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The Heisenberg pyrochlore antiferromagnet Gd2Pt2O7 is one of a series of gadolinium pyrochlore compounds
with a variety of B-site cations. Despite the expected simplicity of a spin-only Gd3+ Heisenberg interaction
model, the gadolinium pyrochlore series exhibits various complex magnetic ground states at low temperature.
Gd2Pt2O7 displays the highest temperature magnetic order of the series with TN = 1.6 K, which has been
attributed to enhanced superexchange pathways facilitated by empty 5d eg Pt orbitals. In this study, we use
various neutron scattering techniques on an isotopically enriched polycrystalline 160Gd2Pt2O7 sample to examine
the magnetic structure and spin-wave excitation spectrum below TN in order to extract the dominant exchange
interactions. We find that the ground-state magnetic structure is the Palmer-Chalker state previously seen
in Gd2Sn2O7 with an associated gapped excitation spectrum consistent with enhanced exchange interactions
between further near-neighbor Gd3+ ions. We confirm this exchange model with analysis of the magnetic diffuse
scattering in the paramagnetic regime using polarized neutrons.

DOI: 10.1103/PhysRevB.105.094402

I. INTRODUCTION

The magnetic pyrochlore lattice—in which magnetic ions
sit on a lattice of corner-sharing tetrahedra (see Fig. 1)—is
commonly studied as an archetypal example of three-
dimensional geometrical magnetic frustration. The study of
these so-called “highly frustrated magnets” provides a route to
access a large variety of fascinating emergent low-temperature
magnetic states including spin-liquids, spin-glasses, spin-ices,
and fragmented spin-structures [1–5].

The Gd-pyrochlore series of compounds Gd2[B]2O7,
where [B] is the B-site cation, is expected to be rather
simple compared to other rare-earth pyrochlores since the
spin-only (8S7/2) Gd3+ ground-state ion should, in principle,
display no magnetic anisotropy and therefore exemplify a
pure Heisenberg antiferromagnet (HAF) on a pyrochlore lat-
tice. The series crystallizes in the face-centred-cubic Fd 3̄m
space-group with a range of lattice constants between 10 �
a < 11 Å. The magnetic rare-earth site lattice is a network
of corner-sharing tetrahedral units as depicted in Fig. 1.
In the absence of other mechanisms of magnetic exchange,
the HAF pyrochlore lattice is predicted to be “fully frus-
trated” hosting a spin-liquid ground state at low temperatures
[6]. In reality, however, near-neighbor antiferromagnetic ex-
change couplings, J1, are generally weak in these systems
(well below 1 K), and dipolar field couplings, Dd , are of
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comparable strength for near neighbors—see, for example,
Refs. [7,8]. For ratios D1

d/J1 � 5 (where D1
d is the dipolar in-

teraction strength at the first near neighbor), a four-sublattice
coplanar k = (000) antiferromagnetic state, known as the
Palmer-Chalker (PC) state [9] (see the depiction in Fig. 1),
is predicted with more complex incommensurate orders pre-
dicted to appear for D1

d/J1 � 5. In Gd-pyrochlore systems,
it is found experimentally using electron spin resonance
(ESR) that strong intrashell spin-orbit coupling mixes the
8S7/2 and 6P7/2 Gd3+ levels leading to significant crystal-
field splitting and single-ion anisotropy [10]. Table I shows
a summary of the properties of Gd-pyrochlore compounds
with a variety of B-site cations in order of increasing lattice
constant. Common to these materials are their low, negative
Weiss temperatures, θ , which slowly decrease in magnitude
on increasing lattice constant, and transitions to magneti-
cally long-range-ordered states at temperatures close to 1 K
(with the exception of Gd2Ir2O7, which has a magnetic
B-site cation and does not follow a Curie-Weiss temperature
dependence).

The PC state was first looked for by Champion and co-
workers [21] in Gd2Ti2O7, which displays two magnetic
transitions at T1 = 1.1 K and T2 = 0.75 [7,12]. They found,
instead, that Gd2Ti2O7 exhibits a complex and fascinating
partially ordered ground state below T1. Only recently has
the nature of this ground state been revealed to be a complex
2k antiferromagnetic structure with k = { 1

2
1
2

1
2 } [20] stabilized

by a small ferromagnetic second near-neighbor interaction,
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TABLE I. Properties of Gd-pyrochlore compounds with various B-site cations. a is the lattice constant, TN is the Néel temperature, θ is
the Weiss constant, J1 is the near-neighbor exchange energy, D1

d is the dipolar exchange energy at the first near neighbor, DSI is the easy plane
single-ion anisotropy, and �gap is the spin-wave gap. Values deduced from the current work are asterisked.

