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Tunable critical correlations in kagome ice
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We present a comprehensive experimental and theoretical study of the kagome ice Coulomb phase that
explores the fine-tuning of critical correlations by applied field, temperature, and crystal orientation. The contin-
uous modification of algebraic correlations is observed by polarized neutron scattering experiments and is found
to be well described by numerical simulations of an idealized model. We further clarify the thermodynamics
of field-tuned Kasteleyn transitions and demonstrate some dramatic finite-size-scaling properties that depend on
how topological string defects wind around the system boundaries. We conclude that kagome ice is a remarkable
example of a critical and topological state in a real system that may be subject to fine experimental control.
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I. INTRODUCTION

A. Context

Kagome ice [1,2] is a quasi-two-dimensional magnetic
state with finite configurational entropy and algebraic cor-
relations, which is formed when a magnetic field is applied
along the cubic [111] direction of a spin ice such as Ho2Ti2O7

and Dy2Ti2O7. Theory [3] predicts kagome ice to be a topo-
logically constrained Coulomb phase that, through small tilts
of the applied field, can be tuned toward lines of uncon-
ventional Kasteleyn transitions, with associated anisotropic
algebraic scaling. The physics of kagome ice is extremely rich
and subtle, exemplifying departures from the usual Landau-
Ginzburg-Wilson paradigm of continuous phase transitions
in magnetism, towards alternative paradigms of topological
constraint [4], hitherto only observed in soft matter [5]. Phase
transitions and scaling in such topologically constrained sys-
tems are of great interest as they present new challenges
to theory [6–8]. Yet experimental model systems are quite
scarce and, in this sense, kagome ice, being a very clean and
well-defined magnetic state that is easily controlled by applied
field, is a most valuable example.

Over the years there have been extensive experimental
investigations of the thermodynamic properties of kagome ice
[2,9–12] as well as some neutron scattering studies of corre-
lations [13–15]. Despite this, and detailed analytical studies
[3], the understanding of kagome ice has significant gaps. In
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this paper, we aim to complete the characterization of static
correlations in kagome ice by means of a direct confrontation
between theory, experiment, and numerical simulation. In par-
ticular, we present polarized neutron scattering experiments
in the static approximation that we compare with our own
thermodynamics and model simulations, as well as with the
existing analytical predictions of Moessner and Sondhi [3]. In
this way, we are able to elucidate some different properties of
kagome ice and to subject the many theoretical predictions of
Ref. [3] to a detailed test against simulation and experiment.
We broadly confirm the theoretical picture, adding further
structure to the predictions of Ref. [3].

B. Description of kagome ice

In a spin ice, Ising-like magnetic moments point in the
local easy axis directions (the body diagonals of the tetrahedra
of the pyrochlore lattice or 〈111〉 directions of the cubic unit
cell) and their interaction energy is minimized by ensuring
that the magnetic moments obey an ice rule, i.e., two spins
point in and two point out of each tetrahedron (the two-in–
two-out rule). This condition is equivalent to the ice rule that
governs proton disorder in water ice [16,17]. The spins map
onto the elements of a lattice field that captures this and whose
configurations may be represented in terms of correlated loops
that cannot be removed by stretching or bending. These topo-
logical constraints lead to a three-dimensional Coulomb phase
[18–20], a classical spin liquid with emergent U(1) symmetry,
and associated dipolar correlations.

Referring to Fig. 1, when a magnetic field of moderate
strength is applied in the [111] direction, it pins one quarter of
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FIG. 1. (a) Section of the pyrochlore lattice showing the alter-
nating kagome (blue) and triangular (gray) lattices and associated
crystallographic axes. (b) Example of an ice-rule satisfying configu-
ration of spins shows the field-pinned spins on the triangular layers
(gray) and spins on the kagome layer that are oriented favorably
(blue) and unfavorably (orange) with respect to the applied field. The
three-dimensional ice rule (two in and two out on each tetrahedron)
and two-dimensional (two in and one out or vice versa on each
triangle) local ordering rule are both obeyed. The angles θ > 0 and
φ > 0 are shown in purple and green respectively.

the spins which occupy the vertices of triangular [111] planes.
The remaining three quarters of the spins occupy the vertices
of kagome lattices, which are stacked alternately with the
triangular planes. Because these spins make a shallow angle
with the field and have a lesser Zeeman energy than the pinned
spin, the ice rule can compete with the field such that one spin
per triangle of the kagome plane has a component opposing
the field, as also illustrated in Fig. 1. A subset of ice-rule
states with reduced entropy [11] is selected and a magneti-
zation plateau develops at 2

3 of the eventual magnetization,
which signals the kagome ice state [1,2,9]. When the field is
strong enough to overwhelm the ice rule, the remaining field-
opposing spin is reversed, forming a unique ice-rule-breaking
configuration with three in (out) and one out (in) on every
tetrahedron.

The characteristic magnetization plateau [2,9,10], reduced
residual entropy, and entropy release at plateau termination
[12] were originally identified in Dy2Ti2O7, and the mag-
netization plateau was also identified in Ho2Ti2O7 [14,21].
An interesting aspect of kagome ice is the liquid-gas-like
critical point [9] that separates plateau termination by a first-
order phase transition at low temperature from a more gradual
crossover at higher temperature. The existence of this was first
rationalized by the monopole theory of excitations in spin ices
[22], in which it can be identified as the critical end point of
the monopole crystallization transition [23]. Differences in the
exact ratio of competing exchange and dipolar interactions
result in a critical field that is somewhat lower in Dy2Ti2O7

(Hc ≈ 0.9 T) than in Ho2Ti2O7 (Hc ≈ 1.6 T).

C. Coulomb phase and Kasteleyn transition

As in the case of spin ice in zero field, we can distin-
guish a nearest-neighbor model of kagome ice in which spins
are coupled ferromagnetically and where ice-rule-breaking
defects carry no magnetic charge, from one which includes
dipole interactions, which leads to a magnetic charge on each

defect. We will refer to both classes of topological defects
as magnetic monopoles. In fact, the physics discussed in the
present paper is almost entirely that of the vacuum for such
defects, which is the Coulomb phase. Hence we concentrate
on the nearest-neighbor model with ice-rule-breaking defects
suppressed. One key signature of the Coulomb phase is the
appearance of pinch points in the diffuse neutron scattering
pattern of kagome ice, as observed in Ho2Ti2O7 [14] and
Dy2Ti2O7 [13,15]. These pinch points occur at the zone center
for the kagome lattice rather than that of the pyrochlore lattice,
where the pinch points for spin ice [20] in zero field occur.
This difference indicates the change from a three- to a two-
dimensional Coulomb phase.

The topological nature of Coulomb phases [24] leads to
unconventional phase transitions [6,25,26]. A particular ex-
ample is the Kasteleyn transition, originally predicted for
dimers on the honeycomb lattice [24,27,28] (which form
a Coulomb phase [24,28]) and observed experimentally,
to a good approximation, in a lipid bilayer phase transi-
tion [5]. Later, this transition was predicted to occur in
both two- [3,29] and three-dimensional [30–33] settings in
spin ice.

A finite concentration of monopoles destroys the topo-
logical phase transition and the associated thermodynamic
singularities [31,33,34], so the transition is formally unob-
servable if the energy scale for monopole creation is finite.
However, if the monopole concentration is small enough, the
asymptotic approach to the transition is observable, but unless
the dynamics is nonlocal, such as in the worm Monte Carlo
algorithm discussed below, a finite monopole concentration is
necessary to maintain equilibrium [33]. In real systems a best
compromise is required between a low monopole concentra-
tion and ergodic evolution.

The connection between kagome ice and the honeycomb
lattice dimer model was originally made by Moessner and
Sondhi [3], who presented an analytical calculation of the
spin-spin correlation functions in kagome ice, as well as a
theory of the Kasteleyn transition. A key prediction of the
theory is that the Kasteleyn transition would be accompanied
by unconventional scaling of the generalized susceptibility,
manifesting as the movement of certain features in the diffuse
neutron scattering structure factor. Although some features of
this theory have been observed [14], the detailed predictions
of anisotropic scaling of algebraic correlations were not tested
in previous work.

The kagome ice phase also corresponds to the KII phase
of dipolar kagome spin ice [35,36]. For a discussion of this
relationship, we refer the reader to Appendix A.

D. Plan of the paper

The plan of the paper is as follows. In Sec. II we review
the relevant parts of the theory of Ref. [3] and add to this
our analysis of the thermodynamic and critical properties. In
Sec. III we describe our numerical simulations of kagome ice
and its Kasteleyn transitions and in Sec. IV we describe our
neutron scattering experiments and their comparison with the
numerical simulations and the theory. Our main findings are
discussed in Sec. V and we draw conclusions in Sec. VI.

094403-2



TUNABLE CRITICAL CORRELATIONS IN KAGOME ICE PHYSICAL REVIEW B 105, 094403 (2022)

II. THEORY

A. Kasteleyn transition

1. Model

Convenient axes for describing kagome ice are defined
within the pyrochlore structure (Fig. 1) by the direction of
the applied field, where the vertical direction is z ‖ [111],
and the two perpendicular horizontal directions spanning the
kagome plane are x ‖ [1̄10] and y ‖ [1̄1̄2]; unit vectors in
these directions are denoted by x̂, ŷ, and ẑ. The field may be
tilted away from z towards y by the angle θ , and any rotation
of the resulting in-plane field component from y toward x is
quantified by the angle φ. In this work, all fields are applied
along [111], selecting the Z+

2 topological sector (as opposed
to [1̄1̄1̄] and Z−

2 , respectively). Our system is further defined
such that up tetrahedra have the spin in the triangular lat-
tice above the kagome plane relative to the applied magnetic
field along z and down tetrahedra the opposite; a triangle
in the kagome plane derives its up/down identity from its
tetrahedron.

