetric skyrmion
core with the transversely modulated cone phase. The asym-
metry of skyrmions within the conical phase is clear in both
the in-plane (shown as black arrows) and z components (color
plots) of the magnetization. Figure 2(a) (upper panel) shows
the magnetization in a plane normal to the direction of the
applied field z. It can be seen that these skyrmions consist of
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FIG. 2. Magnetic structure of nonaxisymmetric skyrmions within the conical phase of bulk cubic helimagnets. The upper panels in (a) and
(d) show color plots of the out-of-plane magnetic moment, mz(x, y). Two skyrmion profiles are located at the distance λ/2 from each other.
The lower panels in (a) and (d) show corresponding energy density distribution in an xy plane with a fixed value of ψc (8). Superposition of
these profiles correspondingly shown in (b) and (e) lead to the energy profiles shown in (c) and (f). After averaging over all energy profiles
within one conical period, the energy distribution (g) exhibits the following composite parts: the core with the positive energy density, the ring
with the negative energy density, and the shell with the small positive energy. Since in (g) the range of the energy density is restricted by small
values to make the shell region visible, panel (i) shows the crosscut of the energy pattern with the relative heights of all composite parts. Insets
in (i) show energy density distributions averaged over 2λ/3 and 5λ/6. In (h), I use an alternative way of representing the internal structure of
a nonaxisymmetric skyrmion. After I extracted the magnetization components corresponding to the conical phase, the skyrmion represents a
cylinderlike core centered around the magnetization opposite to the field and a coil with the magnetization along the field.

a nearly axisymmetric core surrounded by a crescent-shaped
transitional region. The structure shown in (a) gradually ro-
tates on moving along z from one plane to the next, and
two crosscuts in (a) are located at the distance λ/2 from
each other. The lower panel in Fig. 2(a) shows corresponding
energy density distributions. I note that the lowest energy
density is reached along the line connecting the skyrmion
center with the center of a crescent, where the magnetization
passes through the state θ = 0 and only then tilts to satisfy
the boundary conditions (8). Along the opposite direction,
the magnetization immediately rotates to the magnetization
within the conical phase θc and thus stipulates the regions with
reduced rotational energy [yellow parts in the lower panels
of (a) and (d)]. The skyrmion center, i.e., the point at which
mz = −1, circumscribes a circle around the z axis. This leads
to a nontrivial superposition of energy profiles in Fig. 2(a), as
depicted in Figs. 2(b) and 2(c). Only small regions of residual

positive energy density are preserved and located perpendicu-
lar to the original crescent parts. The same process occurs for
all energy profiles located at the distance λ/2 [Figs. 2(d)–2(f)].

Figure 2(g) shows the energy density averaged over all
energy profiles within one conical period and plotted on the
xy plane. The zero level is the energy within the conical
phase. The characteristic lengths R1 and R2 indicate several
distinct regions in these radial energy profiles. The positive
energy of the “core” is located around the skyrmion center
(ρ < R1) and is encompassed by the extended ring area with
negative energy density, where the DM coupling dominates
(R1 < ρ < R2) [8]. Within the homogeneous state with the
negative asymptotics of the radial energy densities, ISs de-
velop repulsive intersoliton potential as originally described
in Ref. [8]. In the present case of nonaxisymmetric skyrmions,
however, the energy density is positive at large distances from
the skyrmion center [Fig. 2(i) and the inset]. This constituent
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part of a skyrmion was dubbed “shell” (R2 < ρ) in previous
works [41]. The shell separates the skyrmion core from the
cone phase. As described before, such a shell must not be vi-
sualized as a part of an individual skyrmion cross-section [like
those in Fig. 2(a)] that circumscribes a circle and forms a ring
with the positive energy density. The shell is rather a result
of the superposition of skyrmion profiles when the negative
crescent in one cross-section overlaps with the positive energy
of a skyrmion profile in a cross-section at the distance λ/2
[Figs. 2(c) and 2(f)]. Then, the shell is a part with positive
energy, which was left after the superposition. Interestingly, if
some energy profiles lack their counterparts for the effective
superposition [as described in Fig. 2(a)], which is the obvious
case in thin films, the average energy profiles acquire an
“out-of-balance” pattern. The color plots shown in the inset
of Fig. 2(i) are averaged over the length 2λ/3 and 5λ/6,
correspondingly.

