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Magnon condensation in dimerized antiferromagnets with spin-orbit coupling
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Bose-Einstein condensation (BEC) of triplet excitations triggered by a magnetic field, sometimes called
magnon BEC, in dimerized antiferromagnets gives rise to a long-range antiferromagnetic order in the plane
perpendicular to the applied magnetic field. To explore the effects of spin-orbit coupling on magnon condensa-
tion, we study a spin model on a distorted honeycomb lattice with dimerized Heisenberg exchange (J terms) and
uniform off-diagonal exchange (�′ terms) interactions. Via variational Monte Carlo calculations and spin-wave
theory, we find that an out-of-plane magnetic field can induce different types of long-range magnetic orders,
no matter if the ground state is a nonmagnetic dimerized state or an ordered Néel state. Furthermore, the
critical properties of field-driven phase transitions in the presence of spin-orbit couplings, as illustrated from
the spin-wave spectrum and interpreted by the effective field theory, can be different from the conventional
magnon BEC. Our study is helpful to understand the rich phases of spin-orbit coupled antiferromagnets induced
by magnetic fields.

DOI: 10.1103/PhysRevB.105.094401

I. INTRODUCTION

Quantum magnetism, which involves interacting spins and
orbitals in magnetic materials, is a good platform for in-
vestigating many-body physics. The quantum dimer magnet
(QDM), a nonmagnetic ground state constituted by distinct
singlet dimers, is one of the simplest examples of quantum
magnets having no classical correspondence. An example of
QDMs is the antiferromagnetic (AFM) Heisenberg model on
the distorted honeycomb lattice, where the thicker bonds [e.g.,
the vertical bonds, see Fig. 1(a) for illustration] form discon-
nected dimers. Since the interactions on the thinner bonds are
relatively weaker, the ground state can be approximately con-
sidered as a direct product of singlets formed by the dimers.
The excitation on each singlet dimer forms a triplet, which is
bosonic and sometimes called a “magnon”.

It was proposed that the magnons in QDMs can undergo
BEC [1] just like usual Bose gas [2]. An external magnetic
field can adjust the “chemical potential” of magnons, con-
sequently, a magnon-BEC phase appears in the intermediate
field region, which is sandwiched by the dimerized phase
at the low-field side and the polarized phase (PP) at the
high-field side. The magnon BEC was experimentally veri-
fied later [3–12]. As is known that the BEC of usual bosons
spontaneously breaks the particle number conserving global
U(1) symmetry, similarly the BEC of magnons spontaneously
breaks the SO(2) spin rotational symmetry [13,14]. Here the
SO(2) group comprises continuous spin rotation along the
direction of the magnetic field. The spontaneous breaking
of SO(2) symmetry indicates the appearance of long-range
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antiferromagnetic order in the plane perpendicular to the field
direction, and the orientation of magnetic momentums is de-
termined by the “global phase” of the magnon condensate.

Generally, in the real magnetic materials, the continuous
SO(2) symmetry explicitly breaks down into its discrete sub-
groups if the system contains anisotropic interactions, such as
dipole-dipole interactions or spin-orbit coupling (SOC) [15].
If the energy scale of the factors that cause the anisotropy
is very weak compared to the ordering temperature, the low
energy physics is approximately described by SO(2) conserv-
ing theory [16–18]. Therefore it is expected that the physical
picture of magnon BEC still works under an external mag-
netic field. If the anisotropy of magnetic properties is strong
enough, the physical consequences of the applied magnetic
field will be modified. For instance, in an external magnetic
field, the dimer compound Yb2Si2O7 [19] contains two inter-
mediate phases between the dimerized state and PP, which
is beyond the usual magnon BEC mechanism. A previous
theoretical work attributes the existence of two nontrivial
intermediate phases to the anisotropy in the exchange inter-
actions and the staggered Landé g factor [20].

On the one hand, in the layered honeycomb “Kitaev mate-
rial” α-RuCl3 where SOC plays an important role [21–23], the
dominant interactions are not AFM Heisenberg interactions
but Kitaev interactions and other off-diagonal interactions. At
ambient pressure, the α-RuCl3 undergoes a first-order phase
transition to a nonmagnetic dimerized phase [24–27]. Another
example is the previously mentioned dimerized honeycomb-
lattice material Yb2Si2O7 which may also have SOC-caused
anisotropies since the Yb3+ cation is very heavy. This raises
an interesting question: will the strong SOC affect the magnon
condensation? In the present work, we will address this ques-
tion by studying the physical consequence of strong SOC to
dimerized antiferromagnets. It will be illustrated that although
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(a) (b)

FIG. 1. (a) The x, y, and z bonds in J-�′ model are shown and the
thickness of bonds shows the strength of Heisenberg (J) interactions.
The elliptic shadings stand for singlets formed by dimerized spins.
The crystallographic a (in-plane), b (in-plane), and c (out-of-plane)
directions are indicated, whose directions are given by [110], [112],
and [111], respectively. (b) The corresponding Brillouin zone (BZ)
of a honeycomb lattice spanned by unit vectors �a1 and �a2.

the continuous symmetry is no longer a good approximation,
the magnetic-field-induced long-range AFM orders are quite
general in dimerized antiferromagnets with SOC. The mag-
netic order in the intermediate field region can be either Néel
order, or stripe order, or zigzag order, depending on the details
of interactions. Even when the ground state is Néel ordered
state at zero field (owing to strong SOC), the in-plane stripe
order or the zigzag order can still emerge in the intermediate
field region.

We will begin with an antiferromagntic spin model on
the distorted honeycomb lattice with finite SOC. It includes

Heisenberg J terms and off-diagonal �′ terms, namely,

H=
∑

〈i, j〉∈γ

Jγ Si · S j + �′(Sα
i Sγ

j +Sγ
i Sα

j +Sβ
i Sγ

j +Sγ
i Sβ

j

)
−gμB

∑
i

B · Si, (1)

where 〈i, j〉 denotes nearest-neighbor sites, α, β, γ = x, y, z
stand the spin indices, and γ = x, y, z is also used to label the
three types of bonds [see Fig. 1(a) for illustration]. We adopt
the setting with gμB = 1 and Jz = J , Jx = Jy = (1 − δ)J , δ ∈
[0, 1). For simplicity, the magnetic field is oriented along
c direction. With variational Monte Carlo (VMC) calcula-
tions using Gutzwiller projected states as trial wave functions,
we found that field-induced magnetic orders, including Néel
order, zigzag order, and stripe order, can appear in the interme-
diate magnetic fields (see Figs. 2 and 3 for phase diagrams).
This suggests that the SOC-caused frustration is crucial to
understand the nature of the field-induced quantum critical
points (QCP) and magnetic orders in the intermediate field re-
gion (see Refs. [28–30] for another example of model study).

The rest part of the paper is organized as follows. In
Sec. II, we introduce the symmetry group of the extended
Heisenberg model (the J-�′ model) on the honeycomb lat-
tice. In Sec. III, we present the technical details of the VMC
method, especially for the ground state and excited states.
Readers who are not interested in the details of the method can
skip Sec. III and go to Sec. IV directly, where the VMC results
are presented. Section V is devoted to the spin-wave theory
and effective field theory aiming to understand the origin of
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FIG. 2. Schematic phase diagram of the J-�′ model on the distorted honeycomb lattice in a magnetic field along c direction. (a) The
low-field quantum phase diagram contains two phases, the QDM phase (lower) and the AFMc phase (upper), separated by a continuous
transition (illustrated by the solid line). In the AFMc phase, the magnetic momentum is parallel to the c-direction. (b) With increasing of
field strength, different canted deformation of magnetic orders (including AFMab, stripe, and zigzag) appear at the intermediate field region,
accordingly the QDM (AFMc) phase splits into three different pieces labeled with I, II, III (IV, V, VI). (c) A polarized phase (PP) with magnetic
momentums along c direction in the high-field phase diagram. Representative ground-state spin configurations in the corresponding phase of
phase diagrams are shown below.
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FIG. 3. Phase diagrams of the J-�′ model in the magnetic field
along c-direction with I: δ = 0.9, �′/J = 0, II: δ = 0.85, �′/J =
0.2, III: δ = 0.9, �′/J = 0.2, IV: δ = 0.4, �′/J = 0.4, V: δ = 0.7,
�′/J = 0.4, and VI: δ = 0.9, �′/J = 0.4. I–III show phase diagrams
with increasing fields, corresponding to the three stellate points in
regions I–III of Fig. 2(b), respectively, while IV–VI are phase dia-
grams for the three circles in regions IV–VI of Fig. 2(b), respectively.
The red solid (blue hollow) points represent first-order (continuous)
phase transitions.

the intermediate magnetically ordered phases and the nature
of QCP. Finally, the paper is concluded in Sec. VI.