The Zeeman energy of a spin in the presence of magnetic
field �B is EB = −�μ · �B, where �μ is the single-ion magnetic
moment. When the field is exactly aligned in the [111] direc-
tion with �B = Bẑ, for the kagome plane spins EB = ∓ 1

3 | �μ|B,
in the ratio 2:1, so the kagome ice microstates have equal
probability. Tilting the field away from z towards y by an angle
θ > 0 gives a contribution to the Zeeman energy from the
in-plane spin components, which singles out one sublattice in
the kagome plane (labeled with index κ = 1) as the preferred
location for the field-opposing spin while keeping the other
sublattices (κ = 2, 3) equivalent [3,14,29]. The tilt can be
further generalized by rotating in the x-y plane by an angle
φ, which further lowers the symmetry, distinguishing all three
sublattices.

2. Spins and pseudospins

Given that classical spin ice is built from discrete spin de-
grees of freedom, it often proves convenient to reformulate the
problem in the language of an Ising model, introducing pseu-
dospin degrees of freedom σi = ±1. Taking an up tetrahedron
as the crystallographic basis, the four spins align with respect
to the local axes �d0 = 1√

3
[111] (i.e., �d0 ‖ z), �d1 = 1√

3
[1̄1̄1],

�d2 = 1√
3
[1̄11̄], and �d3 = 1√

3
[11̄1̄] so that �dκ · �d0 = − 1

3 . In the
convention that σi = 1 corresponds to a spin pointing out, the
pseudospin is defined

σi = �μi · �di

| �μ| . (1)

In terms of these variables, spin ice maps to an Ising antiferro-
magnet with two in and two out becoming two down and two
up for pseudospins and the nearest-neighbor model in zero
field is the antiferromagnet studied by Anderson [37].

In the kagome ice problem, two in and one out becomes
two down and one up for pseudospins. The Zeeman energy
of a kagome plane spin κ , with field along the z axis, can be
written EB

κ = −σκ B̃, with B̃ = −|�μ|B
3 a pseudomagnetic field

in the reverse, −z direction. Hence, the three kagome plane
spins map onto a kagome antiferromagnet in an external field.

FIG. 2. (a)–(c) Kagome ice, showing the relationship of down
spins (orange arrows) and dimers (dark gray rods), where down
triangles are shaded gray. (a) Disordered structure. (b) Long-range
order induced by a field tilted towards the y direction. (c) Partial
order resulting from a tilted field perpendicular to the y direction.
(d) Kasteleyn phase diagram, where the central kagome ice state
is surrounded by long-range order depending on the sublattice κ =
1, 2, 3 selected by the tilted field.

The pseudospin correlations can be accessed through the out-
of-plane spin components which, as we discuss below, can
be measured in the non-spin-flip channel in polarized neutron
scattering experiments.

3. Dimer mapping

Moessner and Sondhi’s mapping to hard-core dimer con-
figurations on a honeycomb lattice [3] works as follows. The
honeycomb lattice and the kagome lattice are a parent/medial
pair, with sites of the kagome lattice at the midpoint of the
links of the honeycomb lattice [19]. A dimer is placed on
a link of the honeycomb lattice located by a kagome site
carrying a field-opposing spin, i.e., the outward pointing spin
of an up triangle. The kagome sublattice on which the dimer
resides is specified by the index κ , as defined above. Figure 2
shows how, if the ice rules are obeyed, there is a single dimer
per unit cell and no dimers can touch [27]. The entropic phase
of kagome ice is therefore a hard-core dimer liquid which has
critical correlations and corresponds to the Coulomb phase for
the spins.

As the dimers have no internal energy, the “particle en-
thalpy” for this system is 〈H〉 = −∑

κ〈Nκ〉μκ , with 〈Nκ〉 the
mean number of dimers on sublattice κ and μκ the relevant
chemical potential. The μκ correspond to the change in the
in-plane component of Zeeman energy of spin κ when it is

094403-3



A. A. TURRINI et al. PHYSICAL REVIEW B 105, 094403 (2022)

flipped to become the out-pointing spin of the triangle:

μ1 =
(

4
√

2| �μ|B
3

)
sin θ cos φ,

μ2,3 = −
(√

2| �μ|B
3

)
sin θ (cos φ ±

√
3 sin φ). (2)

These values are defined with respect to a large, positive, and
constant term which imposes the constraint that N1 + N2 +
N3 = N

3 , with N the number of spins. The chosen sign giving
the favorable placement on the first sublattice with μ1 > 0 is
consistent with the standard conventions of thermodynamics
and allows us to define a standard fugacity for dimer place-
ment, zκ = eμκ/kBT .

A Kasteleyn transition to dimer alignment on sublattice
κ = 1 occurs when z1 is equal to the sum of those for the other
two sublattices [3,27]: z1 = z2 + z3. The transition is from
the dimer liquid phase to a dimer solid phase and the phase
diagram, illustrated in Fig. 2(d), has threefold symmetry. In
terms of the spins, the condition z1 = z2 + z3 corresponds
to a long-range-ordered ice-rule-obeying state in which the
field-opposing spins of the kagome plane are all located on
sublattice κ = 1 [Fig. 2(b)].

4. Phase diagram

To discuss the phase diagram [3], it is convenient for us to
define a scale-free parameter

ϒ(B, T, θ ) ≡ 2
√

2

ln 2

| �μ|B sin θ

kBT
(3)

and to determine the value ϒK that this parameter takes at
the Kasteleyn transition. The critical parameter ϒK will also
be a function of the angle φ and will play an important role in
our future discussion. Moessner and Sondhi previously named
this parameter h, but we have chosen ϒ to avoid confusion
with reciprocal space labeling, i.e., (h, k, l ).

The fugacity relation at the transition is derived in detail in
Appendix B and can be written [38]

cosh

(
ϒK sin(φ) ln 2√

3

)
= 2ϒK cos(φ)−1. (4)

For φ = 0 this is solved for ϒK = 1, giving a surface of
Kasteleyn transitions (denoted by subscript K) in the space
of (B, T, θ ):

kBTK = 2
√

2

ln 2
| �μ|BK sin θK. (5)

Usually two parameters will be fixed, typically θ and B (in
addition to φ), which then uniquely defines the transition point
TK. As the field is rotated in the plane, an iterative solution can
be found, with ϒK → ∞ for φ = ±60◦, corresponding to the
transition temperature falling to zero.

The characteristic triangular form of the phase diagram
with three lines of Kasteleyn transitions separated by dis-
continuous points thus reflects the symmetry of the kagome
plane and rotation of the field between the equivalent 〈112̄〉
and 〈1̄10〉 axes, as shown in Fig. 2. The ordered dimer phase,
and therefore the saturation magnetization, lies along a local
y axis, even for arbitrary φ. Hence, for such an arbitrary field

tilt, the induced in-plane magnetization follows the in-plane
field direction at high temperature, but as the transition is
approached it swings away from the field to order finally along
one of the 〈112̄〉 axes.

Given this threefold symmetry, the case θ > 0, φ = ±60◦
is equivalent to a tilt with θ < 0 and φ = 0. In this situation
the dimer/field-opposing spin may occur with equal proba-
bility at sites with κ = 2, 3. No Kasteleyn transition occurs
because the degeneracy of the ice-rule states is not fully lifted.
Although the entropy is reduced by the tilted field, the result-
ing state has chains of spins running across the kagome planes
that need not be correlated with each other [see Fig. 2(c)].
These are the so-called β chains found when the field is
applied along a 〈110〉-type direction of a spin ice [39,40] or
columnar order for dimers (α chains are also present, formed
by the apical spins and the uniquely selected kagome sublat-
tice where the spin cannot oppose the field). The dependence
on θ can be seen to be asymmetric because in the pyrochlore
lattice tilts with θ > 0 represent a tilt of the field toward
the bisector of a tetrahedron face, where degeneracy is fully
removed [41], while tilts with θ < 0 represent a tilt of the field
toward a tetrahedron edge, where degeneracy is only partially
removed [39,40].

B. Topological excitations

For a model system, with periodic boundaries, lying within
the constrained manifold of states that satisfy the ice rules,
the only allowed excitations are correlated spin flips around
closed loops. These can be either short loops within the sys-
tem, which do not change the magnetization, or long loops
that span the entire system. The latter, which we call strings,
are topological excitations. As a consequence, the magnetiza-
tion defines the topological sector [42] and both are changed
by flipping such strings.