A convenient way to depict these skyrmions, which has
been proven to be particularly illustrative in addressing the
character of skyrmion-skyrmion interaction, is as follows
[Fig. 2(h)]: we extract the spins corresponding to the conical
phase and then plot the remaining spins as spheres colored ac-
cording to their mz-component. In this way, all intricate details
of the internal structure are explicitly revealed, which elimi-
nates the difficulties of plotting skyrmion crosscuts along the
different directions. In such a fashion, ISs are composed of a
cylinderlike (blue) core centered around the magnetization op-
posite to the field and a (red) coil with the magnetization along
the field [Fig. 2(h)]. From the previous discussion, it becomes
clear that the coils bear favorable rotational energy and are
associated with crescents in skyrmion crosscuts [Fig. 2(a)],
whereas the voids are energetically “handicapped.” Current
experimental endeavors are particularly focused on unveiling
the three-dimensional spin texture of skyrmion tubes [47–50].

B. Skyrmion clusters and chains for bulk helimagnets

The positive energy density of the shell underlies attrac-
tive interaction between nonaxisymmetric skyrmions [41] and
consequently the formation of skyrmion clusters. The color
plots in Figs. 3(a)–3(c) indicate the energy density counted
from the conical state and plotted on the xy plane for three
configurations: noninteracting isolated skyrmions, skyrmion
trio-clusters [composed of three skyrmions (b)], and skyrmion
trio-chains (c). Both skyrmion clusters and chains are formed
as compromised configurations trying to “cut down” on the
positive energy within the shells, but at the expense of the neg-
ative energy stored within the rings and inevitably being lost
within the intersecting regions [hatched regions in Figs. 3(b)
and 3(c)]. As an initial state for minimization procedures, I
considered a spin configuration with three isolated skyrmions
[Fig. 3(a)] brought into proximity to each other with the sub-
sequent energy minimization.

The table in Fig. 3 shows that skyrmion chains manage
to essentially reduce the shell energy �Eshell (by almost 63%
as compared with isolated skyrmions). However, the sacrifice
done by the ring energy �Ering is higher than that achieved in
skyrmion clusters. Moreover, clusters allow the shell energy
to be reduced even further (65%). One may conclude that

for bulk helimagnets, skyrmion clusters with a hexagonal ar-
rangement of constituent skyrmions are the most energetically
favorable configuration. Since in bulk helimagnets within the
isotropic model (5), isolated skyrmions represent metastable
particles (i.e., skyrmions have positive total energy over the
energy of the conical state, see the table in Fig. 3), cluster and
chain formation allows this energy to be reduced. Importantly,
the interplay between described “lost” �Ering and “gained”
�Eshell energies determines the material parameters of the
cluster such as the bound energy and the distance between the
constituent skyrmions, which appears to be field-dependent
[16,41]. I admit, however, that additional study must address
clusters and chains with higher numbers of skyrmions, since
other factors (e.g., linear extension of the shell around clus-
ters, or meandering of skyrmion chains) may come into play.

The cluster formation from ISs may alternatively be ad-
dressed as a process of zipping skyrmion loops: a coil of
one skyrmion penetrates the voids between the coils of an-
other one [Fig. 3(e)]. By this, the lack of rotational energy
within the voids (as described in Sec. IV A) is fixed, and
the compact skyrmion pair recreates a fragment of a SkL
that within the model (3) is a metastable state. The mag-
netization on the way from the center of one skyrmion to
the center of another rotates as in ordinary axisymmetric
skyrmions. Such a method, however, does not give a clear
indication of which skyrmion arrangement within a cluster is
more favorable, and therefore additional energy comparison is
vital. Experimentally, skyrmion clusters have been observed
in thin (70 nm) single-crystal samples of Cu2OSeO3 taken
using transmission electron microscopy [16] and in nematic
fluids, where they were shown to also form skyrmion chains
[30,37].

