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Modified coherence of quantum spins in a damped pure-dephasing model
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We consider a spin- j particle coupled to a structured bath of bosonic modes that decay into thermal baths. We
obtain an analytic expression for the reduced spin state and use it to investigate non-Markovian spin dynamics.
In the heavily overdamped regime, spin coherences are preserved due to a quantum Zeno affect. We extend the
solution to two spins and include coupling between the modes, which can be leveraged for preservation of the
symmetric spin subspace. For many spins, we find that intermode coupling gives rise to a privileged symmetric
mode gapped from the other modes. This provides a handle to selectively address that privileged mode for
quantum control of the collective spin. Finally, we show that our solution applies to defects in solid-state systems,
such as negatively charged nitrogen vacancy centers in diamond.

DOI: 10.1103/PhysRevB.105.094308

I. INTRODUCTION

Quantum control of spins is now an advanced field with
applications being developed for quantum sensing [1] and
quantum computing [2]. Less well developed, however, is the
control of the environments with which the spins inevitably
interact. In the limit where a spin is only weakly coupled to
its environment, which has a large bandwidth relative to the
spin dynamics, the Born-Markov and rotating-wave approx-
imations apply. The environment quickly loses information,
and the Markovian system dynamics obey a Lindblad mas-
ter equation [3,4]. In another setting, the coupling is weak,
but the environmental correlations are long-lived. Dynamical
decoupling pulses can be employed to protect the spins [5].
These limits are starting points for approaches to studying
reduced-spin dynamics for potential engineering of spin con-
trol and coherence preservation. More generally, though, one
must consider that both (a) the spin-environment coupling is
not weak and (b) the environment is “structured” in that it pos-
sesses nontrivial temporal correlations and modified spectral
density [6].

The fundamental tools for studying such systems beyond
weak coupling are bipartite spin-boson models, where the
spin is strongly coupled to an environment of modes [7,8].
Various techniques have been employed to study reduced-
spin dynamics including generalized master equations [7],
hierarchical methods [9–11], dilation to a tripartite unitary
dynamics [12], and others [13–16]. A subset of spin-boson
models are pure-dephasing models (also called the indepen-
dent boson models), where the spin experiences no energy
exchange with the modes. This arises in a variety of physi-
cal settings including exciton-phonon dynamics [17,18] and
defects in crystal lattices [19]. Pure-dephasing models admit
exact solutions for the spin dynamics [20–22], revealing non-

Markovian dephasing that strongly depends on the modes’
spectral density and initial state [23,24].

In this paper, we consider a large-spin ( j > 1/2) pure-
dephasing spin-boson model with an additional feature: The
modes themselves decay irreversibly into thermal baths. We
present an exact analytic solution for the reduced spin in
this setting, variations of which are plentiful in the literature
[18,22,25] but do not combine both large spin and mode dis-
sipation. The effects of mode dissipation can be pronounced:
In the overdamped regime, they significantly enhance spin-
coherence lifetimes in analogy to quantum-Zeno-type effects
when measurements are performed [26].

For multiple spins, the spectrum and decay rates of the
bosonic modes can induce effective interactions between the
spins. We consider a multispin setting motivated by defects
in a solid-state system, where each electronic emitter couples
dominantly to local vibrational modes [19,27–29]. Coupling
between local modes (indicative of nonlocal normal modes)
can induce a separation of energy scales that implies distinct
dynamics on different collective subspaces of the spins. Simi-
lar effects are found in spin-boson studies of exciton dynamics
using effective modes [30], where the existence of a single
“preferred” mode or group of preferred modes can lead to
lengthened electronic coherences [31]. Selectively addressing
preferred modes provides a handle for quantum control of
collective spin degrees of freedom [22].

The paper is organized as follows. In Sec. II we introduce
the model and solve for the exact reduced dynamics of single
large spins, and we illustrate important limiting behavior in-
cluding an overdamped setting that preserves spin coherences
using a quantum-Zeno-type effect. In Sec. III we solve for
the reduced dynamics of two spins in the same setting where
the bosonic modes are themselves coupled to each other. We
analyze how the symmetric spin subspace can be preserved
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for a longer time due to this modification of the environment.
Extending the analysis to many spins, we show in Sec. IV
that coupling between all the bosonic modes can in certain
regimes open a gap between a symmetric eigenmode and the
rest, and this provides a mechanism for coherent control on
the symmetric spin subspace. In Sec. V, we show that our
solution is also useful to describe the physics of solid-state
defects, such as negatively charged nitrogen vacancy (NV−)
centers in diamond. We include two other relevant effects
in such systems: pure dephasing and (optical) decay of the
spin. Finally, we conclude with a summary of results and
suggestions for further applications.

II. LARGE SPIN COUPLED TO A COLLECTION OF
VIBRATIONAL MODES: ANALYTIC SOLUTION

Our starting point is a closed system comprising a single
spin- j particle coupled to a collection of harmonic oscillators.
Although the results apply in general for spin-boson coupling,
we consider for concreteness the harmonic oscillators to be a
discrete set of vibrational modes determined by the boundary
conditions in a crystal setting. We derive an analytic formula
for the time-evolved joint state of the closed system from
which we extract the reduced state of the spin by tracing
over the modes. Since the interaction with the vibrational
modes is unitary (and not dissipative), the reduced spin state
experiences non-Markovian effects.

Spin dephasing arises from state-dependent coupling to the
set of local vibrational modes, because the electronic excited
state deforms the local electron density of the crystal. The
Hamiltonian for this situation is the (large-spin) spin-boson
model,

Ĥ = � ĵz +
∑

k

ωk

(
v̂

†
k v̂k + 1

2

)
+ ĵz ⊗

∑
k

(ηk v̂
†
k + η∗

k v̂k ),

(1)
where ηk characterizes the interaction strength between the
spin and the kth vibrational mode and h̄ = 1.

The spin is described by a set of 2 j + 1 bare eigenstates
satisfying

ĵz| j, m〉 = m| j, m〉 (2)

with transition frequency �. Each vibrational mode is de-
scribed by bosonic field operators satisfying [v̂k, v̂

†
k′ ] = δk,k′ .

The joint state of the spin-boson system at time t is for-
mally given by

ρ̂(t ) = Û (t )ρ̂spin(0) ⊗ ρ̂V (0)Û †(t ), (3)

where ρ̂spin(0) ⊗ ρ̂V (0) is the initial joint state. The
interaction-picture propagator for the spin-boson system (with
respect to the free Hamiltonians of the spin and vibrational
modes) is

Û (t ) = T exp

[
−i

∫ t

0
dt ′ ĵz ⊗ V̂ (t ′)

]
, (4)

where T designates the time-ordering operator and the Her-
mitian interaction-picture mode operator is

V̂ (t ) :=
∑

k

(ηk v̂
†
k eiωkt + η∗

k v̂ke−iωkt ). (5)

By writing the propagator in the eigenbasis of the spin, we
can manipulate it into a form that is useful for calculating time
evolution:

Û (t ) =
j∑

m=− j

T exp

[
−im

∫ t

0
dt ′ V̂ (t ′)

]
| j, m〉〈 j, m|. (6)

The time-ordered integral in this expression can be simpli-
fied. Using the fact that all the vibrational-mode operators for
k �= k′ commute, we remove the time ordering by employing a
Magnus expansion, which terminates at second order. Details
are given in Appendix A. This gives the expression

T exp

[
−im

∫ t

0
dt ′ V̂ (t ′)

]
= eim2�(t ) exp

[
−im

∫ t

0
dt ′ V̂ (t ′)

]
,

(7)

where the c-number phase is

�(t ) := −
∫ t

0
dt1

∫ t1

0
dt2

∫
dω J (ω) sin[ω(t1 − t2)] (8)

and we have defined a spectral density,

J (ω) :=
∑

k

|ηk|2 δ(ω − ωk ). (9)

Importantly, the time ordering has been removed, and the
phase factor is determined only by the spectral density
(through the coupling strengths in the Hamiltonian) and not
by the state of the vibrational modes.