Starting from the ordered state, the only available excita-
tions are the system-spanning strings, which cost an energy
that scales linearly with the system size, L. As a result, the sys-
tem remains completely frozen at low temperature. However,
the entropy introduced by a string also scales linearly with
L, so their introduction becomes favorable above a singular
threshold, which is the Kasteleyn transition. The transition
condition (4) follows directly by tracking the free-energy cost
δG of introducing a string into the ordered state. As the string
passes through each unit cell, the change in Zeeman energy
(or dimer number enthalpy) is δε and the entropy creation
δs, so δG = L(δε − T δs), which is zero at the transition. The
system can access different string configurations by flipping
short loops of spins or dimers. When adding a second string,
the two strings cannot pass through the same triangle. Conse-
quently, there is an entropic repulsion between strings and the
free-energy cost of adding the second string is slightly greater
than the first, ensuring that the transition is continuous rather
than discontinuous.

Such strings can be found in other problems of statistical
mechanics, mapping onto world lines for hard-core bosons
undergoing Bose condensation at the transition [30] or onto
directed polymers [43]. In both cases the strings can be
thought of as walkers making ballistic progress against the
direction of in-plane magnetic order while diffusing along
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the axis perpendicular to this direction. For a Kasteleyn tran-
sition in higher dimension d the diffusion is in the (d −
1)-dimensional plane perpendicular to the ordering direction.
Note that, in spin ice, the strings can in principle meander in
three dimensions. In practice, the apical spin is considered to
be firmly fixed so that we only consider string and loop excita-
tions in isolated planes and we only simulate a single kagome
plane, later returning to the relation with three-dimensional
loops in the discussion.

C. Thermodynamics

1. Free energy

As the magnetic ordering occurs along one of the local
〈112̄〉 axes, we can restrict the thermodynamic discussion
to the case of θ > 0 and φ = 0 without loss of generality.
Including a finite in-plane angle φ changes the finite-size-
scaling properties at the transition, as shown in detail below,
but the thermodynamics of the transition is captured by this
constrained case. We define M = 〈 1

| �μ|
∑

i �μi · ŷ〉, the dimen-
sionless in-plane component of the total magnetic moment,
and its conjugate magnetic field variable H = B| �μ| sin θ , the
in-plane component of the applied field, in energy units.

All microstates forming the kagome ice manifold have
the same internal energy, so the Helmholtz free energy
F (M, T ) = −T S(M ) is purely determined by the system en-
tropy. There are, however interactions, in the form of the
hard-core dimer constraints, and these are ultimately respon-
sible for the phase transition, but they do not appear directly in
the phenomenology. Phase transitions driven only by entropy
are actually not so rare for hard-particle systems [44,45], but
two things single out the Kasteleyn transition. The first is that
no symmetry, either microscopic or emergent, is broken at the
transition, placing the transition outside the usual paradigm
in which phase transitions and symmetry breaking in phase
space go hand in hand. The second is that the transition occurs
for S = 0, making it anisotropic, with zero fluctuations on the
low-temperature high-field side.

Despite these particularities, a complete thermodynamic
description is possible. As in a paramagnet, the two intensive
variables H and T collapse into a single thermodynamic vari-
able [38]:

H

kBT
= 1

kBT

∂F

∂M
= −1

kB

∂S

∂M
. (6)

In a paramagnet, the entropy approaches zero as the magne-
tization saturates, but the slope ∂S

∂M is infinite, precluding a
phase transition at finite temperature. Here the entropy is also
zero at saturation, but the Kasteleyn phase transition for the
finite ratio (H/kBT )K ensures that the entropy must go to zero
with a finite slope.

2. Landau-style expansion

The asymmetry of the Kasteleyn transition has led pre-
viously to a classification lying between first and second
order [5], although on the high-entropy side the transition
satisfies all the thermodynamic and phenomenological criteria
of a second-order transition. The honeycomb lattice dimer
problem can be solved exactly with the calculation of the

partition function, all thermodynamic quantities, and correla-
tion functions, but it is useful to develop the phenomenology
of the transition through the construction of a Landau-like free
energy [43,46].

The Gibbs potential G∗ = F − HM can be expanded in
powers around the saturated moment Mmax. Introducing the
dimensionless variable m = Mmax−M

N and the dimensionless
parameter η = ( H

kBT )K − H
kBT , it follows that

G∗

NkBT
= −ηm + α2

2
m2 + α3

3
m3 + · · · − μ0HMmax

NkBT
, (7)

where αi are the parameters of the expansion of G∗ in m.
Minimizing with respect to m, the leading term of the Gibbs
free energy is G ∼ −η1+β , with β = 1 at this mean field level,
while the exact solution [27] yields β = 1

2 [3]. The entropy
S = − ∂G

∂T ∼ ηβ ∼ m indeed scales linearly with M near the
transition, consistent with the finite value for (H/kBT )K.

The magnetization is singular around its maximum value
m ∼ ηβ and as there is a single intensive thermodynamic vari-
able, the critical exponents for the susceptibility (− ∂2G

∂B2 ) and

specific heat (−T ∂2G
∂T 2 ), γ and α, are equal. As a consequence,

the Rushbrooke scaling relation α + 2β + γ = 2 reduces to
β + γ = 1. This means that the one scaling dimension � =
γ + β is unity, which excludes anomalous scaling, ensuring
Gaussian exponents for dimensions below the upper critical
dimension [47].

The singular free energy can be equated to the inverse cor-
relation volume G ∼ ξ−(d−1)

x ξ−1
y , where ξy ∼ η−νy and ξx ∼

η−νx are the diverging correlation lengths parallel and per-
pendicular to the ordering direction, respectively. From this
the modified hyperscaling relation 1 + β = (d − 1)νx + νy

follows [47]. From the insertion of a single string with its
ballistic and diffusive nature parallel and perpendicular to the
ordering direction, respectively, we can anticipate that νy = 1
and νx = 1

2 , consistent with the absence of an anomalous
scaling dimension and with the exact results in two dimen-
sions. Putting the mean field value β = 1 into the hyperscaling
relation gives an upper critical dimension of d = 3 [30,43], so
the two-dimensional problem is outside the mean field regime.
Indeed, the exact result yields β 1

2 and γ = 1
2 .

Hence, from this analysis one can conclude that the singu-
lar part of the free energy satisfies the scaling and hyperscaling
relations for a critical point for a one-parameter system.

D. Correlation functions

From the analytic solutions for the correlation function [3],
one finds the expressions for the correlation lengths

ξ−1
x = arcsin

√
1 − 4ϒ−1, (8a)

ξ−1
y = ξ−1

x

22−ϒ

3

√
1 − 4ϒ−1, (8b)

which near the transition take the power-law forms dis-
cussed above, with νx = 1

2 and νy = 1, as found by expanding
Eq. (8a) in η. Unusually, the development of diverging cor-
relations lengths does not signal the onset of power-law
correlations. In the Coulomb phase, with zero tilted field, both
spin and dimer correlation functions are already of dipolar
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form with, in two dimensions, correlations falling as ∼1/r2 at
large distance, giving characteristic logarithmic divergences
with system size, for the structure factors. The growing cor-
relation lengths introduce an anisotropy to the correlation
functions with in-plane distance r replaced by an effective
scale

r′ =
√

x2 +
(

ξy

ξx

)2

y2. (9)

Structure factors for both pseudospins and real spins can be
accessed by polarized neutron scattering (discussed below).
As the transition is approached, the developing anisotropy
causes peaks in both structure factors to drift towards the
Brillouin zone center and to sharpen, arriving there as
the transition is reached. Kagome ice therefore has field-
tunable critical correlations, with the drift determining the
ratio of the correlation lengths [3].

III. NUMERICAL SIMULATIONS

A. Details of simulations

Given the constraints discussed above, for our simulations
we were able to limit the Hamiltonian of two-dimensional
kagome ice to the Zeeman energy term

H = − �H ·
∑

i

�Si. (10)

Here �Si is a dimensionless vector of length S⊥ = 2
√

2
3 , describ-

ing the component of the magnetic moment lying in the x-y
plane, �μi = |�μ|�Si + μz

i ẑ, and �H is the field component in the
plane for arbitrary φ, again expressed in energy units.

This system was updated using a worm algorithm, full
details of which are given in Appendix C. In the following,
we report simulations of diffuse neutron scattering from the
magnetic moments with both in-plane and z components. In
a polarized neutron scattering experiment, the in-plane spin
components will be observed in the spin flip (SF) channel,
while the z components, corresponding to the pseudospin
variables, will be observed in the non-spin-flip (NSF) channel.

The majority of our simulations were carried out on a sys-
tem of 8112 spins (L × L kagome unit cells with L = 52) with
periodic boundary conditions. For finite-size-scaling analysis
the simulation sizes were extended to 99 856 spins (L = 316).
At the start of the simulation, the system was placed in an
ordered state at zero temperature [as illustrated in Fig. 2(b)]
and then evolved upward in temperature under constant field.
The diffuse scattering maps were each generated from 100
independent spin configurations.

B. Simulated Kasteleyn transition

1. Neutron scattering map at θ = φ = 0

We first examine the manifestations of the Kasteleyn tran-
sition in the diffuse neutron scattering structure factor as
predicted in Ref. [3]. In the reciprocal space of the py-
rochlore structure, the scattering plane that is perpendicular
to the applied field direction is spanned by the vectors
(h̄, h, 0) and (k̄, k̄, 2k). For convenience, we refer to the

FIG. 3. Differential scattering cross section of kagome ice with
θ = 0 and φ = 0 in the (a) SF and (b) NSF channels. The sixfold
symmetry of the kagome plane is notable and can be seen in the
precise positioning of diffuse peaks on the kagome zone corners
(white hexagons; orange hexagons are pyrochlore zones). Crosses
mark peaks whose positions were tracked and are discussed in the
text.

two-dimensional coordinates (h, k) of the point on the scat-
tering plane h(1̄, 1, 0) + k(1̄, 1̄, 2).