The described mechanism of cluster formation from
skyrmions within the conical phase is drastically different
from a corresponding mechanism of SkL formation from
skyrmions within the homogeneous state (which occurs,
e.g., when the conical phase is suppressed by the uniaxial
anisotropy, but helicoids and skyrmions still exist as modu-
lated states; see a phase diagram in Ref. [51]). For SkL, the
process of condensation is ruled by two competing mecha-
nisms: the total energy of isolated skyrmions (i.e., the sum
of the core and the ring energy, since the energy of the shell
in this case is zero) becomes negative with respect to the
homogeneous state, and skyrmions tend to condense into the
hexagonal lattice. However, the energy density becomes larger
at the outskirt of the skyrmion, which is the consequence of an
inherent frustration built into models with chiral couplings:
the system cannot fill the whole space with the ideal, energet-
ically most favored double-twisted motifs. Thus, some loss of
the negative ring energy is an aftermath.

The transformation of skyrmions during the formation of
the lattice has been investigated in Ref. [8]. Magnetic-field-
driven evolution of the skyrmion lattice has similar features
with the evolution of helical states investigated in Ref. [5]
and bubble and stripe domain in uniaxial ferromagnets [52].
Despite a strong variation of the lattice periods, isolated
skyrmions preserve axisymmetric distribution of the magne-
tization in the central part of cells. The mechanism of lattice
formation through nucleation and condensation of isolated
axisymmetric skyrmions follows a classification introduced
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FIG. 3. The color plots of the energy density averaged over z coordinates and plotted on the xy plane for three distinct configurations:
isolated skyrmions (a), trio-clusters (b), and trio-chains (c). The white circles in (b) and (c) show the boundaries of the skyrmion rings. Thus,
within the hatched areas, skyrmion clusters and chains compromise some negative energy of the rings to eradicate simultaneously the positive
energy of the shells. The table exhibits the energetic balance within different skyrmion structures and indicates that skyrmion clusters are the
most energetically favorable configurations. Corresponding 3D constructs in (d)–(f) exhibit the way the coils of constituent skyrmions are
getting “zipped” together. In this case, the size of a numerical grid along z equals λ, and periodic boundary conditions are used. In (d)–(f), the
size along z is 3λ.

by de Gennes [53] for (continuous) transitions into incom-
mensurate modulated phases. According to de Gennes, the
fully saturated ferromagnetic state is stable locally. However,
it becomes unstable with respect to certain distortions of
large-amplitude skyrmions: in practice, isolated skyrmions
as excitations of a ferromagnetic state nucleate near defects,
and then they condense into the lattice. Such nucleation-
type phase transitions are rather frequent in condensed-matter
physics: (a) the entry of magnetic flux in a type II supercon-
ductors involves nucleation of vortex lines; (b) an electric or
magnetic field induces the transition between a cholesteric
and a nematic liquid crystal; (c) the magnetic samples break
up into domains with an increasing role of the demagnetiz-
ing field. And vice versa, the magnetic state built up from
skyrmions may be decomposed into an assembly of isolated
skyrmion-molecular units, i.e., a transformation of condensed
phases occurs by setting free the isolated skyrmion units as in

a crystal-gas resublimation. Depending on small energy dif-
ferences due to additional effects, different extended textures
with variable arrangements of the skyrmion cores may arise,
just as in a molecular crystal.

