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Dynamics for the Haldane phase in the bilinear-biquadratic model
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The bilinear-biquadratic model is a promising candidate to study spin-1 systems and to design quantum
simulators based on its underlying Hamiltonian. The variety of different phases contains among other valuable
and exotic phases the Haldane phase. We study the Kibble-Zurek physics of linear quenches into the Haldane
phase. We outline ideal quench protocols to minimize defects in the final state while exploiting different linear
quench protocols via the uniaxial or interaction term. Furthermore, we look at the fate of the string order when
quenching from a topologically nontrivial phase to a trivial phase. Our studies show this depends significantly
on the path chosen for quenching; for example, we discover quenches from Néel to Haldane phase which reach a
string order greater than their ground state counterparts for the initial or final state at intermediate quench times.
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I. INTRODUCTION

The last three decades have witnessed an unprecedented
progress [1] in fulfilling Feynman’s vision of construct-
ing a quantum simulator which would be able to solve
quantum mechanical problems directly [2]. One popular ap-
proach to achieve this goal is adiabatic quantum computing,
which relies on the preparation of the ground state of a Hamil-
tonian that is easy to attain experimentally. The system is then
evolved adiabatically to the final Hamiltonian whose ground
state encodes the solution to a particular computational or
optimization problem [3]. Adiabatic quantum computing has
been used in the D-wave architecture and is strongly re-
lated to quenches through a quantum critical point and
spin-1/2 models. However, we are not constrained to spin-
1/2 systems: spin-1 and beyond have even more intriguing
features.

Quantum phases are usually characterized by local or-
der parameters, and phase transitions are then described by
symmetry breaking according to Landau’s theory. However,
there is a different class of phases called topological phases
which are characterized by nonlocal order parameters. These
phases often have a gap in the bulk energy spectrum with
gapless modes residing at the edges. Furthermore, a new class
of topological phase was discovered in the last decade pos-
sessing symmetry-protected topological order in which the
gapless edge excitations are preserved by symmetries [4,5].
A paradigmatic example of a symmetry-protected topological
(SPT) phase is the Haldane phase exhibited by the Heisenberg
model with odd integer spins [6]. This phase is protected
by three symmetries: time-reversal, spatial inversion, and
Z2 × Z2 symmetry. The phase possesses a nonlocal string
order. These SPT phases have become potential candidates
for measurement-based quantum computation for which SPT
order ensures the perfect operation of the identity gate [7,8].
There have also been proposals to use SPT phases as adiabatic
quantum transistors which are universal adiabatic quantum

computing devices whose operational speed depends on the
minimal energy gap [9,10]. These proposed logic gates, due to
their symmetry-protected feature, have been argued to be quite
robust against a variety of relevant noise processes. Recently,
a metrological application with the Haldane insulator was
proposed in which the passive, error-preventing properties of
the SPT phase can be used to measure the direction of an
unknown electric field [11].

Ultracold gases loaded in optical lattices offer an excep-
tionally high degree of controllability over the geometry and
interactions as well as time-dependent quenches. Recent years
have seen a remarkable development in the variety of nonequi-
librium experiments achieved by the ultracold gases such
as studying their transport properties [12,13], thermalization
[14], many-body localization [15,16], relaxation dynamics
[17], and quench dynamics across a phase transition [18,19].
The recent realization of quantum integer-spin chains with
tunable interactions using trapped ions opens up possibili-
ties to study SPT phases in spin-1 systems [20]. Ultracold
molecules represent an alternative way to achieve these ef-
fective three-level systems, also called qutrits, via the large
number of hyperfine levels and the electric dipole moment
[21,22]. External magnetic and laser fields can control the
various interaction terms appearing in the desired Hamiltonian
and perform slow to fast quenches. The development of the
quantum gas microscope with single site and spin resolution
will grant access to the measurement of the local and nonlocal
order parameters [23–25].

The rapid development in the field of quantum computation
and its relation to the SPT phases, such as the Haldane phase,
and the subsequent progress in experimental endeavors have
prompted us to analyze in detail quench dynamics across
quantum critical points in the spin-1 bilinear-biquadratic
model (BBM) associated with the Haldane phase [26–30].
Spin-1 models, i.e., qutrits, also enable more powerful ap-
plications due to more internal degrees of freedom per site
[31]. In spite of many theoretical predictions, the Haldane
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phase has remained elusive in experiments. Through careful
analysis, we propose in this article the parameters for linear
quench protocols which minimize defect generation and thus
will provide experimentalists a route to observe the Haldane
phase with a finite string order. The fate of string order when
quenching is examined through different pathways to a topo-
logically nontrivial phase; up till now, the dynamics of the
Haldane phase has still not been studied in much detail. Apart
from the experimental stimulus, there is also the motivation of
relating defect generation to the quench speed. For quenches
across second-order phase transitions, the Kibble-Zurek hy-
pothesis proposes a universal nature of the density of defects,
relating them to the critical exponents of the underlying quan-
tum phase transition. We analyze the statics and dynamics of
the BBM with the matrix product state (MPS) method [32]
which is well-suited for 1-dimensional entangled many-body
systems and gives us access to a variety of relevant measures
that can be pivotal in the analysis.