Figure 3 illustrates the scattering patterns for θ = 0. These
are sixfold symmetric pinch point patterns characteristic of
the kagome ice Coulomb phase. They includes sharp Bragg
peaks at the (2,0) points signaling the partial all-in-all-out
order [32]. As the tilt is applied, the in-plane field lowers this
symmetry to twofold with the development of arms of more
intense scattering either side of the ordering direction [48]. In
Fig. 4 we show the general features of the pseudospin (NSF)
and noncollinear spin (SF) structure factors and an example
of their evolution in tilted field with θ > 0 and φ = 0.

Our numerical results are consistent with experiment
(discussed below) but show detailed differences from the
analytical predictions of Moessner and Sondhi [3]. In our
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FIG. 4. Simulated evolution of the diffuse neutron scattering as the Kasteleyn transition is approached. The top row of panels shows the
scattering in the spin-flip channel and the bottom row shows the non-spin-flip channel as a function of the parameter ϒ(B, T, θ ) in Eq. (3). When
ϒ is small, the breaking of the sixfold symmetry of the kagome ice scattering patterns to twofold is only just apparent, but as ϒ → ϒK = 1
it becomes increasingly evident. As ϒ increases, diffuse peaks (orange) in both channels start close to Brillouin zone corners of the kagome
lattice and drift in the x direction toward the pinch points at kagome lattice Brillouin zone centers.

pseudospin or NSF structure factor, a single peak appears at
( 4

3 , 0), with intensity falling to zero for a group of three points
located symmetrically around (1,0) and including ( 2

3 , 0). In
Ref. [3] there is an inverse pattern with three peaks appearing
at these points and zero intensity at the position of our peak
(see Ref. [38] for a detailed comparison).

2. Drift of peaks at θ �= 0 and φ = 0

Both the simulated spin and pseudospin structure factors
confirm that the diffuse peaks drift [3], with increasing field
tilt, from their initial locations close to the Brillouin zone
boundaries, towards the pinch points at the zone center. The
intensity of the peaks (not illustrated here; see Ref. [38]) is
further confirmed to depend logarithmically on the size of
the system as predicted [3], while the Bragg peak intensities
scale linearly with the system size. The peak shape (Fig. 5)
is also predicted to be logarithmic [3] and is well described
by back-to-back logarithmic decay functions, which affords
a superior description to a single Lorentzian [although the
difference turns out to be less significant in experiment; see
Fig. 5(b)]. The pseudospin structure factor corresponds to that
of an Ising antiferromagnet on the kagome lattice, constrained
to the two-up–one-down sector of states by an external field.

In Fig. 6 we show the inverse correlation lengths extracted
by tracking the position of the logarithmic peak at ( 4

3 , 0) in
the NSF channel (i.e. the pseudospin correlation function).
The peak positions are extracted from the simulated scatter-
ing pattern by applying the same peak tracking algorithm
that we apply to the experimental data and describe in full
in Appendix E. As can be seen in Fig. 4, the evolution of

this peak with field tilt (θ > 0, φ = 0) is along the (h̄, h, 0)
axis towards the kagome zone center at (2,0), which gives a
direct measure of ξ−1

x as proposed in Ref. [3]. No independent
measure for ξ−1

y was described, but ξ−1
y can be extracted from

the measurement of ξ−1
x through Eq. (8a). The corresponding

data are also included in Fig. 6, where it can be seen that
the numerics track the analytic calculation with high precision
right up to the Kasteleyn transition, despite the peak appearing
at a different reciprocal space position [3]. Usually inverse
correlation lengths are measured using the width of features in
reciprocal space and this method can in principle be used here.
In Fig. 7 we show the evolution of the width of the logarithmic
peak along both (h̄, h, 0) and (k̄, k̄, 2k). Although the data are
noisy, an evolution scaling like ξ−1

x can be identified in both
cases.

C. Exploration of general tilt φ �= 0

In this section, we identify some topological consequences
of general tilt φ �= 0.

1. Scattering function

Finite φ acts to further lower the symmetry for dimer
placement in the kagome plane and hence further lowers the
symmetry of the in-plane scattering function. The effects of
this reduced symmetry are shown in Fig. 8, where the twofold
symmetry observed for φ = 0, which is visible in Fig. 4, is
reduced, with the emergence of an arm of intense scattering
on each side of the scattering plane. However, features still
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FIG. 5. (a) Simulated logarithmic peak in the SF channel (ϒ =
0.54) at approximately (− 2

3 , − 1
3 ) (see Fig. 4). We show a comparison

of fits of two logarithmic decay functions [a log(b − x) + c] that
intersect at infinity at the peak maximum with a fit to a single
Lorentzian. (b) For comparison we include the experimental data
of Fig. 14 (0.75 K and 1 T), where this peak is marked by crosses.
The estimated ϒ for the experimental data is 0.45 for θ = 0.7◦. The
discrimination between logarithmic and Lorentzian is not so clear in
experiment.

drift as the system evolves towards the Kasteleyn transition,
as shown in Fig. 9.

2. Finite-size scaling of the susceptibility

Rotating the tilted field in the plane has spectacular con-
sequences for the string insertion close to the transition. In
Fig. 10 we show a snapshot of the in-plane spins for φ = 50◦
in which we highlight the first string placed in the system. The
string progresses through the system propagating in a mean
direction φ′ < 0 which minimizes the unfavorable Zeeman
energy (see Appendix C). This makes it incompatible with
the periodic boundaries, forcing it to make multiple loops of
the system before closing on itself. The multiple passages are
characterized by a cut variable Y , as shown in the figure.

FIG. 6. Simulated inverse correlation length ξ−1
x obtained by

tracking the position of the logarithmic peak at ( 4
3 , 0) (when ϒ = 0)

in the Monte Carlo simulation of the NSF channel, as well as ξ−1
y

obtained from it, compared with the analytical predictions of Ref. [3]
(labeled “An.”).

FIG. 7. (a) Cuts through simulated data (φ = 0) at several dif-
ferent values of ϒK approaching the Kasteleyn transition. The cuts
are perpendicular to (k̄, k̄, 2k), at the average peak center for each
of the four logarithmic peaks (which are fitted by four Lorentzians).
(b) Cuts of simulated data at the same values of ϒK at the location
on (h̄, h, 0) of the average peak centers for two peaks that overlap
with the experimental data. The central peak at small ϒK is another
logarithmic peak that drifts towards a different kagome ice Brillouin
zone center not found on this cut along (h̄, h, 0). (c) The average
width � of the four fitted Lorentzians in (a) as a function of ϒK for
(h̄, h, 0) [cuts at constant (k̄, k̄, 2k)] and (k̄, k̄, 2k) [cuts at constant
(h̄, h, 0)], showing that the widths of the logarithmic peaks cut in
either direction resemble ξx rather than ξy.
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FIG. 8. Simulated spin-flip neutron scattering structure factor with angles (a) φ = −50◦, (b) φ = 0◦, and (c) φ = 50◦ corresponding to
ϒ/ϒK = 0.42, (b) ϒ/ϒK = 0.82, and (c) ϒ/ϒK = 0.42 (in the experimental system this would correspond to 0.75 K and 1.5 T for all values
of φ).

This approach to incommensurability has a dramatic ef-
fect on the finite-size-scaling properties of the susceptibility
χ , which following the finite-size-scaling hypothesis can be
written, close to the transition in the form

χ = η−γG
(

ξx

RL
,
ξy

L

)
, (11)

where G is a scaling function and R = ( 1
Y )νy/νx is an incom-

mensurability function similar to the shape function studied in
the context of directed polymers [43]. When φ = 0, as ξy �
ξx, the scaling function should be dominated by the ballistic
propagation of the strings in the y direction and consequently
depend on the single variable ξy/L. This is achieved by setting
Y = 0 (R = ∞).

In an incommensurate situation, as the string length be-
comes indeterminate, the diffusive evolution of the string in
the perpendicular plane, with associated correlation length ξx,
should dominate the finite-size scaling. As the incommensura-
bility factor evolves from Y = 0 (R = ∞) to Y = ∞ (R = 0),
the scaling function should evolve between these regimes. For
any finite R, G should ultimately cross over to the ballistic

case, with the crossover region scaling closer and closer to the
transition as R increases.

In consequence, different finite-size-scaling predictions
emerge in the two limits. Identifying η−γ = ξ

γ /νy
y in the bal-

listic limit and η−γ as ξ
γ /νx
x in the incommensurate limit, the

scaling hypothesis can be rewritten

χB = Lγ /νyGB

(
ξy

L

)
,

χI = Lγ /νxGI

(
ξx

L

)
, (12)

where GB(ξy/L) and GI (ξx/L) are new scaling functions.
This phenomenology is confirmed by simulation in

Figs. 11 and 12. In Fig. 11 we show the susceptibility near
the transition for φ = 0 and for different system sizes. The
divergence of the susceptibility at the transition is cut off by
the finite size of the sample, as shown in Fig. 11(a). The finite-
size scaling is tested in Fig. 11(b), where, setting γ = 1

2 and
νy = 1, we plot χL−1/2 against (T − TK )L at fixed H , finding
an excellent data collapse corresponding to the ballistic limit.