V. ISOLATED SKYRMIONS IN THIN FILMS OF CUBIC
HELIMAGNETS

To reveal the mechanism of skyrmion cluster formation
in thin films, we first limit ourselves by the thickness range
ν < λ. The energy profiles induced by the surface twists are
plotted in Fig. 4 and are markedly different from those for
bulk helimagnets in Fig. 2(a). Moreover, the energetic pat-
tern changes while penetrating into the depth of a sample
[Fig. 4(a)], and only for z = λ/2 does it become similar to
a motif with clearly distinguishable core and crescent parts.
Superposition of all energy profiles from the lower [first panel
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FIG. 4. (a) Energy density distributions plotted on the plane xy while going from the lower film surface [first panel in (a) at z = 0] into
the depth of the layer. Manifested transformation of the energy profiles is directly related to the surface twists, which become apparent in the
in-plane magnetization rotation toward the surfaces. At the penetration depth z = λ/2, the energy pattern becomes similar to the one for bulk
helimagnets in Fig. 2(a). (b) Superposition of average energy profiles from the lower (first panel) and upper (second panel) surfaces results in
the total polar energy pattern (third panel), in which the bags of the positive energy density (not the circular shell, as was discovered for bulk
helimagnets in Fig. 2) are located along the line e − f . (c) 3D skyrmion model, which corresponds to the described energy profiles and exhibits
only a patch of the coil around the skyrmion core. Such an internal skyrmion structure implies the formation of skyrmion chains rather than
clusters (see the text for details). (d) A thickness-dependent evolution of average energy profiles, which mainly indicates their polar nature
(from T = 21 to 30), although for smaller thicknesses the energy patterns become circular.

in Fig. 4(b)] and upper [second panel in Fig. 4(b)] surfaces
leads to a characteristic resulting profile with two bags of
positive energy density located along the line e − f (the points
e and f are the centers of two crescents). The same energy
profile holds in a range of thicknesses as shown by Fig. 4(d)
and implies skyrmion chain formation rather than skyrmion
clusters. Indeed, the most effective elimination of the positive
energy density of skyrmion shells must be achieved if isolated
skyrmions line up into a chain. In addition to the energy argu-
ments, a 3D model of a skyrmion [Fig. 4(c)] vividly reveals
that the compact skyrmion chain must be formed along the y
axis [as depicted in Fig. 5(b)].

And indeed, for ν = 0.87 (T = 26), the skyrmion trio-
chain has smaller total energy (see the table in Fig. 5) as
compared with the skyrmion trio-cluster composed of three
skyrmions [Figs. 5(a)–5(d)]. Such a chain configuration vir-
tually eradicates the shell in the interskyrmion region. Only

small roundish parts numbered a1 − a4 in Fig. 5(a) remain.
Although the chain configuration significantly “loses” energy
in the ring, the total energy gain

�E = �Ering + �Eshell (10)

makes it a better configuration than the corresponding cluster
[Fig. 5(c)]. The cluster being effective in preserving the ring
energy, however, is unable to suppress the shell energy, and
vast areas of the positive energy density still exist around
the cluster configuration. I also notice that the constituent
skyrmions within both configurations appear distorted. They
significantly increase the positive energy of their cores. More-
over, the skyrmion rings exhibit some ellipticity. At the same
time, the total energy of skyrmions in all configurations is
negative as compared with the energy of the conical phase.
It becomes positive at ν = 1.41 (for isolated skyrmions), ν =
1.46 (for skyrmion trio-chains), and ν = 1.50 (for skyrmion
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FIG. 5. The internal structure of skyrmion trio-clusters and trio-chains for two different thicknesses of the film: T = 26 (a)–(d) and T = 22
(e)–(h). Corresponding tables show the energy balance within the skyrmion conglomerates in the same way as was previously done for
skyrmions in bulk helimagnets. For pronouncedly polar energy distributions (for T = 26), the advantage of skyrmion chains is manifested by
the effective suppression of skyrmion shells. Only small remainders a1 − a4 of the shells are still maintained aside from the polar axis of the
trio-chain (a). The trio-clusters (b) in this case are less effective in the shell eradication. 3D constructs also exhibit compact zipping of skyrmion
loops within the trio-chains (b) and trio-clusters (d). For T = 22, the more prolonged shell underlies the advantage of skyrmion trio-clusters.
In both cases, the shell surrounds the resulting skyrmion conglomerates.

trio-clusters). By adding more skyrmions into a skyrmion
cluster, this critical thickness value gradually increases until
it reaches a much higher value for the hexagonal SkL [33,43].
Initially, this fact motivated the omission of the region of the
stable SkL at the phase diagram [Fig. 1(a)].