B-site a (Å) TN (K) θ (K) J1 (K) D1
d (K) DSI (K) �gap (meV)

Gea 9.998 1.4 −11.1 0.056
Tib 10.18 1,0.75d −9.6 −0.303 0.053 0.223l 0.06m

Pta 10.26 1.6h −8.8,a−9.4h −0.312∗ 0.052 0.286∗ 0.245,h 0.25∗

Irc 10.29 120,0.65 n/a −0.23 0.052 0.09 0.21
Snd 10.45 1 −8.6 −0.319j 0.049 0.14l 0.12,g 0.13i

Hfe 10.49 0.77 −7.7 −0.212k 0.049
Zre 10.52 0.77 −7.3 −0.241k 0.048
Pbf 10.73 0.81 −7.4 0.046

aReference [11].
bReference [7].
cReference [5].
dReference [12].
eReference [13].
fReference [14].
gReference [15].
hReference [16].
iReference [17].
jReference [18].
kReference [19].
lReference [10].
mReference [20].

shown as J2 in Fig. 1. Later, neutron diffraction studies by
Wills et al. of Gd2Sn2O7 did find a PC magnetic ground
state below TN = 1 K. Additional diffuse and inelastic neutron
scattering investigations showed that the PC ground state in

J1

J2

J3a

J3b

a b

c

FIG. 1. The A-site rare-earth sublattice in pyrochlore mag-
nets. Principal exchange interaction pathways are shown in red,
demonstrating the difference between the two third-nearest-neighbor
interactions: the “through-Gd” J3a, which lies parallel to J1, and
the “cross-hexagon” J3b. The coplanar Palmer-Chalker (PC) spin
structure is depicted with blue arrows, bottom left.

Gd2Sn2O7 is stabilized by a small ferromagnetic third near-
neighbor interaction [18], shown as J3b in Fig. 1. The PC state
is also found for the XY -exchange Er-pyrochlore antiferro-
magnets, Er2Pt2O7 and Er2Sn2O7 [22,23]. In Gd2Ir2O7, the
presence of a strongly interacting magnetic B-site sublattice
results in a staggered molecular field around the Gd sublattice,
which leads to “all-in-all-out” (AIAO) type order at 120 K—
a much higher temperature than is commonly found in the
series [5]. However, in this system too, the PC state tends to
order below 1 K [5]. For all the other Gd-pyrochlore species
listed in Table I, the magnetic ground-state structure remains
unresolved. This is chiefly due to the enormous difficulty of
performing thermal neutron diffraction measurements on Gd
containing materials. Naturally occurring Gd metal is the most
absorbing element known for thermal neutrons (absorption
cross-section σabs = 49 700 barns for neutron wavelength,
λ = 1.8 Å), meaning that neutron scattering experiments must
either be performed using the nonabsorbing (but expensive)
160Gd isotope [17,24,25] or using “hot” neutrons with λ <

0.55 Å [5,20].
In this study, we present neutron diffraction and inelastic

neutron scattering experiments to determine the ground-state
magnetic structure and the magnetic interactions in Gd2Pt2O7,
recently studied by Li et al. [11] and Hallas et al. [16]. Our
sample is enriched with the low neutron-absorbing 160Gd
isotope, allowing us to use cold neutrons with wavelengths
� 4.8 Å (energies � 3.55 meV)—well suited to the low mo-
mentum and energy transfer regimes necessary for studying
mK temperature magnetic structures. According to magneti-
zation and specific heat measurements, Gd2Pt2O7 orders at
1.6 K, the highest transition temperature in the series (except
for Gd2Ir2O7). It is suggested by both Li [11] and Hallas [16]
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that the presence of empty 5d eg orbitals in Pt4+ provides an
additional Gd-O-Pt-O-Gd superexchange pathway, leading to
the increased magnetic transition temperature. The magnetic
susceptibility in Gd2Pt2O7 follows closely a Curie-Weiss tem-
perature dependence with a reported Weiss temperature, θ , of
−8.8(1) K [11] [−9.4(1) K [16]], which is broadly similar
to other Gd-pyrochlores, indicating dominantly antiferromag-
netic interactions (see Table I). The Gd magnetic moment is
found to be 7.94(1)μB [11] [7.83(1)μB [16]], close to the ideal
value of 7.94μB for spin-only S = 7/2 Gd3+. The temperature
dependence of the specific heat capacity of Gd2Pt2O7 closely
resembles that of Gd2Sn2O7, with a large first-order anomaly
at the magnetic ordering temperature. Below TN , the magnetic
specific heat of Gd2Pt2O7 has been modeled both using a
Cm ∝ T 3 dependence—expected for a conventional 3D anti-
ferromagnet with an ungapped spin-wave spectrum [11] and
with a Cm ∝ exp(−�gap/kBT )/T 2 dependence expected for
a collinear antiferromagnet with a spin-wave gap of �gap =
0.245(1) meV. [16]. In that work, Hallas and co-workers noted
that the presence of a spin-gap in Gd2Sn2O7—confirmed us-
ing inelastic neutron scattering [17]—and the similarity of the
magnetic specific heat capacities of Gd2Pt2O7 and Gd2Sn2O7

strongly suggest that the ordered magnetic structure in these
materials is the same: the PC state.

We present polarized neutron scattering experiments in
both the ordered (T = 50 mK) and correlated paramagnetic
(T � 1.8 K) regimes of Gd2Pt2O7, and inelastic neutron
scattering (INS) measurements of the spin-wave spectrum at
250 mK. We find that the low-temperature magnetic structure
of Gd2Pt2O7 is indeed the PC state. INS indicates the pres-
ence of a gapped spin-wave spectrum at low temperatures, in
accordance with the interpretation of Hallas and co-workers
[16]. We find from our analysis of INS spectra in the or-
dered state and diffuse scattering measurements above TN

that the first near-neighbor exchange is of similar strength to
other members of the series (see Table I), but that there is
also a further near-neighbor Heisenberg exchange (either an
antiferromagnetic J2 or a ferromagnetic J3b interaction) that
stabilizes the PC state.