FIG. 9. Simulated spin-flip neutron scattering structure factor with an angle φ = 50◦, as a function of ϒ/ϒK [Eq. (4)] at (a) ϒ/ϒK = 0.11,
(b) ϒ/ϒK = 0.42, (c) ϒ/ϒK = 0.76, and (d) ϒ/ϒK = 0.99 (in the experimental system this would correspond to 0.75 K and 0.4, 1.5, 2.7, and
3.5 T, respectively).
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FIG. 10. Snapshot of the kagome ice lattice taken from a simu-
lation at T = TK and φ = 50◦. The lattice contains a single string
(highlighted in red) which winds around the lattice through the
periodic boundary conditions until it closes on itself. This snapshot
shows the loop forming in a direction that is approximately per-
pendicular to the field direction as this minimizes its unfavorable
Zeeman interaction. The blue line parallel to the lattice vector is a
trajectory for calculating a cut number which records the number of
times a string is encountered in that direction.

In Fig. 12 we show finite-size scaling for data with φ =
20◦. In Fig. 12(a) we show that the ballistic scaling fails to
give data collapse. However, in Fig. 12(b) we test the incom-
mensurate scaling by setting γ = 1

2 and νx = 1
2 and plotting

χL−1 against (T − TK )L2 at fixed H , finding an encouraging
collapse of the numerical data. Although the simulation is
quite challenging and the data remain noisy, it seems that we
have clear evidence of the crossover between the two scaling
limits [43].

In the first instance the ballistic universal function shows a
broad single-peaked function, while in the incommensurate
case two peaks are visible. This is because, in the ballis-
tic case, the scaling is many body, with many simultaneous
strings present in the large-L limit. In the incommensurate
case, despite reaching the scaling limit, one sees the individual
effect of adding one string at a time. Our data show the
effect of adding a first string and then a second, but more
extensive simulations should reveal a comb of single-string
peaks stretching out from the transition [43].

Finally, in Fig. 13 we show the equivalent of Fig. 6 for
φ = 20◦ and φ = 50◦, the evolution of the correlation lengths
with ϒK. We see that, despite the radical change in finite-
size scaling of the susceptibility as φ increases from zero,
the behavior of the correlation lengths as a function ϒK is
independent of the finite-size-scaling regime reached.

(a)

(b)

FIG. 11. (a) Simulated susceptibility of the kagome ice lattice
with the field at an angle φ = 0◦ as a function of lattice size. Also
shown is the analytical susceptibility in the thermodynamic limit
(labeled “An.”) [3]. (b) Same data as in (a) plotted as a function of
scaling variables in the ballistic limit. The collapse of the data over a
large range of lattice sizes validates the ballistic scaling controlled by
the correlation length parallel to the direction of the ordered moment.

IV. EXPERIMENT

A. Method

A large single crystal of Ho2Ti2O7 was grown by the float-
ing zone method. The crystal approximated a long cylinder
(d ≈ 7 mm, l ≈ 60 mm) with a visible (1, 1, 1)-type facet
running the length of the boule. It was previously used to mea-
sure diffuse scattering in zero field [20]. To ensure a precise
alignment, a face perpendicular to the longest 〈111〉 direction
was cut so that when the crystal rests on the cut face, the
(h̄, h, 0)-(k̄, k̄, 2k) plane lies in the horizontal scattering plane
of a neutron spectrometer, with the [111] direction vertical.
The long axis of the crystal boule makes an angle of 26◦
with the vertical direction and is coplanar with the [111] and
(k̄, k̄, 2k) directions (Fig. 15).

The crystal was held in a copper clamp running the length
of the boule, attached to a block with cutouts that allow two
adjustable orthogonal tilts and a continuous metallic path from
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(a)

(b)

FIG. 12. Simulated finite-size-scaling function applied at an an-
gle of φ = 20◦. (a) Data are plotted as a function of scaling variables
in the ballistic limit. (b) Scaling variables for the incommensurate
limit are used. A better fit is clearly obtained in (b), illustrating the
crossover with φ between the two scaling regimes governed by
the correlation lengths parallel and perpendicular to the direction of
the ordered moment.

the sample clamp to the mixing chamber of the dilution fridge.
Neutron Laue diffraction measurements were used to refine
the alignment and showed that the crystal was mounted with
θ � 0.1◦ and φ � 0.2◦ and the adjustable tilts were locked
by opposing screws to prevent any movement of the sample
by the applied field. The sample was mounted in a dilution
refrigerator insert, which itself was mounted in a 2.5 T vertical
field cryomagnet. The cryomagnet plus refrigerator insert and
crystal were placed in the polarized neutron diffuse scattering
spectrometer D7 at the Institut Laue Langevin (Grenoble,
France) [49] with the (k̄, k̄, 2k) defined by Laue diffraction
approximately antialigned with the incident beam (i.e., with
the tilted crystal boule approximately coplanar with the inci-
dent beam and vertical field and [111] directions).

Diffuse scattering structure factors were measured in the
(h̄, h, 0)-(k̄, k̄, 2k) scattering plane using neutrons with wave-
length λ = 4.8 Å. The flipper currents were optimized using
a 40-mm-long “quartz” (amorphous silica) sample (matching
the sample height) for selected fields from 0.1 to 2.5 T. The

FIG. 13. Simulated scaling of the correlation lengths in systems
with φ = 0, 20, and 50◦. (compare with Fig. 6, where φ = 0), as
obtained by tracking the position of the peak at ( 4

3 , 0) (when ϒ = 0)
in the Monte Carlo simulation of the NSF channel, compared with
the analytical predictions of Ref. [3] (labeled “An.”).

cryomagnet provides the guide field at the sample position
and only z (NSF) and z′ (SF) channels can be measured.
Empty sample holder measurements were used to subtract
field-independent background scattering. Measurements of
the quartz sample (for each field) and a vanadium cylinder
(at 0.1 T) were used to calibrate polarization efficiency and
detector efficiency, respectively.

Maps of the structure factor were made by measuring
intensity in the z and z′ channels while rotating the crystal
about the vertical axis, also called an ω scan. The data were
transformed from the ω-2θ frame to qx-qy, and an additional
arbitrary offset angle ω0 was used to rotate the scattering
map to bring particular features to special values of (qx, qy).
Usually this corresponded to placing two orthogonal Bragg
peaks on qx and qy axes so that the scattering plane could be
identified by its symmetry axes. In this case, we also used
ω0 to place a specific feature such as a pinch point parallel
or perpendicular to qx or qy to facilitate cutting through the
feature, and by relating the initial crystal orientation with
the ω angles at which Bragg peaks were observed, we could
identify which of the 〈k̄, k̄, 2k〉 axes were associated with the
real shape of the crystal.

B. Results

1. Field alignment

Although the crystal axes were initially aligned precisely
with the applied field, comparison of the recorded data with
simulation immediately suggests that the actual field within
the sample was tilted. That is, the diffuse scattering data mea-
sured in the (h̄, h, 0)-(k̄, k̄, 2k) plane have distinctive features,
characteristic of the kagome ice phase in a tilted field. As
can be seen in Fig. 14, the symmetry of the diffuse scatter-
ing in the SF and NSF channels is reduced from sixfold to
approximately twofold. This is particularly pronounced in the
SF channel, where the scattering is stronger, and the reduced
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FIG. 14. Experimental data for (a) the SF channel and (b) the NSF channel measured at 0.75 K and 1.0 T, compared with Monte Carlo
simulations of kagome ice at ϒK = 0.54 (φ = 0). The experimental data are in the lower left quadrant of each panel and the results from MC
simulation are in the upper right. Crosses indicate the peak positions found by the peak tracking algorithm.

symmetry can be clearly seen by comparing to a Monte Carlo
simulation of kagome ice with a field tilt, θ > 0, φ = 0. Quan-
titative comparisons with theory and simulation discussed
below suggest that θ ≈ 0.7◦ (and φ ≈ 0). Note that while this
crystal showed positive tilt, a previously studied crystal of a
different shape [14] showed negative tilt of similar magni-
tude.

Given the precise alignment of the crystal, an obvious
cause of the tilted field is the large demagnetizing effects in
spin ice [50]. If the sample is approximated as an ellipsoid
whose unique axis is misaligned with the applied field, then
the internal field will be uniform but not parallel to the applied
field. As noted by Morris et al. [51], the large, anisotropic
shaped crystals of spin ice typically used in neutron scattering
typically suffer from a significant misalignment of the internal
field and applied field. The exceptionally large demagnetizing
fields of spin ice are well established, having been much dis-
cussed with respect to experimental corrections [52] and also
as exemplifying departures from the usual textbook theory

FIG. 15. (a) Schematic of the crystal in direct space showing the
axis vectors x = [1̄10], y = [1̄1̄2], and z = [111]. (b) Lattice in the
same orientation, with the angles θ and φ defined in purple and green,
respectively.

of demagnetizing factor [53,54]. The elongated shape of our
sample and its tilted relation to the scattering plane therefore
provides a convincing explanation of why the internal field is
tilted and this may be safely assumed going forward.