The paper is arranged as follows: We begin with the def-
inition of the BBM in Sec. II, also containing a general
discussion of the Kibble-Zurek mechanism. The results of the
different quench protocols to the Haldane phase are presented
in Sec. III. We elaborate the methods, a detailed error analysis,
and the static results for finite-size systems in Sec. IV. Finally,
Sec. V concludes our work with discussion.

II. MODEL

Although our results are general to many quantum simula-
tor architectures, we contextualize our study with the specific
architecture of an ultracold spin-1 bosonic gas trapped in a
1-dimensional optical lattice with repulsive interactions be-
tween them. Because of the identity of bosons undergoing an
s-wave interaction, the total spin of the two interacting bosons,
Stot , can be 0,2. If the tunneling amplitude t between neigh-
boring lattice sites is small and finite, one can apply a
second-order perturbation theory in t to get the low-energy
physics which is given by the superexchange processes. The
corresponding spin Hamiltonian for two neighboring sites at
unit filling can be expanded in powers of the nearest-neighbor
Heisenberg interactions, Hi,i+1 = ∑

k ak (Si.Si+1)k . Terminat-
ing the series at k = 2, i.e., second-order perturbation theory,
gives the BBM, up to the external field which is often also
included in the BBM. The presence of a symmetry-breaking
field can have important consequences. The linear Zeeman
effect does not play a role since it can be gauged out due to
the fact that the total magnetization is a constant of motion.
It should be noted that this symmetry is used as well for
the numerical simulations. On the other hand, the quadratic
Zeeman effect leads to effects in spinor gases which cannot
be gauged away. Combining the two effects leads us to the
BBM with quadratic Zeeman field:

H = J
L−1∑
i=1

[
cos(θ )Si · Si+1 + sin(θ )(Si · Si+1)2

]

+ D
L∑

i=1

Ŝz
i

2
, (1)

where Si = (Ŝx
i , Ŝy

i , Ŝz
i ) are the angular momentum operators

located at the ith site of a 1D L-site qutrit, or spin-1 lattice.
The first sum in Eq. (1) is the bilinear-biquadratic part tuned
by the parameter θ , whereas the second term is the uniaxial
field D taking into account the quadratic Zeeman field. Some
of the phases exhibited by Eq. (1) have degenerate ground
states. Hence, for the purposes of numerical calculations, a
very small symmetry-breaking field is applied to the Lth site.

The Hamiltonian in Eq. (1) obeys a U (1) symmetry simi-
lar to the number conservation in the Bose-Hubbard model,
where here the total spin in the z direction is conserved.
The generator of the symmetry is ⊕L

i=1Ŝz
i . Thus, the possible

symmetry sectors reach from a total z spin of −L to +L. We
use a total spin of zero throughout our simulations with open
boundary conditions. We follow the convention that the time
is in units of the interaction J .

The BBM has been extensively studied revealing a plethora
of phases such as the dimer phase, the Néel phase, and the
Haldane phase, to name a few [30]. Due to the high relevance
in recent experiments with ultracold gases in optical lattices
[25,33], we study the effects of quenches across the following
phase boundaries shared by the Haldane phase:

(A) Néel and Haldane phase.
(B) Large-D (non-Haldane) and Haldane phase.
The critical points for the respective quantum phase tran-

sitions for the specific lengths of the systems are first
determined using the respective order parameters. The linear
quenches start and finish almost equidistant from the corre-
sponding critical points on either side. We ensure that the
initial and final points are deep inside the respective phases, so
that the effects of the critical region are properly considered.

The effects of the linear quench, crossing the quantum
critical point in the process, are examined via the following
six observables:

(1) The instantaneous energy gap is a static measure char-
acterizing the difference between the ground state energy E0

of the system and the energy Ek of the kth relevant excited
state compatible with the integrals of motion

�0k = Ek − E0. (2)

The choices of the ground and relevant excited state consid-
ered for this measure always belong to the same symmetry
sector, i.e., have the same spin projection in the z direction.

(2) The staggered magnetization is defined as

Mst
z = 1

L

L∑
i=1

(−1)iŜz
i . (3)

The Néel phase is characterized by a finite value of the stag-
gered magnetization.

(3) The entanglement entropy, also called block entropy,
is a measure defined based on the reduced density matrix or
Schmidt decomposition, i.e.,

S = −TrBρAB ln ρAB = −TrρA ln ρA, (4)

where ρA is the reduced density matrix of the subsystem A
by tracing over the degrees of freedom of the rest of the
system, i.e., subsystem B. Throughout our work, we choose
subsystem A as the sites 1, . . . , L/2 with L being even; the
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sites L/2 + 1, . . . , L represent the subsystem B with the de-
grees of freedom being traced out. Typically, the entanglement
entropy scales with the size of the subsystem, nA ≡ L/2 [34].
However, in one-dimensional systems with only short-ranged
terms in the Hamiltonian, the entanglement entropy saturates
to a constant value independent of the size of the block.
This property, known as the “area law” [35], is the cause
behind the remarkable success of tensor-network-based meth-
ods in describing 1-dimensional systems. In the vicinity of a
quantum critical point, the entanglement entropy starts to di-
verge logarithmically with the block size nA for large system
sizes, as