II. EXPERIMENTAL METHODS

The polycrystalline sample used in our neutron scattering
experiments was synthesized using high-pressure, high-
temperature (HPHT) techniques. A stoichiometric amount of
starting material was intimately ground and filled into a gold
capsule, and subsequently treated at 1100 ◦C and 6 GPa in a
DIA-type cubic diamond anvil high-pressure apparatus,

160Gd2O3 + 2PtO2 → Gd2Pt2O7.

HPHT synthesis was employed in order to prevent the decom-
position of PtO2 at the temperatures required. The mass of the
sample used in each neutron experiment described below was
0.21 g. The nominal enrichment level of the Gd2O3 starting
material was 99.6% 160Gd.

To determine phase purity, x-ray and neutron diffraction
data were collected at room temperature at the I11 high-
resolution x-ray diffractometer [26], Diamond Light Source,
UK, and the Polaris neutron diffractometer [27], ISIS Neutron

and Muon Source, UK. To minimize absorption during our
x-ray diffraction measurements, a portion of our sample was
loaded into a 0.1 mm capillary, and data were collected using
a multianalyzer crystal (MAC) detector and a wavelength of
λ = 0.826 58 Å. Simultaneous Rietveld refinement of these
data was carried out using the TOPAS-Academic software
package [28].

Investigation of the magnetic exchange interactions in
Gd2Pt2O7 was undertaken with measurements of the spin-
wave excitations in the ordered state using the cold neutron
spectrometer LET, at the ISIS Neutron and Muon Source, at
an incident energy of 1.60 meV. The sample was mounted
in an Oxford Instruments Heliox 3He sorption insert in a
standard helium-flow cryostat and held at 250 mK for the
duration of the experiment. Data reduction and normalization
to a vanadium standard was performed using MANTID [29].
Linear spin-wave modeling and fitting of the data was per-
formed using SPINW [30].

Neutron diffraction data with XY Z neutron polarization
analysis [31] were collected over a range of temperatures
between 50 mK and 200 K using a dilution insert in a standard
helium-flow cryostat. These measurements were performed
on the D7 diffuse scattering spectrometer at the Institut
Laue-Langevin (ILL), using an incident neutron wavelength
of 4.86 Å [32,33]. The method of XY Z polarization analysis
enables the unambiguous separation of magnetic scattering
from nuclear coherent (structural) scattering and nuclear-spin
incoherent scattering contributions. The data were corrected
for the measured sample self-attenuation, detector, and po-
larization efficiency using standard samples (vanadium and
amorphous silica, respectively), and they were placed on an
absolute scale (barns sr−1 Gd−1), by normalizing the para-
magnetic scattering to the paramagnetic moment expected
for Gd3+ [g

√
S(S + 1) = 7.94μB]. For the ordered magnetic

and nuclear structures, FULLPROF [34] was used to perform
Rietveld refinements, with an interpolated background, and
instrumental peak shape parameters from Ref. [33]. The scale
factor derived from the nuclear Bragg intensities was em-
ployed as an internal check of the absolute normalization of
the data. We use mean-field Onsager reaction field (MFO)
theory [35,36] in order to estimate exchange interactions in
the paramagnetic state. Real-space atomistic models of the
paramagnetic scattering are produced via direct Monte Carlo
simulations [18] using the SCATTY program [37] to calculate
the expected single-crystal diffuse scattering.

III. RESULTS

A. Powder diffraction

Figure 2 shows the neutron and x-ray powder diffraction
patterns for Gd2Pt2O7 at room temperature, together with
a simultaneous Rietveld refinement. Due to the substantial
degree of absorption present in these data, a sequential ap-
proach to the Rietveld refinements was adopted, exploiting
the different sensitivities of x-rays and neutrons in order to
avoid the overcorrelation of parameters when absorption coef-
ficients were refined. We refined and fixed the lattice constant
using only the x-ray data, followed by using the neutron data
to fix the position and the isotropic thermal displacement
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FIG. 2. Neutron (POLARIS bank 5—upper panel) and x-ray
(I11—lower panel) diffraction data collected on powder samples of
Gd2Pt2O7 at room temperature. Red solid lines show the Rietveld
refinement of the data, with the difference between the data and
model shown in blue.

parameters, Biso = 8π2〈u2〉, where 〈u2〉 is the mean-squared
displacement of the oxygen atoms. The x-ray data were then
used to determine Biso for platinum and gadolinium. The oc-
cupancy factors for all the atomic positions were refined using
both datasets simultaneously. All the neutron refinements as-
sumed a 100% 160Gd concentration, which introduces a small
systematic error in the occupancy refinements. However, the
x-ray data are much more sensitive to the Gd-Pt scattering
amplitude contrast, and hence the refined occupancies are not
significantly affected by this. The refined Bragg R-factors are
4.87% for the I11 x-ray histogram and between 1% and 3.8%
for the five diffraction bank histograms on Polaris. Refined
structural parameters are given in Table II. All peaks can
be indexed using the Fd 3̄m cubic space-group; with lattice
constant a = 10.263 28(1) Å at 298 K in close agreement
with previous results [11,16,38]. The single free O1 coor-
dinate was found to be x = 0.336, similar to the value of
x = 0.335 for Gd2Sn2O7 [39]—both larger than the value of
x = 0.326 found for Gd2Ti2O7 [40]. There was no appreciable
site mixing of the atomic species with the occupancy factors
refining to 1 within experimental uncertainty, indicating full
occupancy.