The ω angles at which the 〈2̄, 2, 0〉 reflections were ob-
served tell us that the uniquely selected (k, k, 2̄k) direction
is not the one that is coplanar with the maximum tilt of the
crystal boule, as would be the case for a weakly magnetized
sample, but is instead at 60◦ to this direction. We have chosen
ω0 to place the uniquely selected direction parallel to qy.
Figure 15 shows its relation to the crystal in direct space.

2. Correlation functions

As discussed above, the SF channel measures in-plane
spin components and hence in-plane kagome ice correlations,
while the NSF channel detects out-of-plane components and
hence correlations of the pseudospins: a model kagome Ising
antiferromagnet. The latter cross section is much weaker, be-
cause the major part of the total 10 μB moment ( 8

9 ) contributes
to the scattering process in the spin-flip channel, while only a
smaller projection ( 1

9 ) contributes to the NSF channel. How-
ever, a general comparison with simulations in Fig. 14 clearly
shows the different forms of the scattering and that descrip-
tions in terms of either correlation function are warranted.

Figure 16 compares the SF scattering under different ap-
plied fields at a fixed temperature of 0.75 K. It shows that
features in the diffuse scattering clearly drift across the scat-
tering plane as the field is changed [3], as was found with a
more limited data set in Ref. [14]. At fixed field, the features
also move as a function of temperature. However, we see that
for T � 0.6 K, the scattering pattern becomes independent of
temperature and field within the kagome ice plateau.

3. Aspects not addressed by theory

The experimental data give access to two more aspects
of kagome ice that are not addressed by the theory or the
simulations described above: the behavior of the pinch points
and the approach to plateau termination.
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FIG. 16. Diffuse scattering in the SF channel (i.e., due to kagome ice spin components) as a function of applied field at a fixed temperature
of 0.75 K. Experimental data are shown in the left part of each panel and Monte Carlo simulations in the right part of each panel. The simulations
are carried out at the value of ϒK determined by these field and temperature values that best match θ . Crosses show the experimental (red) and
simulated (black) peak positions.

Referring to Fig. 17(a), we see that, within the kagome ice
plateau, at a constant applied field of 1 T, the pinch points
sharpen as the temperature decreases to T � 0.6 K, and be-
low this temperature they remain of constant width, as with
other parts of the diffuse scattering mentioned above. At fixed
temperature (0.75 K), the pinch points are similarly sharp
within the kagome ice plateau (0.4 < H < 1.4 T), but as the
plateau termination field approaches, they begin to broaden
[Fig. 17(b)].

C. Scaling

From tracking peak locations in the diffuse neutron scat-
tering patterns and fitting the wave vectors and intensities, we
can reproduce the normalized inverse correlations ξ−1

x and ξ−1
y

(see Secs. II D and III B 2). The location of a pair of diffuse

scattering peaks on either side of the pinch point at (1̄, 1̄
3 ),

as indicated on Figs. 14 and 16 by crosses [i.e., at ( 2̄
3 , 1̄

3 )

and ( 4̄
3 , 1̄

3 ) in Figs. 14 and 16], was extracted with the peak
tracking algorithm described in Appendix E. The reciprocal
space distance from each diffuse peak to the kagome Brillouin
zone center in (h̄, h, 0) (as denoted by the white hexagons in
Figs. 14 and 16) was averaged to produce the inverse correla-
tion lengths ξ−1

x and ξ−1
y through application of Eq. (8a).

The results are shown in Fig. 18, where they can be com-
pared with the analytic results with νx = 1

2 and νy = 1. We
find qualitative agreement between theory and experiment for
ϒ between 0.2 and 0.7, with the Kasteleyn transition at ϒ = 1.
The most convincing agreement (Fig. 18) incorporates data
points in the window 0.4 < B < 1.4 T and 0.6 < T < 1.0 K,
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FIG. 17. Cuts through the experimental pinch point at (0, 2
3 ) (a) as a function of field at a constant temperature of 0.75 K and (b) as a

function of temperature at a constant field of 1 T. At constant temperature (ϒK ∝ B) the pinch point broadening with field indicates a crossover
out of the kagome ice phase. At constant field (ϒ−1

K ∝ T ), the increase in background at 1.5 K suggests an increase in monopole population
and a more paramagnetic state. At low temperature the pinch point width does not seem to decrease below T ≈ 0.6 K.

with values of θ ≈ 0.7◦ and φ ≈ 0◦. We see that if the tem-
perature is too low, the drift of the diffuse scattering features
ceases; one plausible explanation is that the dynamics starts
to slow down, as commonly observed in spin ice at this tem-
perature [55]. Also, if the field is too large or too small or the
temperature too high, the data depart from the scaling form
as the kagome ice phase is no longer well defined. These two
effects account for points at small or large ϒ that depart from
the scaling form.

V. DISCUSSION

In the following, we discuss our analytical, numerical, and
experimental results together. We start in the kagome ice

FIG. 18. Comparison between the analytical equation (8) (“An.”)
and experimental correlation lengths as derived from the peak po-
sitions in the neutron scattering data, either at constant field or at
constant temperature. The angle θ is chosen to be 0.7◦ as this best
scales the data, while φ is chosen to be 0◦, as suggested by the
symmetry of the diffuse scattering maps.

phase far from a Kasteleyn transition and follow the evolution
of the system towards the transition.

A. Critical correlations

1. Nontilted case

Although it proved difficult to approach the zero tilt
condition exactly, both the in-kagome-plane spin correla-
tions and the out-of-plane spin correlations that map to
pseudospin degrees of freedom (see Fig. 14) have been ob-
served and characterized. Our experimental measurements
broadly confirm that Ho2Ti2O7 gives an accurate realization of
the two-dimensional nearest-neighbor kagome ice Coulomb
phase, in the region of the phase diagram that is far from
the experimentally observed critical end point at high field
[15,22,56] or possible dipole driven ordering at low field
[33,57]. Monopoles can be safely neglected in this regime,
except insofar as they act as dynamical facilitators in the real
system [58–60].

2. Tilted case

Our simulations and experiments clearly confirm that the
applied tilted field can be used to quantitatively tune the
Coulomb phase from isotropic to anisotropic. We have de-
termined correlation lengths parallel and perpendicular to the
applied field that scale differently as one moves towards the
Kasteleyn transition, with a resulting buildup of anisotropic
spin correlations.

When the methodology developed for the simulations is
applied to the experimental data, we see that for moderate
values of ϒ

ϒK
, the analytical prediction captures the scaling of

the correlation lengths extracted from the experimental data
(Fig. 18). This illustrates that these qualitative features survive
the corrections to the simple model that are necessary for a
quantitative description of real materials: dipolar interactions,
demagnetizing effects, and ice-rule-violating monopole exci-
tations. We can firmly conclude that the framework of drifting
peak positions encoding anisotropic scaling as the system is
driven toward the Kasteleyn transition is relevant to a real
material such as Ho2Ti2O7.
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3. Topological phase transition

Our thermodynamic results have illustrated several unusual
features of the Kasteleyn transition: how it has no fluctu-
ations below the transition and no symmetry breaking and
yet satisfies all the thermodynamic and scaling criteria of
a second-order phase transition. It is associated with a sin-
gle thermodynamic variable and a single independent critical
exponent. A crossover exponent to the paramagnetic phase
can also be introduced by allowing a finite concentration of
magnetic monopoles and forcing the monopole concentration
to zero at the critical field [34].

Other examples of single-exponent transitions are the
athermal percolation transition and the Kosterlitz-Thouless
(KT) transition [61]. Other hard particle transitions, such as
the crystallization of disks or spheres [44], or certain liquid-
crystal transitions [45], although also purely entropic, do
break symmetries and so generate a second thermodynamic
variable related to the symmetry breaking.

There is a strong analogy between the Kasteleyn and the
Kosterlitz-Thouless transition. Both are topological in that
they involve the deconfinement of topological defects in an
emergent electrostatic or magnetostatic field and both fail
to break a symmetry. Applying the field introduces tension
to the strings of coupled spins along the field direction and
it is exactly this that gives the anisotropic scaling between
the x and y directions: The strings are ballistic along the
y axis but diffusive in the d − 1 dimensions perpendicu-
lar to the field. Despite the tension, the strings propagate
above the transition because the entropy gain outweighs the
string tension cost. In this sense the Kasteleyn transition can
be thought of as a confinement-deconfinement transition for
the magnetic monopole charges in very close analogy with
the KT transition. Crucial differences are that, due to the
field-induced anisotropy, the Kasteleyn transition exists in
dimension greater than 2 and it produces real thermodynamic
singularities, but it only survives in the limit of zero monopole
concentration.

The string excitations are topological in that they change
the topological sector of the emergent field [42,62] and are
responsible for changing the magnetic moment of the sample,
which distinguishes the Coulomb phase from a paramagnet
[63]. In the critical region, the density of strings flipped
against the ordered moment falls to zero, so they can be
considered as weakly interacting, mapping onto world lines
for individual random walkers. In this limit, the in-plane field
direction dictates the commensurability of the string looping
on the torus. We have identified a crossover, with in-plane
tilt φ, to an incommensurate limit in which individual strings
influence the total moment [43]. This remarkable topological
property of the finite-size-scaling features strictly depends on
the existence of a torus and so may be hard to realize in a
real system, where extended strings must terminate in surface
magnetic charge [64] or defects [65].