II. SYMMETRY GROUP OF THE SPIN MODEL

Generally, SOC in quantum magnets locks the spin rota-
tion operations with the corresponding lattice rotations and
hence reduce the continuous spin rotation symmetries to dis-
crete ones. A class of spin-orbit coupled antiferromagnets
on the honeycomb lattice has the discrete symmetry group
D3d [31–35] and contains anisotropic spin-spin interactions
in addition to the isotropic Heisenberg exchanges (J terms).
The anisotropic exchange interactions include, the diagonal
Kitaev exchange interactions Sγ

i Sγ
j (K terms) [36–38] and the

off-diagonal exchange interactions such as Sα
i Sβ

j + Sβ
i Sα

j in-

teractions (� terms) [39–41] or Sα
i Sγ

j + Sγ
i Sα

j + Sβ
i Sγ

j + Sγ
i Sβ

j

interactions (�′ terms) [42–45], here α, β, γ = x, y, z and
we have only listed the interactions on the γ bond.

On the other hand, some honeycomb-lattice materials are
dimerized where the threefold rotational symmetry is absent.
Supposing that the z bonds are shorter than the other bonds,
then it is expected that the strength of interactions is stronger
on the z bonds (see Fig. 1). In the present work, we will focus
on the simple model (1) on dimerized honeycomb lattice con-
taining J and �′ interactions only. Here we adopt the �′ term
but do not consider other terms because the �′ interactions
can give rise to a richer magnetic structure. For simplicity,
we assume that the strength of �′ interactions is equal on
all the bonds, while the strength of the Heisenberg terms is
anisotropic. Thus we introduce a parameter δ to denote the

relative difference of J between the z bonds and the x, y
bonds. We apply the magnetic field along the c direction with
B = Bc(1, 1, 1)/

√
3.

If δ = 0, B = 0, the system has D3d × ZT
2 symmetry [46],

where ZT
2 stands for the time reversal symmetry. If δ �= 0, B =

0, the system has {E ,P, C2,M} × ZT
2 magnetic point-group

symmetry [47], with P the spatial inversion, C2 the twofold
rotation along the z bond, and M = C2P the mirror reflection
symmetry. For general values of δ and B (e.g., δ �= 0, B �= 0),
the symmetry of the model reduces to the following magnetic
point group 2′/m′ = {E ,P, C2T ,MT }, with T the time re-
versal.

In the following, we will study the phase diagram and
the nature of the phases for the spin model (1) using VMC
approach.

III. THE VMC APPROACH

A. For the ground states

The VMC approach is based on spinon representation,
where the spin operators are written in quadratic forms
of fermionic spinons Sm

i = 1
2C†

i σ mCi, where C†
i = (c†

i↑, c†
i↓),

m ≡ x, y, z, and σ m are Pauli matrices. The particle num-
ber constraint, N̂i = c†

i↑ci↑ + c†
i↓ci↓ = 1, should be imposed

at every site such that the size of the Hilbert space of the
fermions is the same as that of the original spin. It is con-
venient to introduce the matrix operator ψi = (Ci, C̄i ) with
C̄i = (c†

i↓,−c†
i↑)T such that the spin operators can also be writ-

ten as Sm
i = Tr(ψ†

i
σ m

4 ψi ). Since the spin operator is invariant
under a local SU(2) transformation ψi → ψiWi, the fermionic
spinon representation has an SU(2) gauge symmetry [48].

The spin interactions are rewritten in terms of interacting
fermionic operators and are further decoupled into a noninter-
acting mean-field Hamiltonian. Then we perform Gutzwiller
projection to the mean-field ground state |	mf (R)〉 to en-
force the particle number constraint. The projected states
|	(R)〉 = PG|	mf (R)〉 provide a series of trial wave func-
tions depending on the choice of the mean-field Hamiltonian
Hmf (R), where PG denotes a Gutzwiller projection and R
are treated as variational parameters. The energy of the trial
state E (R) = 〈	(R)|H |	(R)〉/〈	(R)|	(R)〉 is computed us-
ing Monte Carlo sampling, and the optimal parameters R are
determined by minimizing the energy E (R). In the follow-
ing, we will focus on the construction of the trial mean-field
Hamiltonian.

The Heisenberg interactions can be decoupled into a non-
interacting fermionic Hamiltonian,

HJ
mf =

∑
〈i, j〉∈γ

(tγC†
i Cj + 
γC†

i C̄ j + H.c.)

+
∑

i

Tr(λi · ψiτψ
†
i ), (2)

where tγ denotes singlet hopping and 
γ represents singlet
pairing. λx,y,z are three Lagrangian multipliers to ensure the
SU(2) gauge invariance (where the λz component corresponds
to the particle number constraint).

To decouple �′ interactions in the model (1), we adopt the
“Kitaev-type” mean-field Hamiltonian appeared in literature
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FIG. 4. Energy curves (the upper figures) and magnetization of ground states (the lower figures) with increasing magnetic field for [(a) and
(b)] δ = 0.9, �′/J = 0, [(c) and (d)] δ = 0.85, �′/J = 0.2, and [(e) and (f)] δ = 0.9, �′/J = 0.2, which are points in regions I, II, and III with
star [see Fig. 2(b)], respectively. The insets of (a), (c), and (e) show the spin configurations of AFM, stripe, and zigzag orders, respectively.
The vertical dashed lines indicate the values of the critical fields.

[46,47,49,50], namely,

H�′
mf =

∑
〈i, j〉∈γ

iρcTr(ψ†
i ψ j + τ xψ

†
i σ xψ j + τ yψ

†
i σ yψ j

+ τ zψ
†
i σ zψ j ) + iρbTr(ταψ

†
i σγ ψ j + τ γ ψ

†
i σαψ j

+ τβψ
†
i σγ ψ j + τ γ ψ

†
i σβψ j ) + H.c. (3)

where ρb and ρc are both real numbers. Note that τ x,y,z

are generators of the SU(2) gauge group [46]. Meanwhile, the
mean-field Hamiltonian H�′

mf preserves all symmetries of the
original system through projective symmetry group [51]. The
Zeeman coupling is simply written as

HB = −
∑

i

Tr
(

B · ψ
†
i

σ

2
ψi

)
. (4)

Finally, to describe the field-induced magnetic order in the
J-�′ model, we introduce a background field Mi to induce the
symmetry-breaking magnetic order. The ordering pattern Mi

is assumed to contain a single momentum Q with [41]

Mi = M(sin φ[êx cos(Q · ri ) + êy sin(Q · ri )] + cos φ êz ),

where Q is the ordering momentum, êx,y,z are the local spin
axes, and φ is the canting angle. The ordering momentum Q is
adopted either from the classical ground state or the classical
metastable states (the Q from the classical ground state is
not always the one with the lowest energy after quantum
corrections are considered). For a given Q, the local axes
êx,y,z are fixed as they are in the classical state, while M and
φ are treated as variational parameters. Hence, the complete
trial mean-field Hamiltonian (with nearest-neighbor coupling

terms only) for the J-�′ model in an external magnetic field
reads

H total
mf = HJ

mf + H�′
mf + HB − 1

2

∑
i

(Mi · C†
i σCi + H.c.). (5)

The complete set of variational parameters include (tγ , 
γ ,
ρb, ρc, λ, M, φ) whose optimal values are determined by min-
imizing the energy of the Gutzwiller projected wave function.

In the variational process, we first choose a classical
metastable configuration with Q, then optimize the energy
of the projected state. By comparing the optimal energies of
different trial Qs, we obtain the approximate ground state. In
addition to determining the phase diagram (see Figs. 2–4),
the VMC method can further provide information on the low-
energy excitations.

B. For the spinon-excited states

Now we try to construct the low-energy excitations via
Gutzwiller projected spinons excited states

|k; (k − q)m, (q)n〉 = PG f †
k−q,m f †

q,n|	mf〉, (6)

where fk−q,m and fq,n are eigen particles of the mean-field
Hamiltonian, with m, n the band indices and k, q the lattice
momentum according to the translation operators.