With the propagator in Eq. (7), we can express the general
solution for the joint spin-vibrational state at time t as Eq. (3):

ρ̂(t ) =
j∑

m,m′=− j

ei(m2−m′2 )�(t )ρm,m′
spin (0)| j, m〉〈 j, m′|

× ⊗e−im
∫ t

0 dt ′ V̂ (t ′ )ρ̂V (0)eim′ ∫ t
0 dt ′ V̂ (t ′ ), (10)

where the matrix elements of the initial spin state are

ρm,m′
spin (0) := 〈 j, m|ρ̂spin(0)| j, m′〉 (11)

and we have used the fact that V̂ †(t ) = V̂ (t ), since it is a
Hamiltonian.

A. Reduced state of the spin

The reduced density matrix for the spin at time t , ρ̂spin(t ),
is found by tracing over the vibrational degrees of freedom in
the expression for the joint state, Eq. (3),

ρ̂spin(t ) = TrV [ρ̂(t )]. (12)

By decomposing the reduced spin state in the eigenbasis,
Eq. (2),

ρ̂spin(t ) =
j∑

m,m′=− j

ρm,m′
spin (t )| j, m〉〈 j, m′|, (13)

we find the matrix elements by tracing over the vibrational
modes in the general solution, Eq. (10),

ρm,m′
spin (t ) = ρm,m′

spin (0)ei(m2−m′2 )�(t )S (t ). (14)
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For each matrix element, labeled by m and m′, this expression
requires evaluating the term

S (t ) := TrV [e−i(m−m′ )
∫ t

0 dt ′ V̂ (t ′ )ρ̂V (0)], (15)

for a given initial state of the vibrational modes ρ̂V (0).
We consider the situation where the vibrational modes

are initially in a thermal state characterized by β = 1/kBT
for temperature T . The initial state across the k modes is
given by

ρ̂V (0) =
⊗

k

ρ̂therm,k, (16)

where the thermal state for vibrational mode k is given in the
diagonal coherent-state basis (P function) as

ρ̂therm,k = 1

π n̄k

∫
d2α exp

(
−|α|2

n̄k

)
|α〉〈α|, (17)

with thermal occupation n̄k = [exp(βωk ) − 1]−1. In this case,
the integral in Eq. (15) can be evaluated analytically. De-
tails following the method of Agarwal [32] are given in
Appendix B. Plugging the result, Eq. (B8), into the general
formula, Eq. (14), gives the matrix elements of the reduced
spin state,

ρm m′
spin (t ) =ρm m′

spin (0) exp

[
−

∫ t

0
dt1

∫ t1

0
dt2

∫ ∞

0
dω J (ω)

×
(

i(m2 − m′2) sin[ω(t1 − t2)]

+ (m − m′)2 coth

(
βω

2

)
cos[ω(t1 − t2)]

)]
.

(18)

These dynamics are nontrivial for the spin coherences, while
the diagonal matrix elements (m = m′) do not evolve. For
small bath temperatures, β → ∞, this equation approaches
the situation where the spin coherences dynamically evolve
along with the vibrational modes, but they do not experience
decay and revival. Finally, we note that, although we have
focused on the reduced spin state ρ̂(t ), the dynamical map
above can be applied to any operator by decomposing it in
the ĵz basis.

We can also consider Eq. (18) as arising from the correla-
tion functions of the mode operators. Defining a quadrature
operator for mode k (giving the un-normalized position
quadrature when ηk is real),

X̂k := ηk v̂k + η∗
k v̂

†
k , (19)

we note that if one has a Hamiltonian of the form in Eq. (1)
and the initial state of the vibrational modes is thermal, then
the quadrature correlation function of the modes is given by
(see Appendix C)

C(t ) :=
∑

k

〈X̂k (t )X̂k (0)〉 (20)

=
∑

k

|ηk|2
[

coth

(
βωk

2

)
cos(ωkt ) − i sin(ωkt )

]
(21)

=
∫ ∞

0
dωJ (ω)

[
coth

(
βω

2

)
cos(ωt ) − i sin(ωt )

]
. (22)

In the final line, we have expressed the correlation function
in terms of the spectral density J (ω), Eq. (9). It will also be
convenient to divide the correlation function into its real and
imaginary parts

C(t ) = CRe(t ) + iCIm(t ). (23)

Using the above expressions, the analytic form for the
reduced-spin matrix elements, Eq. (18), can also be
written as

ρ
spin
m m′ (t ) = ρ

spin
m m′ (0) exp[i(m2 − m′2)IIm(t ; 
ω)

− (m − m′)2IRe(t ; 
ω)], (24)

where we have defined integrals over the real and imaginary
parts of the correlation function,

IRe(t ; 
ω) :=
∫ t

0
dt1

∫ t1

0
dt2 CRe(t1 − t2), (25a)

IIm(t ; 
ω) :=
∫ t

0
dt1

∫ t1

0
dt2 CIm(t1 − t2), (25b)

with 
ω included to indicate that each integral is a function
of the mode frequencies. Recall that this solution is in the
interaction picture with respect to the bare spin and bare mode
Hamiltonians.

The imaginary part IIm gives the coherent dynamics of the
spin coherences, and the real part IRe describes their decay.
Note that the integrals in Eqs. (25a) and (25b) can in principle
be evaluated term by term by recognizing that the correlation
function, Eq. (20), is a sum over the vibrational-mode index
k. That is, we may express the integrals as

IRe(t ; 
ω) =
∑

k

IRe(t ; ωk ), (26a)

IIm(t ; 
ω) =
∑

k

IRe(t ; ωk ). (26b)

This form will be valuable for evaluating the terms below.

B. Spin dephasing in the presence of thermal
dissipation of the vibrational modes

Above, we considered a single large spin and a collection
of vibrational modes evolving unitarily as a closed system.
Here, we generalize this situation to an open system where
each vibrational mode is coupled to a local dissipative bath
at inverse temperature βk . This is described by the master
equation for joint state ρ̂,

d

dt
ρ̂ = − i

h̄
[Ĥ, ρ̂] +

∑
k

Dth
k [ρ̂], (27)

with the spin-boson Hamiltonian in Eq. (1) and thermal dissi-
pator

Dth
k [ρ̂] := �k (n̄k + 1)

(
v̂kρv̂

†
k − 1

2 v̂
†
k v̂kρ − 1

2ρv̂
†
k v̂k

)
+ �kn̄k

(
v̂

†
k ρv̂k − 1

2 v̂k v̂
†
k ρ − 1

2ρv̂k v̂
†
k

)
. (28)

The top line describes loss of vibrational excitations into
the bath, and the second line describes incoherent heating
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according to the temperature of the bath (note that this term
vanishes when the bath occupancy vanishes). Going to the
interaction picture with respect to the free Hamiltonian of the
spin and of the vibrational modes does not affect the form of
the thermal dissipator.

In the previous section we demonstrated that the evolu-
tion of the reduced spin density matrix can be described by
the thermal-state correlation functions of the modes. This is
true even when the vibrational modes decay according to
the Markovian thermal dissipator in Eq. (28), which gives a
decaying correlation function. Including the dissipator causes

the quadratures to decay via the replacement v̂k → e− �k t
2 v̂k in

Eq. (19).
We now find the correlation function, Eq. (20), for the

vibrational modes. There are in principle two temperatures
associated with each vibrational mode: that of the initial
vibrational-mode states and that of the bath to which each
mode couples. We set these to be the same under the as-
sumption that each vibrational mode is initially in equilibrium
with its local bath. As derived in Appendix C, the correlation

function [Eq. (20)] of the decaying vibrational modes is

C(t ) =
∑

k

|ηk|2e− 1
2 �kt

[
coth

(
βωk

2

)
cos(ωkt ) − i sin(ωkt )

]
.