S ∼ c ln(nA), (5)

where c is the central charge of the conformal field theory
describing the critical point [36–39]. For systems slightly
away from the critical point, when the correlation length ξ in
the ground state is large but finite, the entanglement entropy
behaves as

S ∼ A c

6
ln ξ, (6)

where A is the number of boundary points of the system.
(4) We consider the reduced density matrix of a subsys-

tem, or alternatively, the eigenvalues of the bipartitions, via
the singular values of the Schmidt decomposition, where the
Schmidt gap is defined as

�λ = λ1 − λ2, (7)

with λ1, λ2 the highest two eigenvalues of the reduced density
matrix. Using finite-size scaling, the Schmidt gap can signal
a quantum phase transition. �λ scales with the critical ex-
ponents related to the conformal field theory describing the
transition point [40]. References [40,41] have recently shown
that the Schmidt gap is related to the correlation length of the
system, ξ , through a power law, where the exponent is called
the dynamical critical exponent of the transition. Studying
the complete entanglement spectrum in a dynamical problem
can be complicated. Since both entanglement entropy and
the Schmidt gap are related to the entanglement spectrum
and give equivalent insights, we concentrated on these two
established quantities.

(5) The string order parameter is a nonlocal measurement
acting on multiple sites defined as

OS = lim
L→∞

Oi(r = L − 2i)

≡ lim
r→∞

〈
Ŝz

i exp

[
iπ

i+r−1∑
j=i+1

Ŝz
j

]
Ŝz

i+r

〉
, (8)

where the imaginary unit is i and the site index is i.
The string order parameter is an effective nonlocal op-
erator to characterize hidden orders present in quantum
phases of matter that cannot be described by the typi-
cal local operators [6,42–44]. The string order has shown
signatures of thermalization for scales related to the Lieb-
Robinson bound [45]. The remnant string order at finite
times after a sudden quench out of the Haldane phase
was credited to the preservation of symmetries of the
Hamiltonian [45]. However, if the symmetry is broken in the
new phase after the sudden quench, then the string order is

lost even at infinitesimal times in the thermodynamic limit.
Such behavior makes the string order qualitatively different
from the standard local order parameters [46]. In the case of
finite systems, we measure Oi(r = L − 2i), where i = 10; this
approach avoids boundary effects.

(6) The excess energy measures the degree of excitation in
the time-evolved states as

�E (τ ) = E f − Eg
f , (9)

where E f = 〈ψ (τ )|H(τ )|ψ (τ )〉 is the energy of the system
described by |ψ (τ )〉 after evolving through the quench time
τ , and Eg

f is the ground state energy of the final Hamiltonian,
H(τ ). The excess energy is equal to the weighted sum of all
the excitation energies. As a result, this quantity will serve
as the analog of the defect density originally considered by
Kibble and Zurek [47–50].

Some of the above quantities can be related to the speed
of the quench in a universal manner through the well-known
Kibble-Zurek mechanism.

This mechanism was originally proposed by Kibble in
the context of defects generated in the early universe [51],
which was later extended by Zurek to condensed matter
systems [52,53]. This mechanism describes the formation
of topological defects when the system is ramped slowly
across a second-order critical point, where the defect density
depends on the ramp rate exponentially. The exponents in
such a dependence were shown to be related to the univer-
sal equilibrium exponents of the underlying quantum phase
transition. Because of the divergence of the correlation length
in the vicinity of the critical point, it is impossible to ramp
the system across the critical point adiabatically without the
formation of defects, thus signaling the breakdown of the
adiabatic theorem.

Without loss of generality, we can consider a linear quench,
such as

ε(t ) = ε0 + (ε f − ε0) · t

τ
, 0 � t � τ, (10)

where ε is the quench parameter as a function of time t ,
ε0 and ε f are the initial and final values of the parameter
before and after the quench, and τ is the time for quench. The
parameter ε(t ) can be D, θ , or a linear combination of both.
Scaling analysis of the divergence of the correlation length
ξ shows that any quantity which is related to the correlation
length or the defect density, i.e., the excess energy, will depend
on the quench rate polynomially, with the exponent being a
combination of the critical exponents of the transition. While
tuning the critical exponents to be evaluated with the aim
of making the rescaled curves for different system sizes fall
together is well established in the statics, the time evolution
relies on fitting the defect density or excess energy [53]. The
defect density nex follows the relation

nex ∼ τ dν/(1+zν), (11)

where d is the dimension of the system considered, and z and
ν are the critical exponents of the transition. The scaling in
Eq. (11) has been observed in many quench protocols, but
it should also be noted that there are systems where such a
scaling analysis fails [54,55]. For example, there are some

094309-3



DHAR, JASCHKE, AND CARR PHYSICAL REVIEW B 105, 094309 (2022)

bosonic systems which remain nonadiabatic in the thermody-
namic limit.