The above two-spinon excitations form a continuum and do
not correctly describe the low-energy excitations of the sys-
tem. The failure of the state (6) in describing the low-energy
excitations is owing to the strong gauge interactions between
the spinons which are not correctly addressed. To partially
solve this problem, we diagonalize the original Hamiltonian in
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FIG. 5. Energy spectrum at � point (k = 0) as a function of magnetic field strength, where the interaction parameters are fixed as δ = 0.9,
�′/J = 0 for [(a) and (b)] and δ = 0.8, �′/J = 0.1 for (c). (a) VMC is used in the QDM phase. At Bc = 0, the system has a spin-singlet ground
state, gapped triplet excitations (with Sc = 0, ±1) owing to the continuous SU(2) spin rotational symmetry and higher-energy continuum
spectra. All these states are unaffected by the field below |Bc/J| < 0.89 but the energy changes linearly with Bc until the gap closes. (b) Exact
diagonalization in Sc = L/2 − 1 space is used in the polarized limit. As Bc/J � 1.2, the ground state is fully polarized with Sc = L/2, while
the excited states with Sc = L/2 − 1 form a continuum with a gap above the ground state. These states are unaffected by the field but the
energy changes linearly with Bc until the gap closes at Bc/J = 1.2. (c) VMC is used in the QDM phase with finite SOC. The lowest energy
excitation states at Bc = 0 are not degenerate because of explicit breaking of SU(2) symmetry. However, the field dependence of the energy
lines marked with black, blue, red are very similar to the case in (a) where the SO(2) rotation symmetry is preserved.

the subspace spanned by the two-spinon excitation continuum
[52–55]. specifically, we calculate the matrix elements of the
matrix H (k) with

Hpmn,qm′n′ (k) = 〈k; (k − p)m, (p)n|H |k; (k − q)m′ , (q)n′ 〉,
where k is the total momentum of the state with a pair of
spinons excitation. The dimensionality (2N × C) of this ma-
trix H (k) is equal to twice the total number of sites N times
the size of the unit cell C in the corresponding mean-field
Hamiltonian.

Since the states in the two-spinon continuum are not or-
thogonal, we need to calculate the metric matrix g formed by
the overlap of the states,

gpmn,qm′n′ (k) = 〈k; (k − p)m, (p)n|k; (k − q)m′ , (q)n′ 〉.
Hence, the eigenproblem of H (k) should be calculated by

g−1(k)H (k)U = U · diag(ε1, . . . , ε2CN ),

where the eigenvalues ε1, . . . , ε2CN are the “renormalized”
energy of the excitations.

The renormalized eigenfunction |k〉rn is given by

|k〉rn =
∑
q∈BZ

F (qmn)|k; (k − q)m, (q)n〉,

where F (qmn) is the eigenvector of the matrix H .
It will be shown that in the magnetically ordered phase

the two-spinon excitations are strongly renormalized and the
bound state formed by the spinons pair behaves like a magnon
(see Figs. 5 and 6).

IV. THE VMC RESULTS

A. The phase diagram

Our VMC calculations are performed on a tori of 6 × 6
unit cells, i.e., of 72 lattice sites. The main results are shown
in Fig. 2. The (�′, δ)-parameter space is divided into sev-
eral different regions. Firstly, when B = 0, the phase diagram

contains two phases that are separated by the solid line. The
lower one is a QDM, while the upper one is a Néel ordered
state locating perpendicular to the honeycomb plane (namely,
AFMc). The phase transition between both gapped phases
is of second order with a dynamical critical exponent z = 1
(see Appendix A 2 for details) which is characterized by the
spontaneous breaking of spatial inversion symmetry.

When B �= 0, according to patterns of magnetic orders at
intermediate magnetic fields, each phase is divided into three
different regions [see Fig. 2(b) for details].

In region I, the �′ interaction is relatively small, the SOC
is not strong enough to change the physics of magnon BEC.
Namely, there is an intermediate canted AFM order with
Néel pattern in the plane perpendicular to the field (namely,
AFMab) between the low-field QDM and the high-field PP
[see Fig. 4(a) for illustration], just as the case with �′ =
0. The magnon excitations are gapless in the intermediate
AFMab phase although �′ �= 0, on account of a continuous
U(1) degenerate manifold of ground states in the correspond-
ing classical model [56]. Quantum fluctuations lifts the U(1)
degeneracy and leads to the pseudo-Goldstone mode, which is
known as order-by-disorder effect [57]. It can also be seen that
either the canted stripe order or canted zigzag order with the
long-range magnetic order in the plane perpendicular to the
field (namely, stripe or zigzag) is competing in energy with
the Néel state. With the increasing of field strength, the phase
transitions into the AFMab phase and out of AFMab phase are
both of second order, which is the same as the case with �′ =
0. Here we clarify the fact that the magnetization of the ground
state has a small jump at the low-field transition point, which
seems to indicate a weakly first-order transition. We speculate
that this is an artifact owing to the VMC method, where the
magnetic order is induced by a static background field. We
could resolve the problem through “renormalization” in VMC
framework that allows the ground state to include more spin-
wave fluctuations, which will smoothen the magnetization
curve. Meanwhile, the nature of the phase transitions will be
analyzed in the next section using the renormalized spinons
excitations.
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FIG. 6. (a) VMC excitation spectrum and (b) dynamic structure factor for the AFMab phase (in a system with 72 sites) with parameters
δ = 0.6, �′/J = 0, and Bc/J = 1. The black dashed line in (a) is the energy of the ground state before the renormalization, while the red dot
stands for the ‘renormalized’ one. The inset of (a) shows the one-magnon bands from LSWT, and the inset of (b) illustrates the BZ and the
path of the excitation spectrum.

With the increasing of �′ and δ, the region II shows up.
The difference is that in the intermediate phase, the stripe
ordered state is slightly lower in energy than the Néel state
and the zigzag state [see Fig. 4(c) for illustration]. In the
stripe ordered phase, the spin components in the honeycomb
plane are pointing along [211] direction [see Fig. 4(d)], al-
though the canting direction is slightly away from c-direction.
Among the symmetry elements 2′/m′ = {E ,P, C2T ,MT } of
the Hamiltonian, the C2T and MT symmetries are broken by
the stripe order. The magnon excitations of the stripe phase
are gapped, which is different from the case in AFMab state.
Our numerical simulations strongly suggest that the transition
between the intermediate stripe state and the dimerized (or
polarized) phase is continuous, which is in agreement with its
spontaneous symmetry breaking.

With further increasing of δ, the system enters region III,
where the intermediate phase exhibits zigzag type magnetic
order [see Fig. 4(e) for illustration]. The in-plane zigzag order
is orienting along the [110] direction [see Fig. 4(f)], which
breaks the C2T symmetry but preserves the MT symmetry.
The magnon excitations of the zigzag phase are also gapped.
The phase transition between the intermediate zigzag state and
the dimerized (or polarized) phase is also continuous owning
to spontaneous symmetry breaking, which is the same as the
case in region II.

In the left up region, owing to the relatively large �′, the
zero-field ground state is no longer QDM with singlet dimers
but is replaced by an AFMc state. Among the symmetry
elements 2′/m′ = {E ,P, C2T ,MT } of the Hamiltonian, the
MT and P symmetries are broken by the AFMc order at low
fields. According to the response to the magnetic field, this
region is further divided into three parts. In the first part, with
the increase of magnetic field, there is an intermediate AFM
ordered state (with Néel pattern in the honeycomb plane,
called AFMab) under a proper magnetic field as in region-I
[see Figs. 2(b), 3(I), and 3(IV)]. In the second part, there is
an intermediate stripe phase under a proper magnetic field
as in region II [see Figs. 2(b), 3(II), and 3(V)]. In the last
part, there is also an intermediate phase that exhibits zigzag

order as in region III [see Fig. 2(b), 3(III), and 3(VI)]. The
magnon excitations are also gapped in the intermediate stripe
and zigzag phases. In all the above cases, the phase transition
from the intermediate phase to the dimerized or polarized
phase is continuous, while the transition from the intermediate
phase to the low-field AFMc phase is of first order (for details
see Appendix A).

From the phase diagram, we can see that the dimerized
ground state is not a necessary starting point for the existence
of the field-induced intermediate magnetically ordered phase.
Therefore the physics of this system would be further enriched
by proper SOC.

B. Excitations and dynamical properties

In this section, we will focus on the low-energy excitations
from the VMC approach. We first illustrate the closure of
magnon excitation gap, which causes the condensation of
magnons, and then show the dynamic structure factor of the
intermediate phase.

1. Low-field and high-field limit

As a typical example, we mainly focus on the interaction
parameter region of the dimerized phase. In the dimer-
ized phase, the spinons are confined in the singlet (S =
0), three energy-degenerate triplets (S = 1), and high-energy
continues.

The renormalized excitation spectrum for � point are
shown in Fig. 5(a). Here we can clearly see the singlet and
triplet states at low energies, and higher energy continues.
Because SOC disappears here, Sc along the magnetic field
(i.e., c direction) is a good quantum number, then we could
divide them into three classes according to Sc = −1, 0, 1.
When a magnetic field is added, Zeeman terms are added.
In orthogonal normalization excitation space, Zeeman terms
only appear in diagonals, which produce a splitting of energy
without a change of state. Energy splitting lines between sin-
glet and triplet states are plotted in Fig. 5(a), they close the

094401-6



MAGNON CONDENSATION IN DIMERIZED … PHYSICAL REVIEW B 105, 094401 (2022)

FIG. 7. Condensation of magnons (the lowest band in LSWT) at the upper critical point. (a) δ = 0.8, �′/J = 0.1, the magnon gap closes
at the � point (k = 0) with a quadratic dispersion; (b) δ=0.85, �′/J=0.2, the magnon gap closes at the M1 point (k = b1/2 or k = b2/2) with
a linear dispersion; (c) δ=0.9, �′/J=0.2, the magnon gap closes at point the M2 point (k = b1/2 + b2/2) with a linear dispersion.

gap at Bc/J ≈ 0.89, which means a continuous transition, i.e.,
magnon BEC.