(29)

While the open-systems dynamics of the joint state is
Markovian, the spin subsystem evolves in a non-Markovian
way. The expression for the reduced spin density matrix is
given by Eq. (24),

ρ
spin
m m′ (t ) = ρ

spin
m m′ (0) exp[i(m2 − m′2)IIm(t ; 
ω, 
�)

− (m − m′)2IRe(t ; 
ω, 
�)], (30)

with the integrals in Eqs. (25a) and (25b) taken here over the
real and imaginary parts of the correlation function in Eq. (29)
that now includes thermal dissipation. Note that we include an
additional label on the integrals 
� to include the vibrational-
mode decay rates. We now evaluate the integrals above term
by term, as described by Eqs. (26a) and (26b). For vibrational
mode k with frequency ωk and decay rate �k , the integrals
evaluate to

IRe(t ; ωk, �k ) = 2|ηk|2 coth
(

βωk

2

)
(
�2

k + 4ω2
k

)2

{ − 2
(
�2

k − 4ω2
k

) + �kt
(
�2

k + 4ω2
k

) + e− �k t
2

[−8�kωk sin(ωkt ) + 2
(
�2

k − 4ω2
k

)
cos(ωkt )

]}
,

(31a)

IIm(t ; ωk, �k ) = 4|ηk|2(
�2

k + 4ω2
k

)2

{
4ωk�k − ωkt

(
�2

k + 4ω2
k

) − e− �k t
2

[(
�2

k − 4ω2
k

)
sin(ωkt ) + 4�kωk cos(ωkt )

]}
. (31b)

These expressions, which we refer to as the dephasing factor
(IRe) and the unitary phase factor (IIm), complete the full
non-Markovian description of the reduced spin state, Eq. (30).
The factors depend on various parameters in the Hamiltonian,
but they are independent of the spin size and the coherences
between specific spin-basis states labeled by m and m′. Rather,
the spin size j sets the bounds for m and m′, and these enter
the dynamical solution as multiplicative factors (m2 − m′2)
and (m − m′)2 in Eq. (30). Figure 1 shows IRe and IIm for a
single mode and various mode decay rates. The effects on spin
coherences can be organized into underdamped � < ω and
overdamped � � ω regimes, as discussed in the caption and
further below. Note that for vanishing damping rates, �k → 0,
the expressions above simplify to

IRe(t ; ωk, 0) = 2|ηk|2
ω2

k

coth

(
βωk

2

)
sin2

(
tωk

2

)
, (32)

IIm(t ; ωk, 0) = |ηk|2
ω2

k

[
sin

(
tωk

2

)
− ωkt

]
. (33)

In pure-dephasing models, the diagonal matrix elements
of the spin do not evolve; see the m = m′ terms in Eq. (30).
This is due to the fact that the Hamiltonian, Eq. (1), is di-
agonal in ĵz. The off-diagonal spin coherences, in contrast,
experience both unitary-type and dephasing-type dynamics
according to IIm(t ; 
ω, 
�) and IRe(t ; 
ω, 
�), respectively: This
is pure dephasing. Notice that the accumulated phase from the
unitary-type dynamics is trivial for a two-level spin ( j = 1

2 ),

since m2 − m′2 always vanishes. Thus pure spin dephasing is
most clearly illustrated as shown in Fig. 2. Given a larger spin,
j > 1

2 , the accumulated phases are not trivial. In that case,
the unitary-type dynamics are akin to a single-axis twisting
Hamiltonian [33], which generates spin squeezing for a spin
with j > 1

2 . For larger spins, these spin-squeezing effects
are always in competition with the dephasing-type dynamics,
since they scale in the same way with the spin-mode coupling
ηk .

Asymptotic regimes

We can gain insight into the complicated expressions for
the dephasing and unitary-phase factors above by looking at
their asymptotic forms. The full expressions for a single mode
k are shown in Fig. 1 in the underdamped � < ω and over-
damped � � ω regimes. Below, we discuss the asymptotic
forms in these two regimes.

In the long-time limit, �kt � 1 for all k (i.e., for times
t much longer than any characteristic decay time �−1

k ), the
oscillating transients die off, and the integrals become

IRe(t ; ωk, �k ) → 2|ηk|2 coth

(
βωk

2

)
�k

�2
k + 4ω2

k

t, (34)

IIm(t ; ωk, �k ) → − 4|ηk|2ωkt

�2
k + 4ω2

k

. (35)

There are two parameter regimes of interest for the spin
dynamics. The first is the underdamped case, where �k < ωk
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FIG. 1. Dephasing factor IRe(t ; ω,�) and unitary phase factor IIm(t ; ω,�) in Eqs. (31a) and (31b) as a function of time for the
(a) underdamped and (b) overdamped regimes. Parameters are η/ω = 1, β → ∞ (zero temperature), and critical damping occurs at �/ω = 1.
The amplitude of a spin coherence between m and m′ is determined by IRe [Eq. (30)], which in the underdamped regime increases as �/ω does.
However, in the overdamped regime, increasing �/ω decreases the IRe, thus producing less spin dephasing. In this regime, the accumulated
unitary phase between m and m′, determined by IIm, also decreases with �/ω; in the heavily overdamped regime, spin coherences are frozen
and experience no dephasing or unitary-type evolution at all.

for all k. The asymptotic expressions above become

IRe(t ; ωk, �k ) → |ηk|2 coth

(
βωk

2

)
�k

2ω2
k

t, (36)

IIm(t ; ωk, �k ) → −|ηk|2 1

ωk
t . (37)

The magnitudes of spin coherences oscillate at frequency
|ηk|2/ωk while experiencing damping at a rate proportional
to �k . This behavior is shown in Fig. 2(a) for the case of a
spin- 1

2 coupled to a single mode. Note that these oscillations
arise from the non-Markovian dephasing-type dynamics gen-
erated by IRe. In fact, for spin- 1

2 , the unitary-type oscillations
generated by IIm vanish.

The second regime of interest is the overdamped case,
where �k � ωk for all k, in which the magnitude of the spin
coherences monotonically decreases. This behavior is due to
the fact that the integral factors become

IRe(t ; ωk, �k ) → 2|ηk|2 coth

(
βωk

2

)
1

�k
t, (38a)

IIm(t ; ωk, �k ) → 4|ηk|2 ωk

�2
k

t ≈ 0. (38b)

The spin coherence experiences no coherent oscillations and
dephases at a rate that is inversely proportional to the vi-
brational decay rate. Thus, in the overdamped regime, larger
vibrational decay rates serve to preserve spin coherences.
This can be interpreted in terms of a quantum Zeno effect:
The modes measure the spin and then immediately discard
the information into the environment—similar to rapid pro-
jective spin measurements. To minimize decoherence of the
spin, one desires weak spin-mode couplings ηk and fast decay

from the bosonic modes to their baths. Overdamped behavior
is shown in Fig. 2(b).

As a final note, we point out that the map in Eq. (30) (as
well as the others like it throughout this paper) can be used
to describe the reduced Schrödinger-type dynamics of any
reduced-spin operator, not just density matrices, by expressing
the operator in the ĵz eigenbasis. Heisenberg-picture dynamics
can be found simply by applying the propagator accordingly
and following the same procedure.