The scaling analysis of Eq. (11) presumes the thermody-
namic limit when the correlation length diverges to infinity at
the critical point. However, in finite-sized systems, the max-
imum value of the correlation length can be the system size.
Following a similar argument proposed by the Kibble-Zurek
mechanism, the minimum quench time needed for the system
to attain adiabaticity is given by

τmin = Lzν/(1+zν). (12)

It is thus important to check for the validity of the
Kibble-Zurek mechanism in the BBM. We do so by perform-
ing a linear quench across the phase transition and checking
for estimates of the τmin such that the final time-evolved state
is close to the ground state in the Haldane phase. Since the
excess energy, �E , is a measure for the density of defects
formed in the system, we can use Eq. (11) by replacing nex

with �E when checking for the validity of the Kibble-Zurek
mechanism.

Quantities such as the Schmidt gap and entanglement
entropy are related to the correlation length, and hence
will scale with the quench time following the Kibble-Zurek
mechanism as

�λ ∼ τ−zν/(1+zν), (13)

S = Acν

6(1 + zν)
ln τ + const. (14)

For finite-size systems, a subsystem has two boundaries, and
hence A = 2 [38,56,57].

III. QUENCHING TO THE HALDANE PHASE

In this work, we concentrate on reaching the Haldane phase
from the Néel phase and the large-D phase since these phases
can be easily prepared in experiments with high fidelity. We
choose representative quantum critical points and perform a
linear quench across the respective quantum critical points as
shown schematically in Fig. 1.

We begin the quench sufficiently far away from the
quantum critical point and terminate the quench process ap-
proximately equidistant from the critical point on the other
side. The quench time is then varied to study its effects on
the quench processes. In addition, the system-size dependence
is studied by scaling up to systems as large as 200 sites. We
categorize the results according to the selected quantum phase
transitions: Secs. III A and III B for linear quenches from Néel
and large-D to Haldane phase, respectively.

A. Néel to Haldane phase

The Néel phase is characterized by a finite nonzero spon-
taneous staggered magnetization Mst

z . On the other hand,
the Haldane phase represents a topological phase in a 1-
dimensional system signaled by a finite string order defined in
Eq. (8). The Haldane phase also displays a degeneracy in the
entanglement spectrum, given by the Schmidt gap as defined
in Eq. (7). Using a finite-size scaling of the staggered mag-
netization acting as the order parameter, the phase boundary

FIG. 1. Schematic phase diagram: Our studies encompass
quenches of either the external field D or the interaction θ . The
phase diagram contains the Néel to Haldane phase transition, and the
large-D phase to Haldane transition. The exact values of the phase
boundaries depend on finite-size effects and differ for the range of
system sizes that we consider in our simulations; a thorough study
may be found in [30].

separating these two quantum phases has been identified in
an earlier work [30]. Therein, finite-size scaling analysis of
the staggered magnetization and Schmidt gap yields the crit-
ical exponent ν = 1.01, consistent with the Ising universality
class, νIsing = 1 [30,58,59]. For an Ising transition, the critical
exponent, z = zIsing = 1 is known. However, for the present
transition from Néel to Haldane phase, the value of z has not
been calculated explicitly and numerically.

We perform a linear quench on the uniaxial field D and
keep the interaction θ fixed to 0 during the time evolution. We
ensure that the initial and final values of D are such that they
correspond to Néel and Haldane phase, respectively, and are
far away from the quantum critical region.

We first look at the excess energy �E the system acquires
when quenched across the quantum critical point, as defined
in Eq. (9). �E is proportional to the number of defects formed
in the system after the quench, and hence is expected to
display Kibble-Zurek-like scaling [60]. The behavior of �E
as a function of the quench time τ is plotted in Fig. 2 for
two different system sizes. Three distinct regimes can be
seen from the plots. �E saturates to its maximum value for
very fast quenches, i.e., low values of τ . This observation is
consistent with the fact that there can be a maximum num-
ber of excitations in the system after the quench due to its
finite size. The final state after the time evolution is thus a
superposition of several excited states. The value of �E for
the same value of τ increases with the system size indicating
a larger number of defects in the system is formed after the
quench for bigger systems. This expected trend is due to the
inverse dependence of the energy gap on the system size at
the critical point. For larger system sizes, the gap is smaller;
a smaller energy gap enhances the probability of exciting the
system to higher excited states, which leads to a larger number
of defects.