At the high-field limit, the polarized state is the ground
state, and Sc = L/2 is also a conserved quantity. The space
of low-energy excited states is Sc = L/2 − 1 with dimen-
sion L, hence we could obtain exact Hamiltonian H in this
space, Hi, j = 〈i|H | j〉, where |i( j)〉 means the configuration
flip i( j)th from the polarized state. Then diagonalize H to
get the excitation spectrum with various fields, as shown in
Fig. 5(b). When the magnetic field drops to Bc/J = 1.2, the
gap closing also indicates a continuous phase transition from
the polarized phase to the AFMab phase. These results are
consistent with previous studies [13,14], which once again
demonstrate the reliability of our VMC method. If SOC ap-
pears (namely, nonzero �′ interactions), similar results will
indicate continuous phase transitions as shown in Fig. 5(c).

2. Dynamical structure factor in the intermediate phase

Now we study the low-energy physics of the intermediate
phase and will focus on the AFMab phase as an example.
We will calculate the excitation spectrum and the dynamic
structure factor (DSF) [58] with interaction parameters δ =
0.6, �′/J = 0, and Bc/J = 1.

The excitation spectrum and DSF for the AFMab phase
are obtained from the renormalized spinons excitations as
discussed in Sec. III B. For simplicity, we consider the path
in momentum points as plotted in the inset of Fig. 6(b), which
includes two different K points and three different M points.
The magnons as bound states of spinons are clearly seen in
Fig. 6(a), which are well separated from the continuum. Es-
pecially, the lowest energy band (the orange solid line) agrees
well with the lowest magnon band calculated from the linear
spin-wave theory (LSWT) [see the insert of Fig. 6(a)]. The
small gap at the � point in the magnon is owing to the system
size effect. However, the second excitation band [the orange
dashed line in Fig. 6(a)] is dispersive and deviates with the
dispersion of the upper magnon band (which is quite flat) in
LSWT.

Figure 6(b) shows the zz component of the DSF which can
be measured in neutron scattering experiments,

Szz(q, ω) =
∑

n

∣∣〈	q
n

∣∣Sz
q|	0〉

∣∣2δ(ω − Eq
n + E0

)
,

where |	0〉 is the variational ground state with energy E0

and |	q
n 〉 is the nth renormalized two-spinon excited state

with momentum q and energy Eq
n . We note that Sz

q =
1√
L

∑
r exp[iq · r]Sz

r is the Fourier-transformed spin operator
for the component z, with L being the number of sites in the
system.

Comparing Figs. 6(a) and 6(b), it can be seen that the
lower magnon band contributes an enormous weight in the
DSF data. In contrast, the second band in the renormalized
excitations, which is dispersive, has a very small weight.
However, there is indeed an almost flat band in the DSF data at
around ω/J ≈ 1, whose dispersion is qualitatively consistent
with the upper magnon band in LSWT. Therefore it is better
not to identify the second excitation band (the dashed line)
in Fig. 6(a) as the upper magnon band, instead, the upper
magnon band locates somewhere inside the continuum. If
this is true, then it means that there is a nonzero density of
states between the lower and upper magnon bands, which is
quite unusual in quantum antiferromagnets. The weight of the
DSF signal for the magnon bands almost vanishes at some
momentum points, the reason might be that we only consid-
ered the zz-component. Finally, the higher-energy continuum
contributes small but nonzero weight to the DSF, showing that
quantum fluctuations at ω > J (above the magnon bands) is
not negligible. The DSF for the intermediate stripe and zigzag
ordered phases will not be shown here.

V. MAGNON CONDENSATION AND CRITICAL
PROPERTIES

A. Higher-field critical points

In this section, we will adopt the Holstein-Primakoff (HP)
representation [59] of spins and calculate the magnon spec-
trum. As illustrated above, at the critical point where the
magnon gap closes, the magnons condense and the system
undergoes a continuous phase transition. If the magnon gap
closes at momentum Q of BZ, then after the phase transition
the system exhibits a long-range magnetic order whose static
structure factor supports a peak at momentum Q. To the end,
we will find that spin-wave theory is qualitatively consistent
with VMC calculations.

We will start with the polarized state in the high field limit,
where the excitations are gapped bosonic magnons. Actually,
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FIG. 8. Condensation of magnons (the lowest band in SU(4) LSWT) at the lower critical point. (a) δ = 0.8, �′/J = 0.05, the magnon
gap closes at the � point with a quadratic dispersion; (b) δ=0.9, �′/J=0.1, the magnon gap closes at the M1 point with a linear dispersion;
(c) δ = 0.95 and �′/J = 0.1, the magnon gap closes at the M2 point with a linear dispersion.

when in the Bc → ∞ limit, the system approximately recov-
ers the SO(2) symmetry (and hence the magnon-BEC picture
approximately works). If the magnetic field is oriented along
c direction, we can choose the c direction as the new z axes.
To this end, we perform a uniform orthogonal transformation
[R ∈ SO(3)] without changing the excitation spectrum,⎛⎜⎝S′x

i

S′y
i

S′z
i

⎞⎟⎠ =

⎛⎜⎜⎝
1√
2

−1√
2

0

1√
6

1√
6

−2√
6

1√
3

1√
3

1√
3

⎞⎟⎟⎠
⎛⎜⎝Sx

i

Sy
i

Sz
i

⎞⎟⎠. (7)

Thus the model (1) is transformed into a new one under the
above rotation matrix R,

H =
∑

〈i, j〉∈γ

S′T
i H′

γ S′
j −

∑
i

B′ · S′
i, (8)

where H′
γ = RHγRT and B′ = BRT.

To obtain the spin-wave spectrum, we will adopt the HP
representation in the new spin frame on the A sublattice,

S′x
i = 1

2
(a†

i

√
1 − a†

i ai +
√

1 − a†
i aiai ) ∼ 1

2
(a†

i + ai ),

S′y
i = i

2
(a†

i

√
1 − a†

i ai −
√

1 − a†
i aiai ) ∼ i

2
(a†

i − ai ),

S′z
i = 1

2
− a†

i ai, (9)

where the bosons satisfy the usual commutation relations
[ai, a†

j ] = δi j . We could construct HP representation on the B
sublattice by the same way [ai → bi in (9)]. Substituting the
above formulas into the rotated Hamiltonian (8) and keeping
the quadratic terms, we obtain the following Hamiltonian on

TABLE I. The dynamic critical exponent of field-induced QCP
with or without �′ interactions from spin-wave theory.

Parameter Intermediate phase Lower QCP Upper QCP

�′ = 0 AFMab z = 2 z = 2
AFMab z = 2 z = 2

�′ �= 0 Stripe z = 1 z = 1
Zigzag z = 1 z = 1

the Fourier bases:

HSW =
∑

k

	†(k)H(k)	(k), (10)

where 	†(k) = (a†
k, b†

k, a−k, b−k ) with a†
k (b†

k) being the
magnon creation operator on sublattice A (B). It is very
important to note that, unlike the fermionic case, the
eigenenergies and eigenmodes in this case are obtained
by diagonalizing the non-Hermitian matrix �H(k), where
� = diag(1, 1,−1,−1). Thus diagonalizing the above non-
Hermitian matrix, we get the magnon excitations spectrum
(see Appendix B for details).

The magnon gap decreases when lowering the field
strength. At a critical field, the magnon gap closes at a cer-
tain momentum point in the BZ (see Fig. 7) and the system
undergoes a continuous phase transition. The momentum at
which the magnon gap closes depends on the interaction pa-
rameters. If one further decreases the field strength, then the
magnon spectrum in spin-wave Hamiltonian (10) will have an
imaginary part, indicating that the polarized phase is unstable.
To avoid the instability in the excitation spectrum, the system
enters an ordered phase where the pattern of spins exhibit
a different configuration. In other words, the condensation
of magnons results in a long-range magnetic order and the
excitation spectrum changes accordingly.