4. Kasteleyn transition in experiment

While our numerical simulations can be driven right to a
Kasteleyn transition, the experimental system could not be,
being complicated by the slowing down of collective dy-

FIG. 19. Field and temperatures that satisfy the Kasteleyn tran-
sition criterion at θ = 0.1◦, 0.7◦, and 1.5◦, with the experimentally
measured data points shown by circles. The solid lines show the loci
of ϒK = 1 for three different field tilts; the color map shows ϒK for
θ = 0.7. With the θ and φ derived from the crystal alignment by
Laue diffraction, no point in the phase space is above the critical
point for the Kasteleyn phase transition (ϒK = 1). For the values
that best scale the data (i.e., θ = 0.7◦), only points within the regime
of slow dynamics fall below the transition. To move the transition
into a region where we could comfortably measure, the larger tilt of
θ = 1.5◦ would be required.

namics below T ≈ 0.6 K and the onset (termination) of the
kagome plateau at H ≈ 0.4 (1.5) T. Within the kagome ice
plateau, for fixed tilt, as in a typical experiment, to reach larger
ϒ requires larger fields or lower temperatures. Increasing the
field too much will proliferate monopoles and terminate the
kagome ice plateau, but lowering the temperature will tend
to cause Ho2Ti2O7 to run out of dynamics as the monopoles
disappear. Figure 19 summarizes the field and temperature
points accessed in our experiments and compares the Kaste-
leyn criterion for our estimated tilt, along with a smaller and
larger value. This suggests that the tilt required to access the
transition would be experimentally accessible, but in this case
the transition is likely to be rounded by the eventual monopole
contribution, as was shown for the three-dimensional example
[30,66]. However, the incorporation of monopoles can also
lead to unconventional behavior and scaling [34,67]. Sharper
transitions at lower temperature that could be obtained with a
smaller tilt would be unobservable as they would fall deep
in the frozen regime. Approaching closer to the transition,
one also expects small corrections to the above scaling form
due to the presence of dipole interactions and subsequent
corrections to the monopole picture, as has been shown in
three dimensions [33].

However, rather than promoting the transition in classical
spin ices such as Ho2Ti2O7 and Dy2Ti2O7 into regions of
phase space where other phenomena are crowded, perhaps it
can be reached by studying a compound with faster monopole
dynamics such as CdEr2S4 [68]. In this case, the spin ice is
classical and the thermal monopole population is fairly similar
to Dy2Ti2O7, but hopping rates are much more rapid, suggest-
ing that equilibrium can be maintained to lower temperature.
An alternative source of dynamics might be quantum fluctu-
ations, and a quantum kagome ice phase could be a highly
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interesting system, as realized in a magnetization plateau of
a quantum spin ice [69–71] or a two-dimensional kagome
analog of spin ice [72]. We are not aware of any theoretical
study of the Kasteleyn transition in a quantum kagome ice
[73,74], which might also be a fascinating prospect, given the
interest in quantum spin ice [69,75,76].

VI. CONCLUSION

We have studied the Kasteleyn transition in the kagome
ice phase of spin ice subjected to a field tilted away from the
[111] direction by a small angle, by analytical, numerical, and
experimental methods. We have exposed a striking evolution
of correlations and of topological properties of the Coulomb
phase as the field is tuned towards the transition.

We found good qualitative agreement between experimen-
tal neutron scattering results from a single crystal of Ho2Ti2O7

and those provided by the nearest-neighbor spin ice model.
The agreement is perhaps better than in the three-dimensional
zero-field regime of spin ice, where inclusion of the full dipo-
lar interaction is essential to reproduce the broad features of
the diffuse scattering [20,77–81] and it would be interesting to
investigate this point further. Consequently, we may be very
optimistic that yet more of the exotic behavior of kagome ice
will be experimentally observable in spin ice materials.
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APPENDIX A: RELATION WITH KAGOME SPIN ICE

Prior to the discovery of kagome ice, Wills et al. [83]
introduced a two-dimensional version of spin ice consisting
of ferromagnetically coupled Ising-like spins on a kagome
lattice, constrained to point in or out of the triangles. This
state, which they called kagome spin ice, is a very interesting
system its own right and has a rich phase diagram when long-
range interactions are included [35,36,84]. It is highly relevant
to artificial spin ice arrays and has been much studied in this
context [85]. Here we reserve the term kagome ice for the
state obtained when the magnetic field is applied in the [111]
direction of a spin ice and the term kagome spin ice for the
model of Wills et al. We identify similarities and differences
between the two systems and to highlight the topological
constraints of the kagome ice state [4].

In kagome spin ice the lowest-energy configuration on
each triangle satisfies an icelike rule with either two in and
one out or one in and two out. The odd number of in/out
contributions leaves a net charge of ±Q/2 associated with
each triangle, where Q is the monopole charge. The ground

state of the nearest-neighbor model is therefore a dense charge
fluid with overall charge neutrality [86], the so-called KI
phase. Including long-range dipolar interactions induces a
phase transition at finite temperature from the fully disordered
KI phase to the partially ordered KII phase [35,36], even in
the absence of ice-rule defects [87]. The transition is driven
by a Z2 symmetry breaking in which up- and down-oriented
triangles select between two-in–one-out or one-in–two-out
configurations, lifting a topological degeneracy that allows for
the formation of system spanning spin loops [4]. The reduced
symmetry corresponds to charge crystallization [35,36,84] but
only partial magnetic ordering [32]. For perfect charge order,
the spins effectively decouple, or fragment, into two inde-
pendent parts, longitudinal and transverse, with the transverse
part forming a Coulomb phase with corresponding algebraic
correlations. In dipolar kagome spin ice, corrections to the
emergent Coulomb interaction between monopoles lead to a
further transition at low temperature, to a fully ordered phase
in analogy with dipolar spin ice [88].

The application of the field along [111] in a spin ice breaks
this Z2 symmetry for the spins on the kagome plane by pinning
the apical spin of each tetrahedron (discussed below). Ap-
plying the ice rules with this constraint imposes the reduced
choice of two in and one out or one in and two out for the
three remaining spins.

The kagome ice phase therefore corresponds to the KII
phase of dipolar kagome spin ice. In this case, the remnant
charge of the three in-plane spins is neutralized by the charge
on the apical spin giving charge neutrality. In this limit the
spin ice Coulomb phase is split into decoupled planes, each of
which has the configuration space of the KII phase.

APPENDIX B: KASTELEYN TRANSITION
TEMPERATURE

As described above, a kagome ice spin configuration with
long-range order is disordered at the Kasteleyn transition
through the introduction of strings of reversed spins spanning
the entire cell and passing through the periodic boundaries.
Here we present some details for this process for general tilt θ

and φ.
We start with the magnetically ordered state shown in

Fig. 20, defined with all vertices in configuration 1. This
ordering is along along the [1̄1̄2] or y crystal axis, as defined
for the underlying pyrochlore lattice (see also Figs. 1 and 2).
There is an in-plane field �H , placed at an angle φ with respect
to y. The probability of introducing a string goes to zero at the
Kasteleyn transition temperature TK , which can be calculated
by estimating the free-energy change δG = δ〈H〉 − T δS on
introducing the string. Here δ〈H〉 is the change in magnetic
enthalpy, which in our constrained model is pure Zeeman

FIG. 20. The five vertices relevant to the Kasteleyn transition on
the kagome lattice.
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energy and δS is the change in entropy. The unit cell is taken
to be an up triangle of the kagome lattice. For a system
spanning L cells in the y direction, we can define δG = Lδg,
δ〈H〉 = Lδε, and δS = Lδs. We are therefore looking for a
change in sign in δg = δε − T δs: δε = TKδs.

At each step of the string construction, the virtual head of
the string, or worm, can be thought of as sitting in the center of
a down triangle. It advances by jumping from this site through
an up triangle to a neighboring down triangle. The Zeeman
energy to be considered is the change in energy coming from
flipping the two spins on the up triangle through which the
worm hops. Considering the five-spin up-down triangle pair
in Fig. 20, we calculate the probabilities that vertex 1 changes
to vertices 2–5. The worm head arrives in the down triangle at
the end of the (n − 1)th step, and the probability of it arriving
from left or right is taken care of during this step. As this is
a Markov process, the nth step is independent of this, and in
this step it jumps down and out of view to the left or right.
Consequently, the Boltzmann weights for the five vertices are
proportional to the dimer fugacities defined following Eq. (2),
i.e., w1 ∝ z1, w2 = w3 ∝ z2, and w4 = w5 ∝ z3, and there are
only two probabilities for an evolution from vertex 1: PL =
P1→2 = P1→3 and PR = P1→4 = P1→5.

The changes in Zeeman energy associated with this move
are

εL = 2HS⊥ cos(φ) + 2HS⊥ cos(π/3 − φ)

= 3HS⊥ cos(φ) +
√

3HS⊥ sin(φ), (B1)

εR = 3HS⊥ cos(φ) −
√

3HS⊥ sin(φ). (B2)

Given that S⊥ = 2
√

2/3, we have

εL,R = ε0 ± v, (B3)

where ε0 = 2
√

2H cos(φ) and v = 2
√

2
3 H sin(φ).