For very large values of τ , applying the effective Landau-
Zener model would have resulted in a scaling of �E ∼ τ−2,
e.g., see [53,60]. However, as shown in Fig. 2, we do not quite
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FIG. 2. Excess energy �E as a function of quench times τ for
two different lengths L = 50, 200. We quench the uniaxial field from
Di = −0.5 to Df = −0.15; the interaction terms are constant at
θ = 0. The dashed lines denote the region where the excess energy,
�E , is fitted by a power-law for the respective system sizes. The
orange line denotes an inverse quadratic function, �E ∼ τ−2. Inset:
The values of Kibble-Zurek exponent b(L), extracted by fitting a
power-law to the excess energy in the intermediate τ values for
different system sizes, L, plotted as a function of the inverse system
size 1/L. A quadratic fit was employed to extrapolate an estimate for
the thermodynamic limit, b∞.

observe such a behavior. We would explore the presence of
the Landau-Zener effect for higher values of τ for the system
sizes considered, but such simulations are beyond the scope
of the current numerical techniques because of the large error
involved. In contrast, we observe the decay at large τ superim-
posed by oscillations for L = 50. These oscillations naturally
arise when effects of finite duration time are considered
[60–62]. The frequency of the oscillations decreases with in-
creasing system size, along with a shift to higher quench times
where the oscillations are dominant. The oscillatory behavior
can be suppressed by increasing the distance of the initial
value Di from the critical Dc compared to the width of the
critical regime [60]. The intriguing quasiadiabatic region lies
between these two regimes where the residual energy follows
a power-law behavior. We attempt to verify the Kibble-Zurek
mechanism for this quench protocol. For different lengths, we
fit a power law in the intermediate power-law regime,

�E = aτ b(L). (15)

The value of the exponent b(L) calculated through the
exponential fitting procedure for different system sizes L is
then fitted using a quadratic scaling resulting in an asymptotic
value of b∞ ∼ −0.866 ± 0.008 (see Fig. 2) for L → ∞. The
error bars include the errors arising from the fitting procedure
due to the range of τ values used to fit and the fit itself.

The phase transition from Néel to Haldane phase along
the D axis belongs to the Ising universality class concluded
from previous finite-size-scaling studies with the staggered
magnetization and Schmidt gap [30,41]. We insert the corre-
sponding critical exponents νIsing, zIsing in Eq. (11) and obtain
a value of btheoretical = 0.5. This number is quite different from

the estimate extracted from our present numerical calculations
using excess energy b∞. The discrepancy can arise for two
different reasons: either the Kibble-Zurek mechanism is not
valid for this transition or the critical exponents are incorrect.
Before coming to the conclusion that the Kibble-Zurek mech-
anism fails to describe the transition, let us try to verify all
the critical exponents appearing in Eq. (11). Since ν has been
rigorously calculated using the density matrix renormalization
group (DMRG) method and quantum Monte Carlo simula-
tions, the only quantity that remains unknown is the critical
exponent z since d = 1. Assuming the Kibble-Zurek scaling
to be valid, and inserting the value of b∞, we can estimate
z = 0.159. Using this value of z, we can see if other quantities
such as the Schmidt gap and the entanglement entropy behave
consistently according to the Kibble-Zurek mechanism with
the obtained value of z. It should be noted that the possibility
of anomalous Kibble-Zurek scaling exists as reported earlier
for quenches across topological phases with edge states [63]
which is robust to defect formation. However, that is unlikely
the case here since we are quenching from a nontopological
phase to a topological phase.

We point out that the reverse quench protocol, i.e., from
the Haldane to the Néel phase, finds a similar power-law
behavior of the excess energy in the intermediate regime of
quench times. We performed additional simulations to verify
this observation, not shown here for brevity.

The Schmidt gap and the block entropy, as defined in
Eqs. (7) and (4), are analyzed for the same quench protocol
from Néel to Haldane phase by changing D; see Fig. 3. Due
to the dependency of both quantities on the correlation length,
they should also follow a Kibble-Zurek scaling. Assuming the
Kibble-Zurek scaling is valid for this transition, inserting the
values obtained from the scaling of excess energy into Eq. (13)
leads to the following scaling of the Schmidt gap:

�λ ∼ τ−0.138. (16)

Periodic oscillations are observed for a given system size in
the Schmidt gap related to crossings of the first two eigen-
values in the entanglement spectrum, with an overall decay.
This decay is power law in nature with an exponent agreeing
with Eq. (16). The cusps in the Schmidt gap are related to
the periodic nonanalyticities of the free-energy density in the
thermodynamic limit [64]. The cusps are not an artifact of
finite-size effects since the positions of the cusps converge to
one value for system sizes larger than 100. A similar behavior
of the Schmidt gap has been reported earlier [57,64] indicating
the signature of a dynamical phase transition.

The block entropy for small quench times, i.e., τ � 10,
coincides for all the lengths considered in our simulations.
This observation implies that the entanglement spread has
occurred on a length scale much smaller than any of the
system sizes considered in this work. Thus, we can set a lower
limit on the ramp velocities, i.e., the inverse of τ , for which
the size of the system does not play an important role in the
formation of entanglement. For τ > 10, the data for L = 50
deviates from the larger lengths: the entropy abruptly jumps
to a higher value. We note as expected that such a separation
for larger lengths is also observed in the Schmidt gap behavior.
The block entropies for the large lengths continue to show a
remarkable coincidence for significantly higher values of τ .
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FIG. 3. Schmidt gap �λ (top) as a function of the quench time
τ for different lengths L displays cusps related to the nonanalytic
behavior of the free-energy density. Bottom: Block entropy S as a
function of τ for the same quench parameters as above. The maroon
dashed curve in the plot of the block entropy corresponds to the
Kibble-Zurek scaling from Eq. (14). The quench protocol is similar
to that shown in Fig. 2.