The magnetic neutron diffraction pattern measured at
50 mK using XY Z neutron polarization analysis is shown in
Fig. 3 along with the Rietveld refinement of the data. The
magnetic scattering is shown fully separated from nuclear and

TABLE II. Atomic positions and occupancies from a simultane-
ous Rietveld refinement of the x-ray and neutron diffraction data
for Gd2Pt2O7. In this setting (origin choice 2) of the Fd 3̄m space
group, the only adjustable atomic coordinate is the x position of O1.
∗ indicates that the value was extracted from x-ray diffraction data,
† from neutron diffraction, and ‡ from combined x-ray and neutron
diffraction.

Atom x y z Biso Occ.

Gd 0.5 0.5 0.5 0.228(5)∗ 1.000(7)‡

Pt 0 0 0 0.027(3)∗ 1.000(7)‡

O1 0.33646(6)† 0.125 0.125 0.273(5)† 1.005(6)†

O2 0.375 0.375 0.375 0.296(17)† 0.994(2)‡

incoherent scattering contributions. We observe four magnetic
Bragg peaks at 50 mK indicating a transition to a long-range
ordered magnetic state. The data are well modeled with the
�7 irreducible representation (ψ6 basis function) following
the Kovolev notation [41] used in the paper of Wills and
co-workers [25] in describing the PC state in Gd2Sn2O7, with
a refined Bragg R-factor of 5.25%. This represents the copla-
nar Palmer-Chalker state. The lattice constant of Gd2Pt2O7 at
50 mK is found to be a = 10.225(1) Å and the ordered Gd
magnetic moment is 6.76(2)μB, which is close to the expected
ordered moment value of gS = 7μB.

B. Inelastic neutron scattering

Our analysis of the exchange interactions and correspond-
ing Hamiltonian for Gd2Pt2O7 begins with our inelastic
neutron scattering data taken on LET at 250 mK. Visual in-
spection of the data, shown for Ei = 1.60 meV in Fig. 4 (upper
panel), reveals several excitation branches—including an ap-
proximately flat band at an energy transfer �E = 0.25 meV,
gapped from the elastic line. This closely corresponds to the
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FIG. 3. Magnetic neutron diffraction data measured using XY Z
neutron polarization analysis on D7. The red solid line shows the
Rietveld refinement using the �7 irreducible representation (ψ6 basis
function) which represents the coplanar Palmer-Chalker antiferro-
magnet. The difference between the refined model and the data is
shown as an offset blue line.
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FIG. 4. Upper panel: Inelastic neutron spectra of Gd2Pt2O7 at
250 mK taken on LET with incident energy Ei = 1.6 meV. The
intense region of scattering at zero energy transfer is the nuclear
incoherent elastic signal. Lower panel: SPINW calculation of the
J1–J2 model S(Q, ω) with the best-fit exchange and anisotropy values
(see the text). The hollow circles show the positions of the spin-
wave peaks found in our data, with the vertical bars representing
the FWHM of the peaks. The flat mode at �E 	 0.47 meV is not
reproduced by any of our spin-wave models.

value of the spin-wave gap found by Hallas et al. from their
modeling of the magnetic heat capacity [16], and it con-
firms that the excitations are gapped. The observed excitation
branches are all absent from spectra taken at high tempera-
tures (>20 K) demonstrating their magnetic origin.

To model the spin-wave excitations, we employ a
Hamiltonian containing Heisenberg exchange, dipolar, and
single-ion anisotropy terms,

H = −
∑
i> j

Ji jSi · S j + DSI

∑
i

(
Sz

i

)2

+ D1
d r3

1

∑
i> j

Si · S j − 3(Si · r̂i j )(S j · r̂i j )

r3
i j

, (1)

where we have used the convention that negative J-values
denote antiferromagnetic interactions. We fix the magnitude
of the dipolar energy scale with D1

d = μ0(gμB)2/4πr3
1kB =

0.052 75 K, with r1 = (a/4 a/4 0) and a = 10.225 Å. The
single-ion anisotropy is of the easy-plane type for positive
DSI, with the z-component of the spin-vector Sz lying along
local 〈111〉 axes connecting corners of the Gd tetrahedra to
the centers [19,42]. We restrict the Heisenberg interactions to
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FIG. 5. Constant wave-vector cuts through the spin-wave spec-
trum of Gd2Pt2O7 at Q = 0.25 Å−1 (upper panel) and Q = 0.4 Å−1

(lower panel) at T = 250 mK. The region between energy transfers
of 0.43 < �E � 0.5 meV has been excluded from the fit. The solid
lines show the calculated spin-wave scattering using the J1–J2 model
(blue) and the J1–J3b model (red) plus a linear background.

the first three near-neighbor terms J1, J2, and J3b as depicted
in Fig. 1. We find that the inclusion of J3a (parallel to J1) does
not improve the spin-wave model fits in our analysis.