If �′ term is small, the magnons condense at the � point
(i.e., k = 0) and the system exhibits canted Néel order after
the phase transition. As shown in Fig. 7(a), the dynamic
critical exponent is z = 2 at the transition point (owning to
the quadratic dispersion), which is the same as the conven-
tional magnon BEC [14] with �′ = 0. On the other hand,
if the magnons condense at the M1 point (i.e., k = b1/2 or
k = b2/2), then the system transits to the stripe phase and if
the magnons condense at the M2 point (i.e., k = b1/2 + b2/2),
then the system exhibits zigzag order. In these cases, the
dynamical exponent is z = 1, as shown in Figs. 7(b) and 7(c)
where the magnon gap closes linearly. From the dynamic criti-
cal exponent, it is expected that the correlation length near the
critical point is given by ξ ∼ |Bc − Bcritical|−ν with ν = 1/z in
two spatial dimension if the continuous SO(2) symmetry is
present [60].

The above conclusions are consistent with conventional
Landau-Ginzberg theory. Effective actions can be constructed
to interpret the response to a magnetic field from general
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symmetry principle and spin-wave calculations [29,30,61]
(see Appendix D for details). For example, when SOC is very
weak, the effective action with the dynamic exponent z = 2
describing the continuous phase transition from the high-field
PP to the intermediate AFMab phase is given by

S =
∫

dτd2r
(
ψ∗∂τψ + v2

a1
|∂a1ψ |2

+ v2
a2

|∂a2ψ |2 − μ|ψ |2 + U |ψ |4), (11)

where μ = Bcritical − Bc, U > 0, and ψ is a complex order
parameter. The universality class for the quantum phase tran-
sition (QPT) is nothing but the z = 2 3D XY universality
class. If SOC is strong enough, the effective action is switched
to another one with dynamic exponent z = 1 which describes
the continuous phase transition from the high-field PP to the
intermediate zigzag (or stripe) phase

S =
∫

dτd2r
(
(∂τψ )2 + v2

a1
(∂a1ψ )2

+ v2
a2

(∂a2ψ )2 − μψ2 + Uψ4
)
, (12)

where ψ is a real order parameter. And the universality class
for the QPT may be the z = 1 3D Ising universality class. It is
important to note that these various effective actions produce
all these quantum phases and corresponding excitation spec-
trum discovered by the microscopic calculations. Therefore
SOC is crucial to understand the nature of the field-induced
QCP beyond the conventional magnon BEC.

B. Lower-field critical points

Now we go to the low field limit. When SOC is weak, the
system enters the dimerized phase in a small magnetic field.
As illustrated in the previous section, the magnon bands split
into three branches (for details see Appendix A) and the gap
of the lowest branch (b+) decreases linearly with the field
strength. Finally, the magnon gap closes and the system enters
an intermediate ordered phase when the field strength reaches
a critical value.

To obtain the critical exponent at the lower critical points,
we consider each z bond as an effective site, which contains
four internal degrees of freedom. By regarding the four bases
on each effective site as a “SU(4) spin”, by mapping the
four bases |↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉 on the dimer bond into four
species of boson operators

B† = (b†
↑↑, b†

↑↓, b†
↓↑, b†

↓↓),

we can figure out the SU(4) spin wave [62], where the “classi-
cal” ground state is a singlet formed by the two spin-1/2 spins
on each effective site

|Dimer〉 =
∏

i

[
1√
2

(b†
↑↓ − b†

↓↑)

]
i

|vac〉. (13)

By adopting the SU(4) HP approximation [63] and keeping
the quadratic terms only, we obtain the spin-wave Hamilto-
nian (see Appendix C for details of calculations), which can
be diagonalized using bosonic Bogoliubov transformation.

The dispersions of the b+ branch in SU(4) spin-wave the-
ory are shown in Fig. 8, it can be found that the dynamic
critical exponent at the lower-field critical point is the same

as that in the higher-field critical point (see Fig. 7 for illustra-
tion). Namely, the dynamic critical exponent is z = 2 for the
transition from the dimerized phase to the AFMab phase and
is z = 1 for the transitions from the dimerized phase to the
stripe phase or to the zigzag phase, which are summarized in
Table I. Meanwhile, based on symmetry analysis, the effec-
tive actions describing the continuous phase transition from
low-field dimerized phase to intermediate ordered phases are
similar to the ones from high-field PP to intermediate ordered
phases and will not be repeated here.

When �′ interaction is large enough, the gap of the b0

branch will close, which means that the ground state will
become Néel order where the spins are oriented perpendicular
to the honeycomb plane (called AFMc) through a contin-
uous phase transition. In this case, with the increasing of
field strength, the system enters field-induced in-plane ordered
phases by a first-order phase transition (see Appendix A for
details).

VI. CONCLUSIONS AND DISCUSSIONS

We studied the J-�′ model on the distorted honeycomb
lattice in a magnetic field via variational Monte Carlo method.
We conclude that in a dimerized antiferromagnet the external
magnetic field will generally induce an intermediate phase
with long-range AFM orders no matter if the ground state at
zero field is a nonmagnetic state with dimerized singlets or an
AFM ordered state. The ordering pattern in the intermediate-
field phase can be interpreted from the high-field or low-filed
limit, where the magnon gap closes at a certain point in the
Brillouin zone with decreasing or increasing of the magnetic
field strength. Starting from the general symmetry principle,
we provide the effective field theory for these phase transi-
tions. While the phase transitions are continuous, the nature
of the field-induced quantum critical points can be different
from the conventional magnon BEC.

In obtaining the classical order, we have used the canted
single-Q approximation. We cannot rule out the possibility
that the classical magnetic order is a multi-Q state [64,65] in-
stead of a single-Q state. Therefore the spin-orbit coupled spin
model deserves to study with different numerical approaches.

Although the experiments on the 4d or 4 f dimerized mag-
netic materials such as α-RuCl3 and Yb2Si2O7 motivate us
to study the effect of SOC on magnon BEC, in the present
work we are not aiming to interpret the experimental data
for concrete materials but to address a general question: what
is the possible consequence of SOC on dimerized antiferro-
magnets. Notably, to interpret the experimental observations
in α-RuCl3 and Yb2Si2O7, one may need to consider more
interactions and carefully tune the parameters. We will leave
this for future study.
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APPENDIX A: PHASE TRANSITIONS TO AND
FROM AFMc

1. Relation between magnon condensation
and in-plane AFM order

The moment at which the magnon closes gap and con-
denses determines the pattern of the consequent magnetic
order. Suppose that the magnons condense at momentum k,
then Bogoliubov quasiparticle αk obtain nonzero expectation
values in the ground state. Noticing that the HP bosons a, a†

are nothing but spin operators S+ and S− (according to the
polarized state), so 〈Sx̃

i + iSỹ
i 〉 ∝ 〈αk〉e−ik·ri have nonzero ex-

pectation values (notice that here x̃ and ỹ stand for “in-plane”
directions perpendicular to the c axes). Therefore the gap clos-
ing at � or M1 or M2 point (here we have folded all the k points
to the first BZ) amounts to AFMab, stripe or zigzag order,
respectively. Note that the relation between the momentum of
the condensed boson and the pattern of the resulting in-plane
orders is discussed more accurately in Appendix D.

On the other hand, in the SU(4) spin-wave theory, if the
1√
2
(b↑↓ + b↓↑) boson condenses in the dimer state (eigenstate

of b↑↓ − b↓↑), then the ground state exhibits nonzero expecta-
tion values of 〈b↑↓ ± b↓↑〉 for each pair of spins on the strong
bonds (here ↑,↓ are eigenstates of Sc = S · c). This indicates
that the ground state exhibits nonzero AFM correlation for the
Sc operators, namely, the system enters the AFMc phase.

2. From the dimerized phase to AFMc order

When the magnetic field Bc = 0, with the increasing of �′
interactions, the system undergoes a continuous phase transi-
tion from the dimerized phase to the AFMc phase where the
spin orientation is parallel to the c direction (see Fig. 2). It’s
important to note that magnon excitations of AFMc (except
�′ = 0, δ � 0.5 line) is gapped from linear spin-wave theory
as shown in Fig. 9. A natural question is how to understand the
physical mechanism of phase transition. Because the dimer-
ized state has no classical counterpart unlike AFM order, it
is difficult to address this question by conventional LSWT
from AFMc order to dimerized phase. Hence, we will address
this question by SU(4) spin-wave theory (see Appendix C)
from dimerized phase to AFMc order. In the dimerized phase,
three magnons bands split from each other due to the appear-
ance of magnetic fields. We call the middle magnon band b0,
the lowest band b+, and highest band b−, respectively [see
Fig. 10(a)]. Meanwhile, the gap of the b0 band is independent
on the c direction field while the gap of the b+ or b− band
is dependent on the field. In other words, the gap of the b0

band does not respond to magnetic fields, which means the
b0 band supports an antiferromagnetic pattern in the direction
of the magnetic field. Thus the mechanism behind the phase
transition from dimerized phase to AFMc phase is that the
gap of the b0 band [in SU(4) spin-wave theory] will close as
�′ interactions increase. This condensation is at � point with
dynamic critical exponent z = 1 [see Fig. 10(b)].