Remarkably, the same energetic reasoning does not lead
to the chain advantage at ν = 0.73 [Figs. 5(e)–5(h)]. In the
same way, the chain more effectively eradicates the shell
and loses some energy of the ring, however the total energy
balance (10) implies the preference of a skyrmion cluster.
The reason presumably lies in the more extended shell for
ν = 0.73 as opposed to the more concentrated polar shell at
ν = 0.87. In this case, the cluster eliminates the shell en-
ergy almost as effectively as is done in chains, but with the
lower loss of the ring energy it comes out with a lower total
energy. The exhaustive field- and thickness-dependent analy-
sis of skyrmion clusters and chains will be done elsewhere.
The present speculations, however, imply that the mechanism
of cluster formation rests on an intricate balance of energy
contributions stored in separate parts of a nonaxisymmetric
skyrmion. The analysis will become even more complicated
for thicker films, since in this case uncompensated bulk energy
profiles [inset in Fig. 2(i)] will admix and possibly lead to
anisotropic effects and predefined configurations of skyrmion
clusters and chains.

VI. CONCLUSIONS

To conclude, I have examined the properties of nonaxisym-
metric skyrmions within the conical state and the mechanism

leading to their attraction in bulk and thin-layered cubic he-
limagnets. The analysis is based on the scrutiny of energy
profiles both in an individual cross-section xy for a fixed coor-
dinate z and averaged over some distance along the z axis, i.e.,
over the cone period and/or the film thickness. A characteris-
tic feature of the energy patterns is a shell region with positive
energy density, which encompasses isolated skyrmions and
can be thought of as the domain boundary between the conical
phase and isolated skyrmions due to their incompatibility. It
was shown that the metastable skyrmions in bulk helimagnets
develop the tendency to gather into “crowds,” and by this
to reduce the shell energy, although at some expense of the
negative energy of skyrmion rings, i.e., the energy balance
�Ering + �Eshell defines the geometry of a skyrmion group.
Since the shell energy is homogeneous around a skyrmion,
the cluster obviously constitutes the most energetically fa-
vorable skyrmion conglomerate. In thin layers, however, the
shell is mostly related to the magnetization surface twists
and exhibits the polar pattern with two positive bags on two
opposite sides from the skyrmion center. In this case, indi-
vidual skyrmions prefer to align into a “queue” to effectively
eradicate the positive bags in the interskyrmion region. A
systematic analysis of skyrmion trio-clusters and trio-chains
showed that although the same energy balance between the
“lost” negative energy of the skyrmion rings and the “gained”
energy due to the suppressed shells comes into play, the ten-
dency to form either clusters or chains changes with the film
thickness. Thus, the results of the present manuscript also
pose new questions about topological and energetic properties
of clusters and chains composed from the higher number
of isolated skyrmions. In particular, for four skyrmions, one
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would infer a considerably larger inventory of possibilities
to form skyrmion conglomerates, which would include also
their square arrangement. Remarkably, the concepts of cluster
formation in chiral magnets are readily applicable to chiral
liquid crystals. In fact, the polar ordering of nonaxisymmetric
skyrmions was recently observed experimentally within the
“schools” of liquid-crystal skyrmions moved by an applied
electric field [30,31]. Moreover, I identified a low-field spiral
state that serves as a buffer state between the conventional
cones and helicoids and is stable in a broad parameter range
at the phase diagram. Such an oblique spiral constitutes an
interesting deviation from the previously published phase di-
agrams for thin-film helimagnets, which may have important

consequences for the field of chiral magnetism. In particular,
the spiral tilt can also give rise to new topological magnetic
defects, such as isolated skyrmions, with interesting static and
dynamic properties.
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