The spin-wave model is generated from this Hamiltonian
using SPINW with the PC state (ψ6) ordered structure, shown
in Fig. 1. In our model, dipolar terms are included up to a
range of 20 Å. To calculate the powder-averaged spectrum, the
spin-wave cross-sections are calculated for 200 randomly cho-
sen directions of Q and then averaged. The model calculation
is then convoluted with the LET energy and wave-vector res-
olutions which are taken to be Gaussians of FWHM 30 μeV
[calculated for �E = 0 meV using PYCHOP (MANTID)] and
0.01 Å−1, respectively, at Ei = 1.6 meV. This model describes
the data well, with the exception of a flat mode observed
at �E 	 0.47 meV, which we are unable to reproduce [see
Fig. 4 (lower panel)]. To best fit the exchange interactions
and the single-ion anisotropy term, we have performed a least-
squares fit of the SPINW generated scattering cross-section to
two representative constant wave-vector cuts of the inelastic
spectrum at 0.2 < Q � 0.3 and 0.35 < Q � 0.45 Å−1. These
cuts are shown in Fig. 5 with the best-fit SPINW models. In
both of these cuts, we have excluded the energy region around
the mode at �E 	 0.47 meV.

We find that we are able to fit the spin-wave data using
spin-wave models employing two different further near-
neighbor exchange constants: a J1 − J2 model and a J1 − J3b

model, shown, respectively, as blue and red solid lines in
Fig. 5. The single-ion anisotropy was found to be close to
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TABLE III. Fitted exchange interactions and reduced goodness-
of-fit (χ 2/Nd ) values for each of the fitted spin-wave (SW) and MFO
models as described in the main text.

SW J1 − J2 SW J1 − J3b MFO J1 − J2 MFO J1 − J3b

J1 (K) −0.312(2) −0.312(2) −0.315(3) −0.321(2)
J2 (K) −0.0073(2) −0.003(1)
J3b (K) 0.0070(3) 0.002(1)
χ 2/Nd 1.39 1.49 1.81 1.84

a value of DSI = 0.286 K in each of the spin-wave models,
and was fixed at this value. The fitted exchange interactions
and goodness-of-fit (χ2/Nd , where Nd is the number of data
points) are given in Table III. The spin-wave model covering
the entire measured (Q,�E ) range, calculated using the best-
fit exchanges from the J1 − J2 model, is shown in Fig. 4 (lower
panel) with the observed spin-wave peak positions and widths
(FWHM) plotted on top. For both the J1 − J2 and J1 − J3b

spin-wave models, we find J1 = −0.312(2) K, with an antifer-
romagnetic second near-neighbor exchange J2 	 0.02J1 in the
J1 − J2 model, or a ferromagnetic cross-hexagon third near-
neighbor interaction J3b 	 −0.02J1 in the J1 − J3b model.
Inspection of each model fit in Fig. 5 shows that the J1 − J2

spin-wave model better matches the position of the dispersing
excitation at �E ∼ 0.73 meV at Q = 0.4 Å−1 and exhibits a
marginally lower goodness-of-fit value, as given in Table III.

We also attempted to fit a model with J1, J2, and J3b all
included as free parameters. This did not improve on the
J1 − J2 model fit—and indeed, J3b refined to close to zero
within error.

The two spin-wave models describe the data well, apart
from the obvious lack of a flat mode at �E 	 0.47 meV.
To try to reproduce this mode, we attempted various more
complex models, including anisotropic exchange (unlikely for
spin-only Gd ions [43]) and a J3a Heisenberg interaction.
Neither of these additions resulted in any measurable im-
provement to the fit (reduction in χ2). We investigated the
possibility that this mode was spurious—perhaps due to multi-
ple scattering between the sample and the sample environment
(e.g., cryostat). However, we found that the mode was present
in all the spectra taken at different incident energies, ruling
this out. Furthermore, this mode is not present in the spectra
taken at higher temperatures, making it certain that it is a real
magnetic excitation, and not due to background or structural
(phonon) contributions. Of particular interest is the fact that
the SPINW model does include a spin-wave branch at this
energy, albeit with zero intensity, when the single-crystal dis-
persions along high-symmetry directions of reciprocal space
are calculated. It is possible that symmetry breaking structural
features—e.g., oxygen vacancies, site-mixing of gadolinium
and platinum—could be responsible for the observed in-
tensity. However, our structural analyses via neutron and
x-ray powder diffraction show no evidence of such structural
features, as shown in Table II and Fig. 2. Magnetic inter-
actions beyond linear spin-wave theory—e.g., two-magnon
processes—have recently been observed in Yb2Ti2O7 [44,45],
and given the proximity of the mode at 0.47 meV to twice
the lower flat band energy of 0.25 meV, it is possible that

two-magnon scattering might play a role here. However, look-
ing carefully at the data in Fig. 4, we note that the expected
two-magnon band would be centered at 0.5 meV, directly in
between the two high-energy modes at 0.47 and 0.55 meV.