FIG. 9. The spin-wave spectrum of AFMc order. (a) δ = 0.5,
�′/J = 0.01, and Bc/J = 0. The AFMc order appears here and it
becomes a gapped state due to nonzero �′ interactions. (b) δ = 0.5,
�′/J = 0, and Bc/J = 0. AFM order is gapless with a linear disper-
sion around � point (owning to continuous symmetry breaking).

3. From AFMc to the intermediate ordered phases

When turning on the magnetic field Bc, the AFMc state will
undergo two successive phase transitions from VMC calcula-
tions. The first transition is of first order, and the second one
is of second order. The first-order phase transition is reflected
by the level crossing of the energy curve of the ground state,
as shown in Fig. 11. It is important to note that the energy
difference between the ground state and other ordered states
in the intermediate field region is very visible (at least 10−2J
per site) although the difference between them looks small in
Fig. 11.

The occurrence of the first-order phase transition can also
be understood by comparing the nature of the two phases
from the SU(4) spin-wave theory (see Appendix C). To be spe-
cific, the in-plane AFM order (including the AFMab, the stripe
and the zigzag phases) results from the condensation of the
b+ band (at �, M1, or M2 point, respectively), see Fig. 10(c)
for a typical example. Noticing that for any given parameters
�′ and δ, there is only one intermediate phase between the
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FIG. 10. The SU(4) spin-wave spectrum. (a) δ = 0.6, �′/J = 0.02, and Bc/J = 0.3. The dimerized ground state appears here and three
magnon bands (namely, b+, b0, and b−, respectively) split from each other due to nozero magnetic fields. (b) δ = 0.6, �′/J = 0.05, and Bc/J =
0.3. The gap of the b0 band closes, and the condensation of the b0 band indicates the continuous transition from the dimerized state to AFMc

with a Néel pattern in the c direction. (c) δ = 0.6, �′/J = 0.02, and Bc/J = 0.49. The gap of the b+band closes, and the condensation of the
b+band indicates a continuous transition from the dimerized state to AFMab with canted axis along the c direction.

low-field region and the high-field polarized region. Therefore
the nature of the intermediate in-plane AFM ordered phases
in the whole phase diagram are essentially the same given that
the ordering pattern is the same. On the other hand, the AFMc

order can be attribute to the condensation of the b0 band [at the
� point, see Fig. 10(b)]. Hence, the phase transition between
the AFMc phase and the in-plane AFM phases should be of
first order.

Depending on the ordering pattern of the intermediate
phases (namely, AFMab, stripe or zigzag), the AFMc phase
splits into three regions labeled as IV, V, and VI, respectively.
It should be noted that the gapless line with �′ = 0, δ < 0.5 is
special, where the transition to the AFMab phase is of second
order and the critical field strength is zero. Namely, on this line
an infinitesimally small magnetic field can drive the system to
the AFMab phase.

Finally, we note that it is difficult to obtain the first-order
phase transition purely from LSWT (with AFMc order as a
starting point). From the magnon dispersion of the AFMc

state, one can still observe the gap closing when increasing
the field. Consequently, it seems that the system will undergo
a second-order phase transition into another intermediate or-
dered phase, e.g., an AFM′

ab phase. However, this AFM′
ab

phase has finite AFM order along the c direction, so it differs
greatly from the previously mentioned AFMab phase which

has uniform polarization along the c-direction. Our VMC cal-
culations show that before the magnon gap closing the system
has already entered the AFMab phase via a first order phase
transition. In other words, with increasing of the magnetic
field, the AFMc order vanishes with a jump and the AFM′

ab
phase never occurs in the phase diagram. The above discus-
sion also applies for the first-order transition from the AFMc

phase to the intermediate stripe phase or the zigzag phase.

APPENDIX B: SPIN-WAVE SPECTRUM AT HIGH FIELDS

To study the condensation of bosons from the polarized
phase, we adopt the linear spin-wave theory. Firstly, construct-
ing rotation matrix R such that the z direction of the local
coordinate system is parallel to the spin orientation:

S′ =

⎛⎜⎝S′x

S′y

S′z

⎞⎟⎠ = RS =

⎛⎜⎜⎝
1√
2

−1√
2

0

1√
6

1√
6

−2√
6

1√
3

1√
3

1√
3

⎞⎟⎟⎠
⎛⎜⎝Sx

Sy

Sz

⎞⎟⎠, (B1)

hence the S′z is along the original c direction.
Secondly, we rewrite the original Hamiltonian as

H =
∑

〈i, j〉∈γ

ST
i Hγ S j −

∑
i

B · Si, (B2)
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FIG. 11. Energy curves of the ground state with the increasing magnetic field (in the parameter region of AFMc at zero field).
(a) δ = 0.4, �′/J = 0.4, (b) δ = 0.7, �′/J = 0.4, (c) and δ = 0.9, �′/J = 0.4 are points in regions IV, V, and VI with circle [see Fig. 2(b)],
respectively. The vertical dashed lines indicate the values of the critical fields.
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where

Hx =

⎛⎜⎝Jx �′ �′

�′ Jx 0

�′ 0 Jx

⎞⎟⎠, Hy =

⎛⎜⎝Jy �′ 0

�′ Jy �′

0 �′ Jy

⎞⎟⎠,

Hz =

⎛⎜⎝Jz 0 �′

0 Jz �′

�′ �′ Jz

⎞⎟⎠.

Then we obtain the rotated Hamiltonian that is given by

H =
∑

〈i, j〉∈γ

ST
i RTRHγRTRS j −

∑
i

BRT · RSi

=
∑

〈i, j〉∈γ

S′T
i H′

γ S′
j −

∑
i

B′ · S′
i (B3)

and B′ is in the same direction with S′z. For convenience of
latter discussion, we introduce the notation

H′
γ =

⎛⎜⎝h′11
γ h′12

γ h′13
γ

h′21
γ h′22

γ h′23
γ

h′31
γ h′32

γ h′33
γ

⎞⎟⎠. (B4)

In the rotational basis, we perform a HP expansion on the A
sublattice

S′x
i = 1

2
(a†

i

√
1 − a†

i ai +
√

1 − a†
i aiai ) ∼ 1

2
(a†

i + ai ),

S′y
i = i

2
(a†

i

√
1 − a†

i ai −
√

1 − a†
i aiai ) ∼ i

2
(a†

i − ai ),

S′z
i = 1

2
− a†

i ai, (B5)

and the expansion on the B sublattice is similar. Keeping only
terms that contribute up to quadratic order in the Hamiltonian,
we will obtain the following spin-wave Hamiltonian in the
Fourier bases,

HSW =
∑

k

	†(k)H(k)	(k), (B6)

where 	†(k) = (a†
k, b†

k, a−k, b−k ) with a† (b†) being the
magnon creation operator on sublattice A (B). And H(k) is
4 × 4 matrix of the form [66]

H(k) = 1

2

(
Ak Bk

B∗
−k AT

−k

)
, (B7)

with Ak and Bk being 2 dimensional matrices. The forms are
as follows:

Ak =
(

B′ 0

0 B′

)
+
∑

γ

⎛⎝ −h′33
γ

h′11
γ +h′22

γ

2 eik·δγ

h′11
γ +h′22

γ

2 e−ik·δγ −h′33
γ

⎞⎠,

Bk =
∑

γ

1

2

(
h′11

γ + 2ih′12
γ − h′22

γ

)( 0 eik·δγ

e−ik·δγ 0

)
,

where δγ indicates the distance between the nearest-neighbor
sites on the γ bond. Note that only entries h′11

γ , h′12
γ , h′21

γ ,
h′22

γ , and h′33
γ in (B4) are relevant to the linear spin-wave

Hamiltonian above. The eigenenergies in this case are ob-
tained by diagonalizing the matrix �H(k), where � =
diag(1, 1,−1,−1). The bosonic Bogoliubov transformation
matrice U satisfies the condition U†�U = U�U† = �. We
will describe the process to obtain the bosonic Bogoliubov
transformation [67] in the following.

Firstly, the Cholesky decomposition has be applied on
H(k) to find the complex matrix K that fulfills the equation
H(k) = K†K. Then we could solve the eigenvalue problem of
the Hermitian matrix K�K†, and � = V†K�K†V , where V
is an unitary matrix. Finally, The bosonic Bogoliubov trans-
formation matrix is given by

U = K−1V (��)1/2, (B8)

which diagonalizes spin-wave Hamiltonian U†H(k)U =
�, 	 = U�, where Bogoliubov quasiparticle basis � =
(αk, βk, α

†
−k, β

†
−k )T. The form (B8) is much more useful to

construct various effective actions in Appendix D.
In the spin-wave spectrum, the momentum at a gapless

point is carried by a specific in-plane magnetic order. If δ �= 0,
C3 symmetry is broken. The inequivalent M points mean
stripe orders and zigzag orders, respectively. Therefore we can
distinguish the condensate momentum of AFM, stripe, and
zigzag orders. As shown in Fig. 7, they condense at �, M1,
and M2, respectively.