The peak value at τ ≈ 50 in this regime occurs at the τ value
for which we observed the cusps in the Schmidt gap in Fig. 3.

To check the validity of the Kibble-Zurek mechanism,
we insert ν = 1.01 and z = 0.159 in Eq. (14) with c = 1/2
[40,57]. The logarithmic behavior is clearly seen for all
system sizes for τ < 10 in Fig. 3; thus, we confirm the
Kibble-Zurek behavior of the entanglement entropy. As ex-
pected, the Kibble-Zurek prediction breaks down for smaller
system sizes, i.e., L = 50, and larger τ values. There is an os-
cillatory behavior superimposed on the logarithmic behavior
which arises from the oscillatory nature of the entanglement
entropy. But to see the oscillations clearly, quenches with
larger τ values need to be simulated; these simulations are be-
yond the scope of this work. Both the Schmidt gap and block
entropy verify our initial assumption of the Kibble-Zurek
mechanism to be valid, and hence the value of z deduced from
our calculations for this particular phase transition from Néel
to Haldane phase is proved to be correct.

FIG. 4. String order OS after a time evolution τ for different
lengths L decreases for slower quenches and becomes equal to the
ground state value of the final Hamiltonian. The quench protocol is
similar to that shown in Fig. 2. The initial (green dashed) and final
(green dot-dashed) ground state values for the largest system size are
shown for comparison.

Both the initial and final phases display a finite string
order, although deep in the Néel phase the string order is
higher than in the Haldane phase. Quenching from the Néel
to the Haldane phase, the time-evolved state is expected to
generate defects since it crosses the quantum critical point.
We consider it worthwhile to study the fate of the string order
after the quench in D as shown in Fig. 4. We observe that
for approximately τ > 20, the string order attains a value
very close to that of the ground state of the final Hamilto-
nian for all the system sizes. We can thus conclude that the
string order converges to the final ground state value very
quickly compared to the other observables shown before.
This result indicates the possibility of creating the Haldane
insulator phase experimentally. One needs to first prepare the
Néel phase, which has already been achieved in experiments
[65], and then quench D with τ > 20 to reach the Haldane
insulator phase for system sizes considered here. The quench
process will not excite the system enough to kill the string
order, as reported in earlier theoretical works with sudden
quenches [45,46].

The quench from the Néel to the Haldane phase can also be
achieved along the θ direction. Figure 5 shows the behavior
of the excess energy as a function of the quench time after
a quench by changing θ , holding D constant at −0.310. We
find a power-law region for intermediate τ values. Extrap-
olating the power-law exponents for different system sizes
gives a value of b∞ = −0.873 ± 0.011, which is consistent
with the extrapolated value obtained in the previous protocol
of quenching the external field from Néel to Haldane phase,
where we found b∞ = −0.866 ± 0.008.

We now look at the evolution of the string order parameter,
OS , after the quench in the θ direction in Fig. 5. Before
proceeding to study the effect of the quench, it is informative
to notice the ground state values. Typically the Néel phase
has a larger string order compared to the Haldane phase. This
observation is always true when the interaction θ is fixed and
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FIG. 5. Top: Quenching from Haldane to Néel phase by changing
the tuning of the interaction θ from −0.1π to 0.1π at a constant
uniaxial field of D = −0.310 exhibits a different behavior for ex-
cess energy �E with a power-law behavior denoted by the red line
with the power-law exponent, b = 0.873 ± 0.011 for a system size
of L = 150. Bottom: String order OS after the linear quench for
intermediate quench times becomes higher than the final ground state
value. The initial (dashed cyan line) and final (dot-dashed cyan line)
ground state values of the string order are shown for comparison.

the external field D is varied. However, this statement may not
be true when going from Néel to Haldane phase through other
trajectories in the phase diagram. For the protocol where D is
kept fixed and θ changed, we clearly see that the ground state
string order in the Néel phase is smaller than in the Haldane
phase. Following the linear quench, the string order converges
to the ground state value of the final Hamiltonian for longer
quench times; see τ > 30. In contrast, we observe that for very
short quench times the string order increase monotonically, till
it reaches a maximum at τ ∼ 3. Surprisingly, for intermediate
quench times (2 < τ < 30), the string order after the time evo-
lution is larger than the final ground state value. This behavior
is indeed not expected, and it implies that for a certain range
of quench times, the excitations are produced in such a way
that enhances the final string order. This observation implies
clearly that using this quench protocol the ground state of the
Haldane phase may not be reached for intermediate times,

FIG. 6. Excess energy �E displays a power-law behavior as a
function of quench time τ , shown here for two different lengths
L after quenching from a uniaxial field Di = 1.6 to Df = 0.6; the
interaction is held constant, θ = 0. The vertical dashed lines de-
note the region which is fitted by the power law, �E = aτ b(L), for
the corresponding system size, L. Inset: Quadratic extrapolation of
b values for different system sizes, L, yields b∞ = −1.06 ± 0.021.

but the final state will have larger string order, offering a
surprising and useful experimental prescription to maximize
string order.