Finally, it is possible that the extra flat mode is due to an
excited-state crystal-field transition associated with the single
ion anisotropy and admixed higher orbital ground states. In
the absence of a crystal field, the ordered moment molecular
field splits the S = 7

2 ground-state multiplet into a ladder of
equally spaced levels with spacing 2μBHmf , with the ground
state being a pure |Sz = 7

2 〉, the first excited state being |Sz =
5
2 〉, and so on. Thus the only dipolar allowed transitions are
between adjacent states, where the spin-wave modes are due
to the transition between the ground and first excited states.
The crystal field, however, will modify this scheme in two
ways: first, the admixture of higher multiplets means the wave
functions of the S = 7

2 states will no longer be pure Sz and
thus there may be dipole allowed transitions between nonad-
jacent states; second, the spacing between the states will no
longer be a uniform 2μBHmf . Since the observed 0.47 meV
flat mode lies lower in energy than the band maximum, we
believe that it is an excited state transition between the ther-
mally occupied first excited state and the second excited state
rather than a transition between the ground and (say) second
excited states, as this would have a higher energy. Moreover,
in the random-phase approximation (RPA), the dispersion
bandwidth is proportional to the thermal occupation (Bose)
factor, which would naturally be lower for the first excited
state than the ground state producing a flatter mode. Finally,
if the energy spacing between the states was uniform, one
would expect this excited state transition to lie approximately
in the middle of the spin wave bandwidth, but this is not the
case, suggesting that the crystal field has shifted the relative
energies of the S = 7

2 levels from where they would have been
in a pure molecular field. This scenario is still conjecture,
however, as we were unable to fit the data with a full RPA
calculation using a simple point charge model of the crystal
field just including the nearest-neighbor oxygen ligands.

C. Paramagnetic diffuse scattering

The magnetic exchange scheme deduced using inelastic
neutron scattering in the low-temperature ordered phase can
be readily checked by measurement of the magnetic diffuse
scattering in the paramagnetic regime above TN . We do this
using mean-field Onsager reaction field (MFO) theory in order
to calculate the expected magnetic diffuse scattering intensity,
I (Q), for a given magnetic exchange scheme. This method
has been shown to work well for Heisenberg magnets—see,
for example, Refs. [35,46]—and full details of the method are
given in Ref. [36].

The magnetic diffuse scattering measured using XY Z po-
larization analysis on D7 at T = 1.8, 4, and 200 K is presented
in Fig. 6 along with MFO fits using the interaction model
given by Eq. (1). These data are plotted on an absolute scale in
units of (barns sr−1 Gd−1). At T = 1.8 K, just above TN , the
data show a broad peak centered at Q ≈ 1.1 Å−1 along with
a decrease in intensity as Q → 0, indicating strong antifer-
romagnetic correlations persisting over short distances (lower
panel, Fig. 6). The peak decreases in intensity and broadens
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FIG. 6. Paramagnetic diffuse scattering measured using XY Z
neutron polarization analysis at 200 K (upper panel), 4 K (middle
panel), and 1.8 K (lower panel). The J1 − J2 MFO model is shown
as solid red lines, with the difference between the data and the fit
shown as solid blue lines. The inset in the lower panel shows details
of the region of peak intensity at Q ≈ 1.1 Å−1 with both the J1 − J2

(red) and J1 − J3b (green) MFO model fits. The stars at Q = 0 are
the values of the bulk magnetic susceptibility converted to barns
sr−1 Gd−1 (see the Appendix).

at 4 K (2.5TN ), while at 200 K (125TN ) the data follow a
squared Gd3+ magnetic form-factor dependence, as expected
for a fully random paramagnetic spin structure. The MFO
fits shown were found to be insensitive to the strength of the
single-ion anisotropy, DSI, and therefore this value was fixed
to the value DSI = 0.286 K found from our spin-wave fitting.
The MFO fits were performed using all three temperatures
simultaneously and were also constrained by the susceptibility
data of Hallas and co-workers [16]. The Q = 0 magnetic
cross-section at each temperature, calculated from the bulk
susceptibility using the procedure outlined in the Appendix, is
plotted in Fig. 6, and the MFO fit to the magnetic susceptibil-
ity is shown in Fig. 7. The Weiss temperature extracted from
the MFO J1 − J2 fit in Fig. 7 was found to be θ = −9.62(2) K,
very close to the value of −9.4 K found by Hallas et al.

Similarly to the spin-wave case, we find that J1 − J2

and J1 − J3b MFO models both fit the data well. Only slight
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FIG. 7. The inverse magnetic susceptibility of Gd2Pt2O7 taken
from the paper of Hallas et al. [16] (red points). The MFO J1 − J2

fit to the susceptibility (fitted concurrently with the diffuse magnetic
scattering shown in Fig. 6) is shown as a solid blue line. Hollow
circles show the inverse susceptibility calculated from our DMC J1 −
J2 model.

differences in the fit are apparent near the peak in intensity
at Q ≈ 1.1 Å−1 at low temperatures [see the inset of Fig. 6
(lower panel)]. As in the spin-wave models, the J1 − J2 model
is a marginally better fit to the data. The best-fit exchange
interactions for each model are given in Table III and are
found to be in good agreement with the values found via the
spin-wave fitting procedure, but with weaker J2 and J3b values
by around a factor of 3. As seen from the high relative uncer-
tainties in J2 and J3b of ∼33%, the MFO fits are less sensitive
to this interaction than the spin-wave fits, where the relative
uncertainties in the further neighbor interactions were found
to be ∼3%. In fact, a reasonable MFO fit was possible with
a simple J1 model and no further near-neighbors—though
with a marginally worse goodness of fit, χ2/Nd = 1.86. Sim-
ilarly to the spin-wave fits, neither the addition of a third
near-neighbor J3a exchange interaction, nor the simultaneous
refinement of J2 and J3b together, improved the quality of the
MFO fit.