III. DISSIPATIVE PROTECTION OF THE SYMMETRIC
SUBSPACE FOR TWO SPINS

We now explore how vibrational dissipation can have a
protective effect on the coherences between many spins. We
take each to be spin j = 1

2 with eigenstates |m = ± 1
2 〉, where

the label giving spin j = 1
2 is suppressed for brevity. Thus the

operator ĵ (n)
z for the nth spin satisfies

ĵ (n)
z

∣∣ ± 1
2

〉 = ± 1
2

∣∣ ± 1
2

〉
. (39)

We consider a collection of such spins, each of which has
local dynamics described by the spin-boson Hamiltonian in
Eq. (1) (for j = 1

2 ). This physical setting is motivated by two-
level emitter defects in solids, where an electronic excitation
deforms the surrounding crystal lattice, thus coupling to local-
ized vibrational modes [19]. More details on this connection
are given in Sec. V.

We focus on the pedagogical case of two spin- 1
2 particles.

Each spin couples to a quadrature of single local vibrational
mode. This means that each spin-mode pair is described by
the spin-boson Hamiltonian in Eq. (1), with just one term in
the sum over k. Including a coupling between the two local
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FIG. 2. Decay of the off-diagonal coherences of a j = 1
2 spin

coupled to a single bosonic mode for varying decay rates. Plotted
is the matrix element ρ 1

2 , 1
2
(t ) using Eq. (30) with ρ 1

2 , 1
2
(0) = 1.

Parameters are the same as in Fig. 1. (a) Underdamped (� < ω) and
(b) overdamped (� > ω) regimes. The transition from underdamped,
highly non-Markovian dynamics to simpler, overdamped dynamics
is evident in the disappearance of oscillations. In the underdamped
regime, the decay rate of the spin coherence increases with increas-
ing decay rate �, while in the overdamped regime the decay rate of
the spin coherence decreases with increasing decay rate �. This can
be seen from Eq. (34), which shows that in the underdamped case the
decay rate of the spin coherences scales proportional to �, while in
the overdamped case the decay rate scales proportional to �−1. This
is a manifestation of the quantum Zeno effect; when the information
the environment gains about the spin is lost fast enough, the spin state
is frozen and does not decohere.

vibrational modes of strength κ , the Hamiltonian describing
this situation is given by

Ĥ = ω0(v̂†
1 v̂1 + v̂

†
2 v̂2 + 1) + κ (v̂†

1 v̂2 + v̂1v̂
†
2 )

+ η
[

ĵ (1)
z ⊗ (v̂1 + v̂

†
1 ) + ĵ (2)

z ⊗ (v̂2 + v̂
†
2 )

]
. (40)

The distributed (nonlocal) vibrational eigenmodes are
given by symmetric and antisymmetric combinations of the
local ones,

v̂± = 1√
2

(v̂1 ± v̂2), (41)

whose eigenfrequencies are split by the coupling κ ,

ω± := ω0 ± 2κ. (42)

In this basis, the Hamiltonian can be rewritten as

Ĥ = ω+v̂
†
+v̂+ + ω−v̂

†
−v̂− + ηĴz ⊗ x̂+ + ηÂz ⊗ x̂−, (43)

where x̂± := 1√
2
(v̂± + v̂

†
±) are the distributed-mode position

quadrature operators. Coupled to the symmetric and antisym-

metric distributed modes are the (Hermitian) symmetric and
antisymmetric collective operators,

Ĵz := ĵ (1)
z + ĵ (2)

z , (44)

Âz := ĵ (1)
z − ĵ (2)

z . (45)

The eigenstates of collective spin operator Ĵz are the coupled
angular momentum states |J, M〉, satisfying

Ĵz|J, M〉 = M|J, M〉, (46a)

Ĵ2|J, M〉 = J (J + 1)|J, M〉, (46b)

where Ĵ is the total spin operator (Ĵ2 = Ĵ · Ĵ). Relations be-
tween the local-spin and collective spin bases are given in
Appendix D.

The actions of these two collective operators in the
coupled-spin basis, where two spin- 1

2 systems are treated as
a collective spin-1 and a spin-0 particle, are

Ĵz =
1∑

J=0

J∑
M=−J

M|J, M〉〈J, M|, (47)

Âz = 2(|1, 0〉〈0, 0| + |0, 0〉〈1, 0|). (48)

This description makes it clear that the Âz operator couples
the J = 1 and J = 0 subspaces without adding or removing
spin excitations (indicated by no change in the M label).
Meanwhile, collective spin operators such as Ĵz are block
diagonal in the coupled-spin basis, which separates them into
their irreducible representations [34]; here, Ĵz = Ĵ (1)

z ⊕ Ĵ (0)
z ,

where Ĵ (i)
z is the spin-i irreducible representation.

Each of the symmetric and antisymmetric vibrational
modes decays into its own thermal bath, giving a master
equation,

d

dt
ρ̂ = −i[Ĥ , ρ̂] + Dth

+[ρ̂] + Dth
−[ρ̂], (49)

where the thermal dissipators are defined in Eq. (28) and have
respective decay rates �±. Note that this is different from the
above case, where each vibrational mode decays locally. Al-
though the spins are not directly coupled to one another, their
local vibrational modes may be (for κ �= 0), and furthermore,
the vibrational modes decay in a collective symmetric and
antisymmetric fashion. These give rise to effective spin-spin
coupling, which can be seen in the evolution of the reduced
spin state ρ̂spin(t ) = TrV [ρ̂(t )]. The matrix elements in the

local-spin basis, ρ
m′

1,m
′
2

m1,m2 (t ) := 〈m1, m2|ρ̂spin(t )|m′
1, m′

2〉, evolve
according to

ρ
m′

1,m
′
2

m1,m2 (t ) = ρ
m′

1,m
′
2

m1,m2 (0) exp

× {
i
[(

m2
1 + m2

2

) − (
m′2

1 + m′2
2

)]
IIm(t ; ω+, �+)

+ i
[(

m2
1 − m2

2

) − (
m′2

1 − m′2
2

)]
IIm(t ; ω−, �−)

− [(
m1 + m2

) − (
m′

1 + m′
2

)]2IRe(t ; ω+, �+)

− [(
m1 − m2

) − (
m′

1 − m′
2

)]2IRe(t ; ω−, �−)
}
.

(50)

The terms associated with the symmetric vibrational mode
have sums of m1 and m2, and those associated with the an-
tisymmetric vibrational mode have differences of m1 and m2.
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FIG. 3. Decay of the symmetric two-spin state |J = 1, M = 0〉
as a function of time for various �−. The parameters are η/ω0 = 1,
κ = 0, and β → ∞. The curves show population decaying out of
the initial state. Lost population is incoherently pumped into the
antisymmetric state |J = 0, M = 0〉. The quantum Zeno effect is ap-
parent, as the population is preserved for longer times by increasing
�−.

Preserving the symmetric subspace

We are interested in preserving the symmetric spin sub-
space where the symmetric Dicke states lie. In the local-spin
basis, the diagonal elements of the density matrix that describe
local-spin populations do not evolve. However, the collective
spin populations do, since the states |J, M = 0〉 contain local-
spin coherences. The symmetric subspace is described by the
rank-3 projector

P̂sym :=
1∑

M=−1

P̂1,M , (51)

where P̂J,M := |J, M〉〈J, M|. Because dephasing is diagonal in
the local-spin basis, the projectors P̂1,1 and P̂1,−1 are station-
ary in time. Population only leaves the symmetric subspace
through the state |J = 1, M = 0〉. Details can be found in
Appendix D.