B. Non-Haldane (large-D) to Haldane phase

We now investigate the effects of quenching from the large-
D phase to the Haldane phase as shown in the schematic
Fig. 1. We follow a similar approach as before, quenching by
changing D and θ . Previous studies [40] have shown that this
transition has a critical exponent ν = 1.56 and a central charge
c = 1, both distinct from the values of ν and c corresponding
to the transition from Néel to Haldane phase.

Figure 6 clearly shows a power-law region as expected
from the Kibble-Zurek mechanism. Characteristic oscilla-
tions in the residual energy are observed for very slow
quenches. Due to computational complexity, this feature is
visible only for smaller lengths. Fitting the extracted value
of the power-law exponent b(L) in the quasiadiabatic regime
with a quadratic function of the system size, we obtain b∞ =
−1.06 ± 0.02. This value is certainly different than what was
obtained in the previous quench protocol of Néel to Haldane
phase. Since the Kibble-Zurek mechanism is valid, we can
extract the critical exponent z as before. This analysis yields
z = 0.229 ± 0.004.

The final Schmidt gap displays cusplike behaviors arising
from the nonanalyticity, but only for larger lengths, i.e., L =
150, 200, which can be early-time indications of dynamical
phase transitions as shown in Fig. 7. If the quench is done
rapidly (τ < 8), the largest two eigenvalues of the reduced
density matrix remain almost degenerate. However, for L >

150, the Schmidt gap is two orders of magnitude lower than
that in the adiabatic limit (τ > 20) when compared to smaller
systems of L < 100. Due to the fact that the Schmidt gap in
the final ground state is smaller than its initial ground state
value, the oscillations exhibit a power-law decay envelope.
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FIG. 7. Top: Schmidt gap after the quench has cusps at different
quench times for larger system sizes. The pink dot-dashed line is
the expected power-law envelope from Eq. (13). Bottom: The block
entropy shows a marked deviation from the expected Kibble-Zurek
scaling, shown by the maroon dashed line. The quench protocol is
similar to that mentioned in Fig. 6.

The entanglement entropy after the time evolution shows
a characteristic power-law behavior for smaller quench times,
followed by oscillations. Fitting this power-law region with
Eq. (14), the corresponding values for this transition do not
show a good agreement. This behavior can imply either the
Kibble-Zurek mechanism is not valid in this transition, and
hence the z value derived is incorrect, or the entanglement
entropy does not comply with the Kibble-Zurek mechanism.
Deviations from the power-law behavior occur progressively
at larger quench times with increasing system size. The oscil-
lations typically occur when the power-law region ends, and
can be attributed to the presence of excited components in the
wave function after crossing the critical point [57].

The Haldane phase has a finite string order unlike the
large-D phase. Following a quench from the large-D to
Haldane phase, the string order is found to approach the final
ground state value in the Haldane phase for all system sizes
as shown in Fig. 8. Oscillations in the time-evolved string
order as a function of the quench time in the adiabatic limit

FIG. 8. Following a quench as mentioned in Fig. 6, the string or-
der increases toward the final ground state value for slower quenches.
However, larger systems require longer quench times to reach the
final ground state value, shown by the green dot-dashed line.

are noticeable for smaller system sizes whereas the proximity
of the converged time-evolved string order to the final ground
state value increases as the system size increases. Both these
effects can be attributed to finite-size effects. The quench time
at which the evolved string order converges close to the final
ground state value depends explicitly on the system size.

The quench from large-D to Haldane phase can also be at-
tained by changing θ and keeping D fixed. Figure 9 shows the
behavior of the excess energy as a function of quench times.
Extracting the power-law exponent from the quasiadiabatic
regime and extrapolating to the thermodynamic limit suggests
a value of b∞ = −0.701 ± 0.001. This value is markedly dif-
ferent from that obtained when quenching along the external
field, D, from the large-D phase to Haldane phase, suggesting

FIG. 9. Excess energy �E as a function of quench times τ for
two different lengths L after quenching the interacting parameter
from θi = −0.25π (large-D phase) to θ f = 0.15π (Haldane phase);
the uniaxial field is held constant at D = 0.5. The dashed line denotes
the region which is fitted by the power law, �E = aτ b. Inset: The
thermodynamic value of b∞ = −0.701 ± 0.001 is obtained when
b(L) is fitted with a quadratic function of 1/L.
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FIG. 10. String order OS after the time evolution for different
lengths L corresponding to the quench from θi = −0.25π to θ f =
0.15π while holding D = 0.5.

a different universality class of the transition depending on the
path taken from one phase to the other. Examining the string
order after the quench in Fig. 10, we recognize a system-
size-dependent behavior. The evolved string order reaches the
final ground state value at quench times which increases with
system size. Unlike the previous quench protocol, we observe
neither any oscillations in the time-evolved string order nor
a size-dependent difference between the ground state and the
evolved string order. However, it should be noted that both
the quench protocols show a system-size-dependent behavior
of the string order when evolving from large-D to Haldane
phase. This observation is in stark contrast to the scenario
when evolving from the Néel to the Haldane phase, where the
string order has no dependence on the system size. Such a
behavior will be very useful for experimental groups where
observations are likely to show finite-size effects.