To compare the spin-correlations predicted by the two
models, we use a classical (direct) Metropolis Monte Carlo
(DMC) simulation. The simulation was made up of a box
of 6 × 6 × 6 unit-cells (containing Gd atoms) with periodic
boundaries, interacting via Eq. (1). Long-range dipolar inter-
actions were calculated using Ewald summation. Runs were
performed for 5000 moves per spin for equilibration, starting
from randomly initialized spin-configurations. The spin auto-
correlation function was calculated from snapshots every t =
500 moves, and was checked for autocorrelation, with a value
of 〈S(0) · S(t )〉 � 0.05 indicating effective decorrelation of
the snapshots. Fifty simulation runs were performed for the
purposes of averaging. The quality of the models generated
using our DMC simulations is checked by comparing the
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FIG. 8. DMC model of the paramagnetic diffuse scattering in
Gd2Pt2O7 at 1.8 K. Left column: Calculated magnetic I (Q) (red)
shown with the measured magnetic scattering (circles) and the dif-
ference curve (blue), for the SW J1 − J2 model (upper panel) and
the SW J1 − J3b model (lower panel). Right column: Calculated
magnetic I (Qhhl ) for the J1 − J2 and J1 − J3b models.

calculated I (Q) from the DMC model using the Blech-
Averbach equation [47] to the data at 1.8 K. We also calculated
the magnetic scattering expected from a single-crystal plane
of our choosing from our DMC model with the SCATTY soft-
ware, using the expressions given in Ref. [37]. This is possible
from a 3D atomistic magnetic model with the constraints
of fixed atomic positions and spin-lengths—and it has been
shown to work very successfully in practice [48]. This allows
us to directly inspect reciprocal space magnetic correlations
alongside real-space spin correlations.

Figure 8 shows the calculated magnetic scattering from the
DMC models together with the magnetic scattering data at
1.8 K (same dataset as shown in the lower panel of Fig. 6).
These simulations were calculated at T = 1.8 K using the
fitted exchanges from both the J1 − J2 and J1 − J3b spin-wave
models. Both models match the measured data well with
χ2/Nd = 2.28 for the J1 − J2 model and χ2/Nd = 2.47 for
the J1 − J3b model. Once again, slightly better agreement with
the data is found for the J1 − J2 model. The magnetic I (Qhhl )
patterns, calculated for the (hhl ) single-crystal plane from
these simulations, shown in Fig. 8 are qualitatively identical,
showing rods of diffuse scattering along [111] directions.
Strong diffuse peaks are evident at the crossing points of these
rods of scattering at {002} and {111} positions (where only
one rod is visible in the plane), which are the first two Bragg
positions associated with the Palmer-Chalker state, as shown
in Fig. 3. Rods of scattering in reciprocal space are associated
with planar correlations in real space in the {111} planes.

The real-space correlations extracted from the DMC calcu-
lations are shown in Fig. 9. The correlations are separated out
according to the directions of the exchange interactions, J1, J2,
and J3b—r1, r2, and r3b, respectively. We find that there are
strong spin-correlations along r1, but rather weak correlations
along r2 and r3b. This resembles the real-space correla-
tions observed in Gd2Sn2O7 and is consistent with planar
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FIG. 9. Real-space correlations in Gd2Pt2O7 as a function of
distance along each direction parallel to J1, J2, and J3b—r1, r2, and
r3b shown in (a), (b), and (c), respectively. The hollow symbols
denote negative (antiferromagnetic) correlations. The red symbols
show correlations taken from the SW J1 − J2 DMC calculation, while
black symbols show those extracted from the SW J1 − J3b DMC
calculation. The solid black line is an Ornstein-Zernlike fit to the
correlations along r1.

spin-correlations in the {111} plane [18]. The spin-correlation
length, ξ1, at 1.8 K can be roughly estimated via an Ornstein-
Zernlike form [49], |〈S(0) · S(r1)〉| ∼ exp(−r1/ξ )/r1, giving
ξ1 = 53.2(6) Å (extracted from the J1 − J2 model).

The temperature dependence of the magnetic susceptibil-
ity can also be calculated from our DMC models using the
fluctuation-dissipation formula,

χT = 1/N
{〈

M2
z

〉 − 〈Mz〉2
}
,

where Mz is the total magnetization, and the angle brackets
denote time averages. This proceeds by running consecutive
DMC simulations at temperatures decreasing from 300 K to
just above TN and performing 5000 proposed rotations per
spin to achieve equilibrium at each temperature. At least 105

proposed moves are then used in calculating the bulk magnetic
susceptibility. χ (T ) is converted into units of emu mol−1(Gd)
by multiplying by NAμ2

effk
−1
B (with kB = 1.38 × 10−16

erg K−1). Comparison of the calculated χ−1(T ) with the
data of Hallas et al. [16] is shown in Fig. 7. Calcula-
tion of the Weiss temperature from our simulation gives
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θ = −11.6(5) K, close to the value of θ = −9.4(1) K as
determined by Hallas et al.