Using Eq. (50), the projector onto this state evolves as

P̂1,0(t ) = 1
2 [1 + e−4IRe(t ;ω−,�− )]P̂1,0

+ 1
2 [1 − e−4IRe(t ;ω−,�− )]P̂0,0, (52)

revealing that population lost from |J = 1, M = 0〉 moves
to |J = 0, M = 0〉. The result is that the overlap of the
symmetric-subspace projector decays over time,

Tr[P̂sym(t )P̂sym(0)] = 2 + 1
2 (1 + e−4IRe(t ;ω−,�− ) ). (53)

Crucially, the decay exponent scales as �−1
− in the overdamped

limit where �− � ω− as shown in Eq. (38a). This means that
as the antisymmetric vibrational-mode decay rate increases,
the rate at which population leaves the symmetric subspace
decreases. This is a manifestation of the quantum Zeno effect,
wherein a quantum system with support on a subspace A and
that is coherently coupled to a second subspace B that is
measured at a fast rate, is effectively decoupled from B thus
preserving coherence in A. Symmetric-state preservation with
increasing �− is illustrated in Fig. 3.

Note that Eq. (53) does not involve the symmetric de-
cay rate �+ at all. Although we do not explore the effect
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FIG. 4. Influence of intermode coupling κ on symmetric-state
decay. Decay of the symmetric two-spin state |J = 1, M = 0〉 in-
duced by coupling to the decaying bosonic modes. The parameters
are η/ω0 = 1, �/ω0 = 1, �±/ω0 = (ω±/ω0)3, and β → ∞.

here, symmetric-mode decay can act as dephasing within
the symmetric subspace. This reduces coherences between
the off-diagonal elements in the collective basis, but unlike the
antisymmetric decay �−, it does not move population out of
that symmetric subspace.

The role of the coupling κ between the bosonic modes is
to shift the energies of the eigenmodes and hence their decay
rates. Since we assume that the bosonic mode decay arises
due to Lindblad-type dynamics with a Markovian bath, we can
write the decay rates according to Fermi’s golden rule �(ω) =
2πD(ω)|g|2, where g is some fundamental coupling rate be-
tween initial and final bosonic mode states and D(ω) is the
density of states at the energy of the final states. For the De-
bye model of coupling between phonons in three-dimensional
systems, the density of states scales as D(ω) ∝ ω3 as does
�(ω). Hence for this simple model of two vibrational modes,
we have

�±
�

=
(ω ± 2κ

ω0

)3
, (54)

where � is the mode decay rate in the absence of interactions.
Lifting the mode degeneracy via nonzero intermode coupling
will decrease (κ > 0) or increase (κ < 0) the antisymmetric-
mode decay rate relative to the symmetric-mode decay rate
as shown in (54). The latter case is useful for preserving the
symmetric subspace as illustrated in Fig. 4. This protection is
accompanied by lower symmetric decay rates, which reduces
the spin dephasing within the collective spin subspace.

IV. USING INTERMODE COUPLINGS TO ALTER
THE ENVIRONMENTAL STRUCTURE

In this section, we consider an extension of the spin-
dephasing Hamiltonian analyzed in the earlier sections, where
now the bosonic modes are coupled to each other and there
are many spins. We will show that when the modes have
a specific structure, a single normal mode arises that cou-
ples to the symmetric spin subspace. Then, if the symmetric
subspace can be preserved for some time, that subspace may
be treated like a large spin of size J = N/2, and the results
of the previous sections can be applied. Specifically, we con-
sider the effects of a structured environment where the modes
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FIG. 5. Depiction of multiple spins whose local modes are cou-
pled together, illustrated in the context of two-level defects in a solid
state (see Sec. V). Each pseudospin couples in a state-dependent
manner to local bosonic modes, e.g., a local vibronic mode, shown as
a state-dependent displacement of the harmonic oscillator potential
by an amount x0 = 2xrmsη/ω, where xrms is the ground-state width
and ω is the energy of the mode. Furthermore, the modes are coupled
to each other with potentially different strengths κi j (blue dotted
lines) and also experience decay into a bath of extended thermal
modes, e.g., phonons, at rate � (red wavy lines).

couple together as in Fig. 5. We will show that for certain
types of intermode coupling, discussed below, a large spectral
gap opens between the (near-)symmetric mode and all other
normal modes. The energy splitting can be used to address this
mode. When the modes are coupled to spins with a spin-boson
coupling, selectively addressing the symmetric mode can be
useful for quantum information protocols. For example, when
the mode decay rates are small or absent, one can use this
gap to engineer a geometric phase gate [35] that gives rise to
nonlinear interactions between the spins.

Consider the N-spin generalization of the spin-boson
Hamiltonian in Eq. (40) with each spin coupled to a single
mode,

Ĥ = Ĥm +
N∑

k=1

ĵ (k)
z ⊗ (ηk v̂k + η∗

k v̂
†
k ), (55)

where the modewise part of the Hamiltonian is

Ĥm = ω0

N∑
k=1

(
v̂

†
k v̂k + 1

2

)
+

∑
k �=k′

κk,k′ v̂
†
k v̂k′ . (56)

The modewise couplings κk,k′ can be grouped into a matrix
κ. Diagonalizing Ĥm (by diagonalizing κ) gives rise to N
normal bosonic modes ŵk′ with associated eigenfrequencies
λk′ [36]. This allows the modewise part of the Hamiltonian to
be written as

Ĥm =
N∑

k′=1

λk′

(
ŵ

†
k′ŵk′ + 1

2

)
. (57)

Formally, the eigenmodes are constructed from the original
modes by

ŵk′ =
N∑

k=1

〈λk′ |k〉v̂k, (58)

where |λk′ 〉 is an eigenvector of the matrix κ (not a Hilbert-
space vector) and |k〉 is a unit vector with all zero entries

except at position k. Using the normal modes, the full spin-
boson Hamiltonian in Eq. (55) can be written

Ĥ =
N∑

k=1

λk

(
ŵ

†
k ŵk + 1

2

)
+

∑
k

(Ôk ⊗ ŵ
†
k + Ô†

k ⊗ ŵk ).

(59)
Each normal mode couples to collective operators in the

spin degree of freedom,

Ôk :=
∑

j

〈 j|λk〉η j ĵ ( j)
z . (60)

In general, these are not proportional to collective spin opera-
tors. However, when η j = η, i.e., the coupling of the spins to
local modes is homogeneous, and one of the normal modes is
a symmetric mode defined by

ŵs := 1√
N

N∑
k=1

v̂k, (61)

then one of the spin system operators is Ôs = η√
N

Ĵz, where

Ĵz :=
N∑

j=1

ĵ ( j)
z (62)

is a collective spin operator.
We now discuss situations where the symmetric mode with

eigenfrequency λs couples to Ĵz and how this can be exploited
for nonlinear interactions in the collective spin.

Structured modewise coupling to isolate
the symmetric normal mode

The normal mode spectrum is determined by κ. We assume
that the spin-mode coupling rates are uniform, η j = η, and
consider κ with certain structure, described below, where the
symmetric mode λs is gapped from the rest of the eigenmodes.
In this scenario the Hamiltonian equation (59) can be written

Ĥ =
∑
k �=s

λk

(
ŵ

†
k ŵk + 1

2

)
+

∑
k �=s

(Ôk ⊗ ŵ
†
k + Ô†

k ⊗ ŵk ) + Ĥs,

(63)
where the dynamics of the symmetric mode is

Ĥs = λs

(
ŵ†

s ŵs + 1

2

)
+ η√

N
Ĵz ⊗ (ŵ†

s + ŵs). (64)

Although we are most interested in the symmetric spin
space, note that the Ĵz operator has support over the entire
Hilbert space of the spins (dimension 2N ). Thus it is not sim-
ply an operator for the single (2J + 1)-dimensional symmetric
space (total spin J = N/2) but acts all the irreducible repre-
sentations of angular momentum and their multiplicities [37].
However, Ĵz does not mix these subspaces, so Ĥs likewise does
not mix spin subspaces of different permutation symmetry.
This is important because the collective spin state is often
prepared in the symmetric subspace.