IV. METHODS AND ERROR ANALYSIS

We used two different MPS packages to simulate the stat-
ics and dynamics of the Hamiltonian described in Eq. (1),
i.e., openTEBD [66] and openMPS [67,68]. The ground
state simulations were carried out with bond dimension
1000, and a maximum system size of 200 lattice sites. For
the time-dependent simulations, fourth-order Suzuki-Trotter
decomposition was used with typical time steps of 0.01, trun-
cation error limit of 10−10, and bond dimensions between 500
to 800 depending on the quench protocol and system size.

We support our results from the previous section with the
following error analysis. Numerical simulations with tensor
network methods have two main sources of error. On the one
hand, we have the Trotter approximation scaling as a power
of the time step dt [32]. On the other hand, we have the
truncation of the Hilbert space in terms of the bond dimension.
Both errors are applicable to the statics and dynamics as we
use imaginary time evolution for the statics; a variational
ground state does not have a Trotter error [21]. Error bounds
can be calculated for observables based on the variance of
the energy and the energy gap to the first excited state for

FIG. 11. Error analysis: The difference in the final energy after
time evolution, the initial ground state energies, and the final ground
state energies for different bond dimensions, χ , with the correspond-
ing value obtained using the largest bond dimension, as a function of
bond dimensions for Haldane phase to large-D phase quenches and a
system size of 200 sites.

the ground state [67]. The nth-order Trotter decomposition
has a well-controlled error proportional to O(dtn). Thus, we
concentrate in the following on the bond dimension, where
the maximum grows exponentially with the system size. The
validity of a truncation to a value well below the maximum is
demonstrated in the following.

Our results for the Kibble-Zurek scaling are based primar-
ily on the excess energy. Three states emerge in the error
analysis: (i) the ground state serving as the initial state to the
quench; (ii) the ground state of the final parameters of the
quench; and (iii) the final state of the quench. These three
values are sufficient to track down the main source of error.
Figure 11 shows the convergence of the energy measurements,
which are the foundation of the excess energy. We varied
the bond dimension from 25 to 1000. In addition, we show
the difference from the simulation with the highest bond
dimension. The convergence for the simulated bond dimen-
sion is straightforward. The remaining error of the order of
10−15 is an artifact of the machine precision in numerical
simulations. This short error analysis justifies us in dismiss-
ing error bars from the numerical simulations in the fitting
procedure for the Kibble-Zurek scaling.

V. CONCLUSION

We have examined the effects of linear quenches across
quantum critical points in the BBM with a quadratic Zeeman
field. Our primary focus has been to quench into the Haldane
phase from phases which can be readily prepared in exper-
iments, such as the Néel and large-D phases. We evaluated
the validity of the Kibble-Zurek mechanism in each of these
transitions by studying excess energy and different observ-
ables which are related to the correlation length as a function
of quench time, such as the block entropy and the Schmidt
gap. We base our results on numerical simulations with matrix
product states methods in 1-dimensional finite-size systems.
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For the Néel to Haldane phase transition, we found
Kibble-Zurek-like power-law behavior in the excess energy.
However, the behavior of the excess energy, along with the
power-law exponent, depends on the quench protocol, i.e.,
whether we perform the quench along the external magnetic
field, D, or interaction parameter, θ . The Schmidt gap and
block entropy show signs of dynamical phase transitions
through the appearance of cusps at specific quench times.
The power-law exponent derived from the behavior of excess
energy follows the Kibble-Zurek mechanism if the correct
critical exponents are considered.

We find that the behavior of string order depends heavily
on the quench protocol, with a marked difference in the two
scenarios. Quenching across θ reveals a regime for quench
times in which the final time-evolved string order is larger than
the final ground state string order, suggesting the formation
of defects due to the quench which not only preserves the
string order, but also enhances it. Furthermore, the behavior
of string order as a function of quench times shows almost no
dependence on the system size. Quenching from the large-D
to the Haldane phase shows yet again the dependence on the
quench direction in the phase diagram. The string order shows
a clear system-size dependence, with larger systems needing
longer times for the final time-evolved string order to become
approximately equal to the final ground state value. Our ob-
servations of the string order following a linear quench across
the two quantum phase transitions will play an important role
in experiments in search of the elusive Haldane phase.

We have seen that the investigation of the transitions to
the Haldane phase yields intriguing physics. These results
raise the question of which other phenomena the remaining
phase transitions in the BBM may contain. These transitions
are a fruitful subject for future studies. Second, it would be
important to eventually model the system as an open sys-
tem coupled to a reservoir, e.g., a with a Lindblad master
equation in order to examine the question of decoherence
in quantum simulators seeking to identify and explore the
Haldane phase. Finally, a remaining open question is which
cause for defects, i.e., the quench rate or the open system
effects, is predominant for a given parametrization of the
system.
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