IV. CONCLUSIONS

We have investigated both the ordered magnetic and the
correlated paramagnetic regimes of a 160Gd enriched poly-
crystalline sample of Gd2Pt2O7 using neutron diffraction
and inelastic neutron scattering. Below TN we have demon-
strated that Gd2Pt2O7 orders with the PC state, also found
in Gd2Sn2O7. We find that two interaction models based
on either an antiferromagnetic second near-neighbor interac-
tion (the J1 − J2 model) or a ferromagnetic cross-hexagon
third near-neighbor interaction (the J1 − J3b model)—both of
which are consistent with the k = (000) PC state—describe
well both the inelastic neutron scattering data in the ordered
state at low temperatures, and the magnetic diffuse scattering
above TN . In each case, the magnitude of the further neighbor
interaction is ∼0.02J1. The J1 − J2 model has a slightly better
goodness-of-fit value for the spin-wave and MFO fits.

Further near-neighbor interactions are also important in
deciding the magnetic ground states of both Gd2Ti2O7

and Gd2Sn2O7. In Gd2Ti2O7, a ferromagnetic second near-
neighbor interaction of J2 ∼ −0.04J1 stabilizes its k = { 1

2
1
2

1
2 }

magnetic structure [20], while in Gd2Sn2O7 a ferromagnetic
third neighbor interaction of J3b ∼ −0.005J1 was found. In
Gd2Pt2O7 we find that the magnitude of the further neighbor
interaction from our spin-wave fits (J2 or J3b) is ∼ 0.02J1—
around four times that of Gd2Sn2O7—which may explain the
increased ordering temperature. From our MFO fits we find
smaller further neighbor interactions of around 0.007J1, very
similar to Gd2Sn2O7. However, we also find that the MFO fits
were much less sensitive to further near-neighbor interactions.
As pointed out by Hallas et al., the empty 5d eg orbitals associ-
ated with Pt4+ are most likely to provide enhanced exchange
pathways for both J2 and J3b—but not for J1, where direct
Gd-O-Gd pathways are available. This is in agreement with
our observation of J1 = −0.312 K, which is very similar to
both Gd2Ti2O7 and Gd2Sn2O7 as can be seen in Table I. The
similarity in the magnitudes of J2 and J3b is likely due to the
fact that the superexchange pathway for J3b is identical to that
of J1 + J2. This also explains why the J1 − J2 and J1 − J3b

models are difficult to distinguish.
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APPENDIX: Q = 0 MAGNETIC SCATTERING AND BULK
SUSCEPTIBILITY

The following is the derivation of the Q = 0 scatter-
ing intensity for magnetic neutron scattering in paramagnets
calculated from the bulk susceptibility. We start with the ex-
pression for the magnetic cross-section of a paramagnet at
Q = 0,

dσ

d�

∣∣∣∣
Q=0

= 2

3

(γ r0

2

)2
g2

sS(S + 1), (A1)

where the factor ( γ r0

2 )2 = 0.072 65 barns. The expression for
the magnetic susceptibility in SI is given by the Curie law,

χSI = μ0μ
2
B

3kB
g2

sS(S + 1)
1

T
. (A2)

Combining Eqs. (A2) and (A1), we obtain

dσ

d�

∣∣∣∣
Q=0

= 2
(γ r0

2

)2 kBT

μ0μ
2
B

χSI. (A3)

Note that both the cross-section and the susceptibility are
assumed to be normalized per spin. This equation is (within
a factor of g2

s) the same expression as the CGS version given
in [50]. It is equivalent to the expression derived via the
fluctuation-dissipation theorem and the Kramers-Krönig re-
lation. Generally, the magnetic neutron scattering intensity
(differential cross-section) is normalized per magnetic ion
(spin), which corresponds to the SI susceptibility given by
Eq. (A2) and which has dimensions (m3 spin−1).

We must acknowledge the fact that papers generally give
susceptibility in CGS units (emu mol−1) or in (emu mol−1

spins),
which are related by

χCGS (emu mol−1
spins) = 1

Nmag
χCGS (emu mol−1), (A4)

where Nmag is the number of magnetic ions per formula
unit. The CGS expression for the Curie law, with χCGS in
(emu mol−1

spins), is given by

χCGS = NAμ2
B

3kB
g2

sS(S + 1)
1

T
, (A5)

where all the constants are now in CGS; μB = 9.274 × 10−21

erg G−1, kB = 1.38 × 10−16 erg K−1, and NA = 6.022 ×
1023 mol−1. Gathering these constants together, we can write

NAμ2
B

3kB
= 6.022 × 1023 × 86.0 × 10−42

3 × 1.38 × 10−16
	 1

8
, (A6)

where this approximation is good to 0.07%. From Eqs. (A2)
and (A5), we can now write an expression for converting χSI

to χCGS,

χSI = μ0μ
2
B

3kB
× 8χCGS. (A7)

Finally we can substitute Eq. (A7) into Eq. (A3) to get the
expression for the Q = 0 cross-section of a paramagnet,

dσ

d�

∣∣∣∣
Q=0

= 2
(γ r0

2

)2 kBT

μ0μ
2
B

8
μ0μ

2
B

3kB
χCGS (A8)

= 16

3

(γ r0

2

)2
T χCGS. (A9)
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