Now using the spectral resolvability of the symmetric
mode, it is possible to perform quantum control on the dynam-
ics to effectively restrict evolution to the symmetric subspace.
Consider a dynamical decoupling pulse sequence where peri-
odically with period T the unitary V̂ = eiπ Ĵx eiπŵ†

s ŵs is applied,
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i.e., a composition of an on-site bit flip on the qubits and π

phase shift on the symmetric mode. This describes a bang-
bang decoupling sequence, and if it is done fast relative to
the coupling strength, i.e., T −1 � η/

√
N , then the effective

evolution will be restricted to that generated by Ĥs [5]. Such
evolution can be used to generate spin squeezing. For exam-
ple, in the limit that the mode decay rates go to zero (�k → 0)
and when the overall time of evolution for the dynamically
decoupled sequence satisfies ωst = rπ for r ∈ N, then by
Eq. (33) the evolution acts on the spins alone according to
the unitary Û = e−iχ Ĵ2

z with χ = rπη2

Nω2
s

. This is similar to a
control scheme considered by Chaudhry and Gong [22], who
proposed using quantum control on the symmetric subspace
of many spins to mitigate spin-mode correlations that can be
problematic when the bath correlation function is not known.

We can quantify how well one can perform the spin-
squeezing unitary via the process fidelity. Consider a target
process U (ρ) = Û ρ̂Û † where Û = e−iĴ2

z IIm (t ;ωs,�) originates
in the unitary-phase part of the full process E , given
in terms of spin matrix element evolution in Eq. (30),
where we consider a collective spin state confined to the
symmetric subspace. Due to the fact that the dephasing
part of the dynamics commutes with the unitary-phase
part, we can write E = E ′ ◦ U , where E ′(|J, M〉〈J, M ′|) =
e−(m−m′ )2IRe(t ;ωs,�)|J, M〉〈J, M ′|. The quality of this process is
quantified by the process fidelity, which in the case of a target
unitary is proportional to the average fidelity over pure states
of the spin system [38]. For this process it is

Fpro(E,U ) = Fpro(E ′, I) (65)

= 〈�+|ρ̂E ′ |�+〉, (66)

where I is the identity channel and E ′ is the dephasing map. In
the second line, we express the process fidelity between these
two in the Jamiołkowski-Choi representation, where accord-
ing to channel-state duality [39], each process corresponds to
a state in a larger Hilbert space HS ⊗ H′

S , with HS′ being
a copy of the Hilbert space of our spin HS . The identity
channel is given by the state |�+〉 := 1√

2J+1

∑J
m=−J |J, M〉S ⊗

|J, M〉S′ , and the dephasing map is given by the state ρ̂E ′ .
Then, the process fidelity can be readily calculated as

Fpro(E,U ) = 1

(2J + 1)2

J∑
m,m′=−J

e−(M−M ′ )2IRe(t ;ωs,�). (67)

Figure 6 shows the process fidelity for a J = 5 spin in the
highly underdamped regime. We see in this case the oscilla-
tions of the process fidelity as the system periodically nearly
decouples from the mode degree of freedom while the co-
herent phase increases essentially linearly with time. For the
higher damping, the process fidelity degrades continuing into
the extreme overdamped regime where the decay due to the
increased real part of the correlation function IRe goes to zero,
but so too does the coherent phase.

We now demonstrate several conditions where such a gap
between the symmetric mode and the other modes can arise.
We consider situations where κ is negative, i.e., all the mode-
wise couplings satisfy κi j < 0. Within this parameter regime,
we study two types of structured modewise coupling. The
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FIG. 6. Process fidelity (blue) Fpro(E,U ) for a target spin-
squeezing unitary Û = e−iχ Ĵ2

z due to a collective spin with angular
momentum j = 5 evolving according to the damped, pure-dephasing
model with a single mode ωs. The system parameters are in the
underdamped regime, η/ωs = 0.1, �/ωs = 10−3, and β = 10. The
accumulated coherent phase χ is plotted in red. At t = 157.08/ωs,
χ = π/2 with Fpro = 0.9703.

first is uniform negative modewise coupling, and the second
is random (but negative) mode coupling.

1. Uniform coupling

We begin with the case where the modewise couplings are
all equal, κi, j = κ , making κ proportional to the unit matrix.
Diagonalizing κ gives N − 1 degenerate modes of frequency
|ω0 − κ|, and one privileged fully symmetric mode, Eq. (61),
with frequency |ω0 + (N − 1)κ|. Note that when κ < 0, the
symmetric mode is the lowest-energy mode, and when κ > 0,
it is the highest-energy one.

2. Random coupling

We also assume that the coupling is a perturbation to the
bare mode coupling, specifically that the matrix (ω01N + κ) is
positive. The bare mode Hamiltonian can be written in terms
of normal modes as

Ĥ =
N∑

j=1

λ j

(
ŵ

†
j ŵ j + 1

2

)
, (68)

where {λi} are the (increasing ordered) eigenvalues of the
matrix,

√
(ω1N + κ)2, and the eigenmodes ŵ j = ∑

j,k c j,k v̂k

are determined from the eigenvectors |λ j〉 = ∑
k c j,k|k〉 of

the matrix κ. By the Frobenius-Perron theorem, there is a
unique smallest eigenvalue λ1, and the corresponding normal
mode has strictly positive coefficients, c1, j > 0. Further-
more, according to a theorem of Füredi and Komlós [40],
if the couplings are described by independent (not necessar-
ily identically distributed) random variables, with a common
bound and with common mean E[κ j,k] = μ < 0 and variance
E[(κ j,k − μ)2] = σ 2, then the unique smallest eigenvalue
satisfies

λ1 = ω0 − σ 2

|μ| + 1

N

N∑
j,k=1

κ j,k + O(1/
√

N ), (69)

and all the other eigenvalues are concentrated in the interval
[ω0 − c

√
N, ω0 + c

√
N], where c is any constant greater than

2σ . This implies an expected spectral gap between the ground
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FIG. 7. Illustration of the separation of the symmetric mode from
the other modes for a collection of N randomly coupled modes.
(a) Shown are the lowest-energy eigenmode, i.e., the symmetric
mode ŵs (purple); the second-lowest-energy mode (orange); and
the highest-energy mode (tan). Here, the bare mode frequency is
ω0, and the mode couplings are chosen randomly and uniformly
in the interval [−κ, 0], where κ/ω = 10−3. For each eigenmode
and value of N , two points are plotted (nearly overlapping on the
plot), indicating the mean ±1 standard deviation energy as calculated
over ten realizations of random couplings. (b) Mean fidelity error of
the lowest-energy eigenmode to the fully symmetric mode, where
F = ( 1√

N

∑N
j=1〈 j|λ1〉)2.

energy and second-lowest-energy modes of

E[λ2 − λ1] = |μ|N + σ 2

|μ| − 2σ
√

N + O(1/
√

N ). (70)

Furthermore, the lowest-energy mode is close to the fully
symmetric mode. From Lemma 3 in Ref. [40], the ground-
state eigenvector |λ1〉 has overlap with the uniform state
|v〉 = 1√

N

∑
j | j〉 of 〈λ1|v〉 > 1 − 2σ 2

Nμ2 with probability P >

1 − 1/N .
Summarizing, for a collection of N identical bosonic

modes coupled to each other in an all-to-all manner, a gap
develops in the eigenmodes with a low-energy symmetric
mode. When the intermode couplings are random but with
common negative mean and a common variance, the ground
energy mode is close to the fully symmetric mode with a
fidelity error that falls off as 1/N , and the energy gap is O(N ).
This is illustrated in Fig. 7.