APPENDIX C: SU(4) SPIN-WAVE SPECTRUM
AT LOW FIELDS

In the low-field region, the ground state for small �′ is a
singlet state composed of the direct product of singlet dimers.
Noticing that each dimer contains two spins S = 1/2, which
span a four-dimensional Hilbert space, so we regard each
dimer as an effective site placed with a SU(4) spin. In the
following, we construct the SU(4) spin-wave theory on the
square lattice formed by the effective sites.

Firstly, we introduce four species of boson operators

B† = (b†
↑↑, b†

↑↓, b†
↓↑, b†

↓↓)

to represent the four bases |↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉 on the
dimer bond, respectively. Here we have omitted the site in-
dices. This is the generalized Schwinger representation of
spins and the mapping is exact if the particle number con-
straint B†B = 1 is satisfied on each bond.

The spin operators on the A sublattice are represented by

Sm
A = B† σ m

2
⊗ σ 0B

with σ 0 the 2 × 2 identity matrix, and the spin operators on
the B sublattice are represented by

Sm
B = B†σ 0 ⊗ σ m

2
B.

It is more convenient to combine these boson operators into
the eigenmodes bS,m with the total spin quantum number S (for
the two spins on the dimer bond) and its eigenvalue m of the
Sz component, namely,

B̃† = (
b†

0,0 b†
1,1 b†

1,0 b†
1,−1

)
= (

b†
↑↑ b†

↑↓ b†
↓↑ b†

↓↓
)
U
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with U =
⎡⎣ 0 1 0 0√

2
2 0

√
2

2 0

−
√

2
2 0

√
2

2 0
0 0 0 1

⎤⎦. The advantage of adopting

these new bases is that when the Heisenberg interactions on
the strong bonds are dominating, we can approximately regard
the ground state as the product of singlets on the strong bonds,

|Dimer〉 =
∏

i

(b†
0,0)i|vac〉, (C1)

here |vac〉 stands for the vacuum state and i labels the new site
index.

In the new bases, the spin operators are rewritten as

Sm
A = B̃†U † σ m

2
⊗ σ 0UB̃

for the A sublattice and

Sm
B = B̃†U †σ 0 ⊗ σ m

2
UB̃

for the B sublattice.
Then we can rewrite the spin-spin interactions in forms of

the boson operators B̃. For instance, on a strong bond (namely,
the z bond), the Heisenberg interaction SA · SB is represented
as

SA · SB = −3

4
b†

0,0b0,0 + 1

4

∑
m

b†
1,mb1,m.

Secondly, we will adopt the HP approximation [63] using
dimerized singlets (C1) as the ground state, namely,

b†
0,0b0,0 =

√√√√1 −
3∑

m=1

b†
1,mb1,m ≈ 1.

Only keeping the quadratic term according to the boson oper-
ators, we obtain a quadratic Hamiltonian for the bosons.

Thirdly, performing Fourier transformation, b†
k,s,m =

1√
L

∑
r b†

r,s,m exp[ik · r], we could obtain quadratic form
Hamiltonian in momentum space,

HSW =
∑

k

	†(k)H(k)	(k), (C2)

with 	†(k) = (b†
1,1(k), b†

1,0(k), b†
1,−1(k), b1,1(−k), b1,0(−k),

b1,−1(−k)), and H(k) is the 6 × 6 matrix.
Finally, we could obtain magnon dispersions in Fig. 8

by diagonalizing the non-Hermitian matrix �H(k), where
� = diag(1, 1, 1,−1,−1,−1). We also obtain the bosonic
Bogoliubov transformation based on the form (B8) in the
previous section.

APPENDIX D: EFFECTIVE FIELD THEORY OF
CONTINUOUS PHASE TRANSITIONS AT HIGHER

CRITICAL FIELDS

As we discuss in the main text, the symmetry of the ro-
tated spin Hamiltonian (B3) is generated by the following.
(1) Translation by one lattice site in a1 or a2 direction: Ta1 :
Si → Si+a1 and Ta2 : Si → Si+a2 . (2) Inversion symmetry: P :
Si → Si′ , where i = (a1, a2, α) and i′ = (−a1,−a2, α). Note
that α denotes one sublattice and α with the other sublat-
tice. (3) Spin-orbital rotation symmetry: C2T : Si → (−1) ×

Ra(π )Si′′ , where i = (a1, a2) and i′′ = (a2, a1). Also, Ra(π )
is the 180◦ rotation along a direction (or z bond) and T is time
reversal symmetry.

Some of these symmetries are broken in the canted in-
termediate phases such as AFMab, stripe, and zigzag, but
preserved in the high-field polarized phase (PP) and the
low-field dimerized state. They are quite crucial to construct
the corresponding effective actions to be presented in the
following.

1. Phase transition from PP to AFMab order

If the αk magnon condensation which leads to the QPT
from PP to the canted AFMab at Bcritical, the corresponding
order parameter takes the form:

〈αk〉 = ψδk,�, 〈βk〉 = 0. (D1)

where � = b1 + b2 (namely, � point in second BZ) and ψ is
the complex order parameter.

By introducing the bosonic Bogoliubov transformation
(B8) in LSWT as

ak = u(k)αk + v(k)α†
−k + u′(k)βk + v′(k)β†

−k. (D2)

We establish the connection between the in-honeycomb-
plane transverse quantum spin and the one complex order
parameter:

〈S+
i 〉 ∝ 〈ai〉 ∝ u(�)ψei�·Ri + v(�)ψ∗e−i�·Ri . (D3)

Due to u(�) = 0, v(�) �= 0 in the form (B8) at the critical
point, the order parameter is complex.

Because PP breaks no symmetry of the Hamiltonian,
so one can study how the complex order parameter
ψ transform under the symmetries of the Hamiltonian:
(1)translation symmetry: Ta1 : ψ (a1, a2) → ψ (a1, a2) and
Ta2 : ψ (a1, a2) → ψ (a1, a2); (2) inversion symmetry: P :
ψ (a1, a2) → ψ (−a1,−a2); and (3) spin-orbital rotation sym-
metry: C2T : ψ (a1, a2) → −iψ∗(a2, a1).

The transformation of the order parameter ψ under spin-
orbital rotation symmetry (C2T ) is a little subtle due to
antiunitary time-reversal symmetry (T ). Notably, the time
reversal symmetry operates before and after the operator Ô
in the quantum state 	 to satisfy the following relations:

〈	̃|T ÔT −1|	̃〉 = 〈	|Ô†|	〉,
where |	̃〉 = T |	〉. For simplicity, we define � =
〈	|S+|	〉, where S+ = Sx + iSy. Thus we obtain

T � = 〈	̃|S+|	̃〉 = 〈	|[T S+T −1]†|	〉 = 〈(T S+T −1)	|	〉
= −〈S−	|	〉 = −〈	|S+|	〉 = −�.

Because C2 is the 180◦ rotation along a direction (or [110]
direction), the transformation of S+ (S−) is C2S+C−1

2 = −iS−

(C2S−C−1
2 = iS+). Therefore we obtain the relation

C2T � = 〈	̃|C2S+C−1
2 |	̃〉

= 〈	|[C2T S+T −1C−1
2

]†|	〉
= 〈(

C2T S+T −1C−1
2

)
	
∣∣	〉

= −i〈	|S−|	〉 = −i�∗.
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Thus, in general cases, the spin-orbital rotation symmetry is
C2T : ψ (a1, a2) → −iψ∗(a2, a1).

Due to the above symmetry analysis and considering linear
spin-wave calculations, the following effective action with the
dynamic exponent z = 2 in the continuum limit is

S =
∫

dτd2r
(
ψ∗∂τψ + v2

a1
|∂a1ψ |2

+ v2
a2

|∂a2ψ |2 − μ|ψ |2 + U |ψ |4). (D4)

Our microscopic calculation shows that μ = Bcritical − Bc and
U > 0.

The action at the fixed point is invariant under the scale
transformation

r′ = re−l , τ ′ = τe−zl , ψ ′ = ψel . (D5)

Therefore the scaling dimension of the parameter U is zero
(namely, the marginal operator). If ξ is the magnetic corre-
lation length that diverges at the QCP, the following scaling
relations hold

μ ∝ 1

ξ 1/ν
, 
 ∝ 1

ξ z
. (D6)

Due to 
 ∝ |μ|, we could obtain the value of correlation
length critical exponent ν = 1/2. And the universality class
for the QPT is the same as the z = 2 2D superfluid-Mott
insulator transition.