The probabilities are then given by

PL,R = exp(∓βv)

exp(βv) + exp(−βv)
, (B4)

where PL + PR = 1 and PL/PR = exp[−β(εL − εR)] =
exp(−2βv). Defining PL,R = 1

2 (1 ∓ q), we find q = tanh(βv).
From this we can write δε = PLεL + PRεR = ε0 + v(PL −
PR) = ε0 − qv and

1

kB
δs = −PL log PL − PR log PR

= −
(

1 − q

2

)
log

(
1 − q

2

)

−
(

1 + q

2

)
log

(
1 + q

2

)
. (B5)

We can now use the identities

1

4
(1 + q)(1 − q) = 1

4 cosh2(βv)
, (B6)

1 + q

1 − q
= exp(2βv), (B7)

βqv = q

2
log(exp 2βv) (B8)

to show that, for T = TK,

ε0

kBT
= log[2 cosh(βv)]. (B9)

Exponentiating both sides, changing units, and using Eq. (3),
we arrive at Eq. (4).

APPENDIX C: LOOP ALGORITHM FOR KAGOME ICE

The loop algorithm for numerical simulations is con-
structed in this spirit. Creating a worm requires the creation
of a pair of oppositely charged topological defects which are
considered as virtual, in that the Boltzmann weight for their
creation is never taken into account. The worm makes a path
of virtual hops which can be either forward, backward, or
sideways until it returns to its starting position, destroying the
defect pair and recovering their creation energy. A set of tran-
sition probabilities can be found by identifying P1→2 = PL and
P1→4 = PR. The reverse probabilities P2→1 and P4→1 satisfy
detailed balance: P2→1 = PL( z1

z2
) and P4→1 = PR( z1

z3
). As for

general φ, μ1 − μ2 = ε0 + v and

P2→1 = exp{βε0 − log[2 cosh(βv)]} (C1)

so that P2→1 → 1 at TK, which is the condition one needs
for singular behavior at the Kasteleyn transition. For the case
z3 > z2 we can set P2→4 = 1 − P2→1 so that P2→4 → 0 at
TK. The right to left transition is fixed by detailed balance
P4→2 = P2→4( z2

z3
). Following this, the satisfaction of global

balance for flow out of vertex 4 requires the introduction
of a backtracking probability P4→4 proportional to z3 − z2.
However, this set of probabilities is not unique and other sets
exist which avoid backtracking.

APPENDIX D: DIMER REPRESENTATION OF THE
KASTELEYN TRANSITION FOR GENERAL φ

The dimer partition function can be written

Z = Tr{n1,n2,n3}g(n1, n2, n3) exp[β(n1μ1 + n2μ2 + n3μ3)],
(D1)

where ni is the number of dimers on sites i and g(n1, n2, n3) is
the number of configurations for fixed ni. The total number
of dimers n is fixed at one per triangle, so we can define
a semigrand canonical free energy [89] (also the magnetic
free energy) G(T, n, μ1, μ2, μ3). The Z can be calculated
exactly by the Pfaffian method introduced by Kasteleyn [27].
Although Kasteleyn does not give an explicit expression for
the honeycomb lattice, Wu [90] does, while at the same time
showing how the dimers on the honeycomb and therefore
spins on the kagome lattice also map onto the five-vertex
model on a square lattice. The anisotropic six-vertex model
was also treated exactly by Watson [91]. Wu’s expression for
Z is

log Z = n

8π2

∫ 2π

0
d θ̃

∫ 2π

0
dφ̃ log

[
z2

1 + z2
2 + z2

3

+ 2z1z2 cos (θ̃ ) + 2z1z3 cos (φ̃) + 2z2z3 cos (θ̃ − φ̃)
]
,

(D2)

where θ̃ and φ̃ are dummy variables.
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FIG. 21. Results of the peak tracking algorithm in (a) the spin-flip and (b) the non-spin-flip channel for ϒ = 0.54 (i.e., 1 T, 0.75 K, θ > 0,
and φ = 0), with included data points in gray dots. The centers of the asymmetrical ellipses as determined by the fuzzy cluster algorithm
are marked with a black × and correspond to the actual location of the calculated local maxima, and the distance between the peaks used to
compute ξx is shown by a black dashed line in the SF channel. The mean membership grade for this peak tracking solution is μm = 0.98.

From the above one can calculate the mean number of
dimers

〈n2,3〉 = − ∂G

∂μ2,3
= 1

β

∂ log Z

∂μ2,3
. (D3)

As the total number of dimers is fixed, 〈n1〉 is not independent:
〈n1〉 = n − 〈n2〉 − 〈n3〉. Defining αi = 〈ni〉/n, one finds from
the exact partition function

α2 = 1

π
cos−1

(
z2

3 − z2
2 + z2

1

2z1z3

)
,

α3 = 1

π
cos−1

(
z2

2 − z2
3 + z2

1

2z1z2

)
, (D4)

with α1 = 1 − α2 − α3. To arrive at this expression, one needs
the identity∫ 2π

0
dθ

1

A + B cos(θ ) + C sin(θ )
= 2π

(A2 − B2 − C2)1/2
,

(D5)
which is valid for A2 > B2 + C2, corresponding to the disor-
dered regime z2 + z3 > z1. At high temperature 〈n1〉 = 〈n2〉 =
〈n3〉 = n/3, while at the transition 〈n1〉 = 1, 〈n2〉 = 〈n3〉 = 0.
As the thermodynamic variable reaches the constraint, no fur-
ther evolution can occur and the system is singular. It follows
straightforwardly that the mean energy per spin, which is 1

3 of
the mean energy per dimer, is

〈ε〉 = − 1

3n
(μ1n1 + μ2n2 + μ3n3)

= −1

3
[μ1 + α2(μ2 − μ1) + α3(μ3 − μ1)]. (D6)

The in-plane magnetization can also be calculated from
the mean dimer numbers by considering each of the three
spins separately: 〈Sy

1〉 = S⊥ when 〈n1〉 = 1 and 〈Sy
1〉 = −S⊥/3

when 〈n1〉 = 1
3 , from which it follows that 〈Sy

1〉 = S⊥(2α1 −
1). Similarly 〈Sy

2〉 = 1/2S⊥ when 〈n2〉 = 0 and 〈Sy
2〉 = S⊥/6

when 〈n2〉 = 1
3 , from which we find 〈Sy

2〉 = S⊥(−α2 + 1
2 ),

with the equivalent expression for the third spin, 〈Sy
3〉 =

S⊥(−α3 + 1
2 ). The total y component of the magnetization

(per spin, hence the factor 1
3 ) is then My = (S⊥/3)(2α1 −

α2 − α3).
For the x component, 〈Sx

1〉 = 0, 〈Sx
2〉 = (

√
3/2)S⊥ when

〈n2〉 = 0 and 〈Sx
2〉 = 1

3 (
√

3/2)S⊥ when 〈n2〉 = 1
3 , leading to

〈Sx
2〉 = √

3S⊥(−α2 + 1
2 ) and to 〈Sx

3〉 = √
3S⊥(α3 − 1

2 ). This
gives the average x component per spin, Mx = 1

3

√
3S⊥(α3 −

α2). Using the relation between the αi and the value S⊥ =
2
√

2/3, we finally find the correct expressions for My and Mx

parallel and perpendicular to [1̄1̄2]:

My = 4
√

2

9

(
1 − 3

2
(α2 + α3)

)
,

Mx = 2

3

√
2

3

(
α3 − α2

)
. (D7)

The dimensionless magnetic moment entering the thermody-
namic discussion above would correspond to M = NMy.

APPENDIX E: PEAK TRACKING ALGORITHM

From tracking the logarithmic peak locations in the dif-
fuse neutron scattering patterns and determining their distance
from the Brillouin zone center, we can reproduce the nor-
malized inverse correlations ξ−1

x and ξ−1
y [3]. The location of

diffuse scattering peaks close to h = − 1
2 and − 3

2 and k = ± 1
3

were extracted with a two-dimensional peak tracking program
based on the fuzzy cluster algorithm in MATLAB, in which an
initial guess for the location of four diffuse scattering peaks
is refined by measuring the membership grades μi j of each
point in reciprocal space with intensities higher than 5 times
the background threshold [92]. To get the cluster centers c, the
following objective function Jm for D data points and N = 4
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clusters is minimized:

Jm =
D∑

i=1

N∑
j=1

μm
i j |xi − c j |2. (E1)

The membership grades of each point in the cluster
demonstrates the relative uncertainty that the point is indeed
in that cluster, with values approaching 1 for a collec-
tion of distinct spherical clusters. Although not as sharp
as Bragg peaks, the logarithmic peaks indicative of short-
range ice-rule correlations are clearly distinguishable in both
simulation and experimental data from the background with

clear centers. Peaks from an experimental diffuse scattering
patterns with an unknown misalignment can therefore be ana-
lyzed generically.

The distance from each diffuse peak to the kagome Bril-
louin zone center (as denoted by the white hexagons in
Fig. 21) along (h̄, h, 0) was averaged to produce the inverse
correlation length ξ−1

x , from which the analytical solution
in Eq. (8) was used to derive ξ−1

y . As the nearest-neighbor
Hamiltonian produces logarithmic peaks that have a small tail
along (h̄, h, 0), there is a slight deviation of the cluster center
from the true maximum, which is less than 0.01 Å−1 for all
simulations.
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