V. CONNECTION TO EMITTER DEFECTS IN
SOLID-STATE SYSTEMS

Our analysis has up to this point been quite general in
terms of spins coupled to bosonic modes. We now show the
connection to simple models of solid-state systems where
defects in crystals couple to vibrational lattice phonons. Such
a system describes, for example, nitrogen vacancy (NV−)

centers in diamond, a topic of intense interest in the quantum
information processing and sensing communities [29,41–51].

We focus here on a simplified model of a defect in a crystal
considered by Betzholz et al. [19], where the defect is a two-
level electronic system with ground and excited states |g〉 and
|e〉 with transition frequency �. In the context of NV− centers,
|g〉 and |e〉 correspond to the 3A2 and 3E electronic levels,
respectively. The solid-state lattice is locally deformed due
to the electronic excited-state orbital, coupling each two-level
electronic system to a vibrational mode with bare frequency
ω. The Hamiltonian governing the dynamics is given by [19]

Ĥel-vib = �P̂e + ωv̂†v̂ + ηP̂e ⊗ (v̂ + v̂†), (71)

where P̂e := |e〉〈e| is the projector onto the electronic excited
state and η is the vibronic coupling strength. In a crystal
setting, the local vibrational mode v̂ couples to longer-range
acoustic phonons, which can serve as a thermal bath with
dissipator as in Eq. (28).

The reduced state of the electronic subsystem can be calcu-
lated using the solutions for the spin-boson model we derived
in previous sections. Additionally, our results regarding pro-
tection of coherences and symmetric subspaces, as well as the
effect of randomized mode couplings, will also apply to these
lattice defect systems.

To see this, again we assume an initial joint state ρ̂(0) =
ρ̂el(0) ⊗ ρ̂V (0). The initial electronic state is arbitrary and
has matrix elements ρ jk := 〈 j|ρ̂el(0)|k〉 for j, k ∈ {g, e}, and
ρ̂V (0) is a (single-mode) thermal state, Eq. (17). As shown in
Appendix E, the reduced spin state that is given by (71) is

ρ̂el(t ) = ρgg|g〉〈g| + ρgee−iIIm−IRe |g〉〈e|
+ρegeiIIm−IRe |e〉〈g| + ρee|e〉〈e|. (72)

The dynamical phase and decay factors, IIm and IRe, are a
shortened notation for those defined in Eqs. (25a) and (25b).
Here, they are evaluated for the single frequency ω (since
there is only a single mode). If the electronic defect couples to
multiple modes, extension to this case is straightforward using
their more general forms.

An excited defect or color center can undergo optical de-
cay on the timescale of a few nanoseconds [43] as well as
additional pure dephasing. These two effects were not con-
sidered in the spin-boson model above, as we focused there
on interactions between spins and bosonic modes (vibrational
phonon modes in this context). To include these two additional
processes, we add to our master equation Lindblad terms
describing optical decay at a rate �op and additional dephasing
at a rate �dp. As shown in Appendix E, this results in a reduced
electronic state given by

ρ̂el(t ) = (1 − ρeee−�opt )|g〉〈g|
+ ρgee−(�dp+ �op

2 )t e−iIIm−IRe |g〉〈e|
+ ρege−(�dp+ �op

2 )t eiIIm−IRe |e〉〈g|
+e−�optρee|e〉〈e|, (73)

where IIm and IRe are those given by Eqs. (31a) and (31b).
A model for an ensemble of solid-state defects, each cou-

pled to its own vibrational mode, is given by taking multiple
copies of the Hamiltonian in Eq. (71). Additionally, the local

094308-10



MODIFIED COHERENCE OF QUANTUM SPINS IN A … PHYSICAL REVIEW B 105, 094308 (2022)

modes may couple to one another through the long-range
acoustic phonons, which induces a set of nonlocal normal
modes. This suggests that our results on structured environ-
ments in Sec. IV on symmetric subspace protection and the
existence of a privileged symmetric mode may be applicable.
If lattice couplings between phononic modes are negative, the
energy of the symmetric mode will be lower and gapped from
the other modes. The higher energies of the nonsymmetric
modes are likely to lead to faster decay into the thermal bath,
resulting in those modes decaying quickly to their steady
state. The existence of such a gapped mode also allows the
possibility of manipulating the spins via that mode.

The exact dynamics of such a system depends highly on
the frequencies, the intermode coupling rates, and spin-mode
coupling rates, which determine whether the system operates
in the underdamped or overdamped regime (see Sec. II B). For
many solid-state defect emitters, such as NV centers, these
frequencies and couplings are not well known (and, in some
cases, are contradictory) and will differ depending on whether,
for example, the system being considered is bulk or nanocrys-
talline. This suggests that our model could be used to constrain
these parameters. Our model predicts very different results
for different phonon-phonon coupling rates, mode coupling
strengths, and oscillator values. For example, one could use
our model in combination with experimental measurements
to determine whether the defect system is in the underdamped
or overdamped regime or to place bounds on the coupling and
decay rates.

VI. CONCLUSION

In this paper, we have solved the spin-boson model for
the case of a single large spin coupled to a collection of
bosonic modes. We provide an analytic solution for the
non-Markovian reduced-spin dynamics that applies when the
modes themselves can decay into local thermal environ-
ments. We identify two regimes of interest: underdamped and
overdamped. In the underdamped regime, spin coherences
oscillate while decaying at a rate proportional to the modes’
decay rates. In the overdamped regime, the coherences experi-
ence no oscillations and decay at a rate inversely proportional
to the modes’ decay rate. This Zeno-like effect can serve as a
mechanism to preserve spin coherences. These regimes may
also determine whether the dynamics is non-Markovian or
Markovian [52].

In the multiple-spin-boson setting where the modes are
intercoupled, the existence of normal modes with a fast de-
cay into the thermal bath can result in protective effects on
the collective spin. For two spins, population transfer out of
symmetric subspace depends only on the decay of the anti-
symmetric normal mode, and the subspace can be preserved
for significantly longer than expected when this decay is large.
For N coupled bosonic modes, equal coupling yields a single
privileged symmetric normal mode whose energy is gapped
from the other N − 1 degenerate normal modes. Remark-
ably, this holds when the couplings between the modes are
random in magnitude with a common mean and variance.
In this case the energy gap persists between a single privi-
leged near-symmetric normal mode and all the other modes
whose energies are clustered within some energy window.
This energy gap allows for the possibility of using dynam-
ical decoupling to perform quantum information processing
procedures, such as engineering effective spin squeezing or
geometric phase interactions between the spins.

Finally, we connect our analysis to a simple model for
defects in solid-state systems and discuss where our solu-
tions and analyses can be applied. Some physical settings,
such as NV centers in diamond, have extremely large vi-
brational decay rates, which could interfere with coherent
effects. Our results suggest the opposite: Large decay rates
may actually serve to preserve interemitter coherences in a
Zeno-type fashion. This gives a possible reason why recent
optical experiments with NV centers in nanodiamonds have
displayed collective effects [47,48] that require coherences
on timescales much longer than that of the corresponding
vibrational decay. Collective effects in the optical degrees of
freedom are present in a wide range of solid-state systems,
including rare-earth-ion-doped solids, molecular aggregates,
and low-dimensional excitonic solids [53], and it will be in-
teresting to apply our findings in these contexts.