At the mean-field level, we can substitute ψ → √
ρ0eiφ0

into the effective action

S = −μρ0 + Uρ2
0 . (D7)

When μ = Bcritical − Bc < 0, it is in the PP with 〈ψ〉 = 0.
When μ > 0, it is in the canted AFMab phase with 〈ψ〉 =√

ρ0eiφ0 .
When μ < 0, 〈ψ〉 = 0 in the PP expanding the action up

to second order:

S =
∫

dτd2r
(
ψ∗∂τψ + v2

a1
|∂a1ψ |2 + v2

a2
|∂a2ψ |2 − μ|ψ |2),

(D8)

which lead to the gapped mode

ωk = −μ + v2
a1

k2
a1

+ v2
a2

k2
a2

. (D9)

In the canted AFMab phase, μ > 0, we can write the fluc-
tuations in the polar coordinates ψ = √

ρ0 + δρei(φ0+δφ) and
expand the action up to the second order in the fluctuations:

S =
∫

dτd2r

(
iδρ∂τ δφ + 1

4ρ0

[
v2

a1
(∂a1δρ)2 + v2

a2

(
∂a2δρ

)2]
+U (δρ)2 + ρ0

[
v2

a1

(
∂a1δφ

)2 + v2
a2

(
∂a2δφ

)2])
. (D10)

Integrating out δρ leads to

S =
∫

dτd2r

×
(

1

4U
(∂τ δφ)2 + ρ0

[
v2

a1

(
∂a1δφ

)2 + v2
a2

(
∂a2δφ

)2])
.

(D11)

It leads to the exotic Goldstone mode due to the emergent U(1)
symmetry (in the classical degenerate ground state manifold
although �′ �= 0) breaking:

ωk =
√

4Uρ0
(
v2

a1
k2

a1
+ v2

a2
k2

a2

)
. (D12)

2. Phase transition from PP to zigzag order

If the αk magnon condensation which leads to the QPT
from PP to the canted zigzag at Bcritical, the corresponding
order parameter takes the form:

〈αk〉 = ψ̃δk,M2 , 〈βk〉 = 0, (D13)

where M2 = 1
2 b1 + 1

2 b2 and ψ̃ is the complex order
parameter.

One must use the Bogoliubov transformation to establish
the connection between the transverse quantum spin and the
one complex order parameter:

〈S+
i 〉 ∝ 〈ai〉 ∝ u(M2)ψ̃eiM2·Ri + v(M2)ψ̃∗e−iM2·Ri . (D14)

Due to u(M2) = v(M2) in the form (B8) at the critical point,
we could redefine the order parameter 〈ai〉 ∝ ψeiM2·Ri , where
ψ = ψ̃ + ψ̃∗ is real.

Because PP breaks no symmetry of the
Hamiltonian, so one can study how the real order parameter
ψ transform under the symmetries of the Hamiltonian:
(1)translation symmetry: Ta1 : ψ (a1, a2) → −ψ (a1, a2) and
Ta2 : ψ (a1, a2) → −ψ (a1, a2); (2) inversion symmetry:
P : ψ (a1, a2) → ψ (−a1,−a2); and (3) spin-orbital rotation
symmetry: C2T : ψ (a1, a2) → −iψ (a2, a1).

Due to the above symmetry analysis and considering linear
spin-wave calculations, the following effective action with the
dynamic exponent z = 1 in the continuum limit is

S =
∫

dτd2r
(
(∂τψ )2 + v2

a1
(∂a1ψ )2

+ v2
a2

(∂a2ψ )2 − μψ2 + Uψ4
)
. (D15)

Our microscopic calculation shows that μ = Bcritical − Bc and
U > 0.

The action at the fixed point is invariant under the scale
transformation (D5). Due to 
 ∝ √|μ|, we could obtain the
value of correlation length critical exponent ν = 1/2 through
the form (D6). And the universality class for the QPT may be
the z = 1 3D Ising universality class.

At the mean-field level, we can substitute ψ → √
ρ0 into

the effective action

S = −μρ0 + Uρ2
0 . (D16)

When μ = Bcritical − Bc < 0, it is in the PP with 〈ψ〉 = 0.
When μ > 0, it is in the canted zigzag phase with 〈ψ〉 = √

ρ0.
When μ < 0, 〈ψ〉 = 0 in the PP expanding the action up

to second order:

S =
∫

dτd2r
(
(∂τψ )2 + v2

a1
(∂a1ψ )2 + v2

a2
(∂a2ψ )2 − μψ2),

(D17)

094401-14



MAGNON CONDENSATION IN DIMERIZED … PHYSICAL REVIEW B 105, 094401 (2022)

which lead to the gapped mode

ωk =
√

−μ + v2
a1

k2
a1

+ v2
a2

k2
a2

. (D18)

In the canted zigzag phase, μ > 0, we can write the fluctu-
ations ψ = √

ρ0 + δρ and expand the action up to the second
order in the fluctuations:

S = 1

2ρ0

∫
dτd2r

(
(∂τ δρ)2 + [v2

a1
(∂a1δρ)2 + v2

a2

(
∂a2δρ

)2]
+ 4ρ0U (δρ)2

)
, (D19)

which leads to one gapped Higgs mode

ωk =
√

4ρ0U + v2
a1

k2
a1

+ v2
a2

k2
a2

. (D20)

3. Phase transition from PP to stripe order

As shown in Fig. 7(b), there are two inequivalent momen-
tum points at the higher critical field, namely M1 and M3 =
Ra(π )M1. However, in the single-Q framework, we should
break the symmetry of two inequivalent momentum points
by some small perturbations. For example, the corresponding
order parameter takes the form (if M3 is gapped at the critical
point):

〈αk〉 = ψ̃δk,M1 , 〈βk〉 = 0, (D21)

where M1 = 1
2 b1 and ψ̃ is the complex order parameter.

One must use the Bogoliubov transformation to establish
the connection between the transverse quantum spin and the
one complex order parameter:

〈S+
i 〉 ∝ 〈ai〉 ∝ u(M1)ψ̃eiM1·Ri + v(M1)ψ̃∗e−iM1·Ri . (D22)

Due to u(M1) = v(M1) in the form (B8) at the critical point,
we could redefine the order parameter 〈ai〉 ∝ u(M1)ψeiM1·Ri ,
where ψ = ψ̃ + ψ̃∗ is real.

Because PP breaks no symmetry of the Hamilto-
nian, so one can study how the real order parameter
ψ transform under the symmetries of the Hamiltonian:
(1) translation symmetry: Ta1 : ψ (a1, a2) → −ψ (a1, a2) and
Ta2 : ψ (a1, a2) → ψ (a1, a2); (2) inversion symmetry: P :
ψ (a1, a2) → ψ (−a1,−a2); and (3) spin-orbital rotation sym-
metry: C2T : ψ (a1, a2) → −iψ (a2, a1).

Due to the above symmetry analysis and considering linear
spin-wave calculations, the following effective action with the

dynamic exponent z = 1 in the continuum limit is

S =
∫

dτd2r
(
(∂τψ )2 + v2

a1

(
∂a1ψ

)2
+ v2

a2

(
∂a2ψ

)2 − μψ2 + Uψ4
)
. (D23)

Our microscopic calculation shows that μ = Bcritical − Bc and
U > 0. The universality class for the QPT from PP to stripe
phase is the same as the QPT from PP to zigzag phase
above.

At the mean-field level, we can substitute ψ → √
ρ0 into

the effective action

S = −μρ0 + Uρ2
0 . (D24)

When μ = Bcritical − Bc < 0, it is in PP with 〈ψ〉 = 0. When
μ > 0, it is in the canted stripe phase with 〈ψ〉 = √

ρ0.
When μ < 0, 〈ψ〉 = 0 in PP expanding the action upto

second order:

S =
∫

dτd2r
(
(∂τψ )2 + v2

a1

(
∂a1ψ

)2 + v2
a2

(
∂a2ψ

)2 − μψ2
)
,

(D25)

which lead to the gapped mode

ωk =
√

−μ + v2
a1

k2
a1

+ v2
a2

k2
a2

. (D26)

In the canted stripe phase, μ > 0, we can write the fluctu-
ations ψ = √

ρ0 + δρ and expand the action up to the second
order in the fluctuations:

S = 1

2ρ0

∫
dτd2r

(
(∂τ δρ)2 + [v2

a1

(
∂a1δρ

)2 + v2
a2

(
∂a2δρ

)2]
+ 4ρ0U (δρ)2), (D27)

which leads to one gapped Higgs mode

ωk =
√

4ρ0U + v2
a1

k2
a1

+ v2
a2

k2
a2

. (D28)

Due to the same symmetry of the high-field PP and the
low-field QDM, the effective field theory of the phase tran-
sition from QDM to intermediate ordered phases at lower
critical fields is same as the phase transition from the high-
field PP to intermediate ordered phases as we discussed above.
Furthermore, we could obtain corresponding effective actions
describing other continuous phase transitions in the global
phase diagram by the similar approach.
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