ACKNOWLEDGMENTS

The authors thank Akib Karim for insightful discussions.
B.Q.B., T.V., and G.K.B. acknowledge support from the Aus-
tralian Research Council Centre of Excellence for Engineered
Quantum Systems (Grant No. CE 170100009). B.Q.B. was
additionally supported by the Australian Research Council
Centre of Excellence for Quantum Computation and Com-
munication Technology (Project No. CE170100012) and the
Japan Science and Technology Agency through the MEXT
Quantum Leap Flagship Program (MEXT Q-LEAP).

APPENDIX A: REMOVING TIME ORDERING USING THE MAGNUS EXPANSION

The Magnus expansion [54] allows us to write a time-ordered exponential generated by a time-dependent operator Â(t ) in
terms of a non-time-ordered exponential,

T exp

[∫ t

0
dt ′Â(t ′)

]
= exp[�̂(t )], (A1)

where �̂(t ) is a sum of terms related to the commutator of Â(t ) at different times,

�̂(t ) =
∫ t

0
dt1 Â(t1) − 1

2

∫ t

0
dt1

∫ t1

0
dt2 [Â(t2), Â(t1)] + · · · , (A2)

where additional terms involve nested multitime commutators.
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The unitary propagator in Eq. (6) contains a time-ordered exponential operator over the vibrational modes. Since the modes
are independent, [v̂k, v̂

†
k′ ] = δk,k′ , we can treat each vibrational mode, indexed by k, separately. For each k, the time-ordered

exponential is generated by V̂k (t ) := ηk v̂
†
k eiωkt + η∗

k v̂ke−iωkt , which satisfies the following multitime commutator:

[V̂k (t2), V̂k (t1)] = 2|ηk|2 sin[ωk (t1 − t2)]. (A3)

All higher-order commutators vanish, so the Magnus expansion in Eqs. ((A1)–(A2)) requires only first- and second-order terms.
Using this fact, we get for the time-ordered exponential,

T exp

[
−im

∫ t

0
dt ′ V̂ (t ′)

]
=

∏
k

T exp
[

− im
∫ t

0
dt ′ V̂k (t ′)

]
(A4)

= exp

[
−i

∑
k

|ηk|2m2
∫ t

0
dt1

∫ t1

0
dt2 sin[ωk (t1 − t2)]

]
exp

[
−im

∫ t

0
dt ′ V̂ (t ′)

]
(A5)

= exp

[
−im2

∫
dω

∫ t

0
dt1

∫ t1

0
dt2 J (ω) sin[ω(t1 − t2)]

]
exp

[
−im

∫ t

0
dt ′ V̂ (t ′)

]
. (A6)

In the second line, we converted the product of exponentials back into an exponential of a sum over terms. In the final line, we
introduced an integral over ω with the spectral density J (ω), Eq. (9), as the integration kernel. Importantly, note that all the time
ordering of operators has been removed, with the effects captured in the exponential two-time integrals in the first term. In the
main text and in Appendix B, we express the final line as (7), where we have collected the terms in the first exponential into a
c-number phase �(t ), Eq. (8).

APPENDIX B: TRACE OVER VIBRATIONAL MODES IN A THERMAL STATE

When the vibrational (vib.) modes are prepared in the modewise tensor-product thermal state in Eq. (16), the partial trace in
Eq. (15) can be performed analytically. We follow here the calculation given by Agarwal [32]. For this tensor-product state, the
S (t ) factor describing the partial trace that appears in the expression for the reduced-spin matrix elements factorizes,

S (t ) =
∏

k

Trk

{
exp

[
− i(m − m′)

∫ t

0
dt ′ (ηk v̂

†
k eiωkt ′ + η∗

k v̂ke−iωkt ′
)

]
ρ̂therm,k

}
, (B1)

and each mode is initially described by a thermal state with average excitation n̄k , Eq. (17). We will treat each trace separately.
Defining for convenience the coefficients

ηk (t ) := −(m − m′)
∫ t

0
dt ′ ηkeiωkt , (B2)

the exponential operator in the above expression can be written in the disentangled form,

exp[iηk (t )v̂†
k + iη∗

k (t )v̂k] = exp[iηk (t )v̂†
k ] exp[iη∗

k (t )v̂k] exp
[− 1

2 |ηk (t )|2]. (B3)

The trace can now be taken trivially,

(trace over vib. mode k) = 1

π n̄k
exp

[
− 1

2 |ηk (t )|2
] ∫

d2α exp

(
−|α|2

n̄k

)
exp[iηk (t )α∗ + iη∗

k (t )α] (B4)

= exp

[
−

(
n̄k + 1

2

)
|ηk (t )|2

]
(B5)

= exp

[
−1

2
coth

(
h̄βωk

2

)
(m − m′)2

∫ t

0
dt1

∫ t

0
dt2 eiωk (t1−t2 )

]
, (B6)

where we substituted for |ηk (t )|2 using Eq. (B2) and rewrote the thermal factor using

n̄k + 1

2
= 1

2
coth

(
h̄βωk

2

)
. (B7)

Summing this expression over all vibrational modes (in the exponential) and including the spectral density J (ω), Eq. (9), we
find the integral in Eq. (B1) to be

S (t ) = exp

[
− i(m − m′)2

∫ t

0
dt1

∫ t

0
dt2

∫
dω J (ω) coth

(
h̄βω

2

)
cos[ω(t1 − t2)]

]
. (B8)
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APPENDIX C: DERIVATION OF THE CORRELATION FUNCTION

First, consider the quadrature correlation function for a single mode k without coupling to a dissipative bath. Then, due to the
free evolution of the mode v̂k (t ) = e−iωkt v̂k (0) we have

〈X̂k (t )X̂k (0)〉 = TrV {[ηke−iωkt v̂k (0) + η∗
k eiωkt v̂

†
k (0)][ηk v̂k (0) + η∗

k v̂
†
k (0)]ρ̂V (0)}. (C1)

The initial state of the modes, ρ̂V (0), is that of Eq. (16), where each mode is thermally occupied with inverse temperature β

and mean occupation number n̄k = 1/(eβωk − 1). The only surviving terms in the trace are those with equal numbers of creation
and annihilation operators; hence

〈X̂k (t )X̂k (0)〉 = |ηk|2(e−iωkt TrV {[v̂†
k (0)v̂k (0) + 1]ρ̂V (0)} + eiωkt TrV [v̂†

k (0)v̂k (0)ρ̂V (0)]) (C2)

= |ηk|2[e−iωkt (1 + n̄k ) + eiωkt n̄k] (C3)

= |ηk|2[coth(βωk/2) cos(ωkt ) − i sin(ωkt )]. (C4)

When dissipation is included, the quadrature correlation function can be computed starting with the joint density matrix for
mode k and its local environment E , ρ̂V (0) ⊗ ρ̂E (0) (mode label k suppressed), evolving according to the total Hamiltonian ĤV E ,
which includes local and interaction couplings, and finally tracing:

〈X̂k (t )X̂k (0)〉 = TrV E (eiĤV E t [ηk v̂k (0) + η∗
k v̂

†
k (0)]e−iĤV E t [ηk v̂k (0) + η∗

k v̂
†
k (0)]ρ̂V (0) ⊗ ρ̂E (0)) (C5)

= TrV {TrE (e−iĤV E t ρ̂E (0)eiĤV E t [ηk v̂k (0) + η∗
k v̂

†
k (0)])[ηk v̂k (0) + η∗

k v̂
†
k (0)]ρ̂V (0)}. (C6)

We consider both the modes and their environments to be in separable thermal states characterized by inverse temperature
β—that is, thermal equilibrium. When the environment satisfies the conditions that give rise to Lindblad evolution of the mode,
i.e., the evolution satisfies the Born-Markov approximation, the trace over E gives rise to decay of the mode operators v̂k (t ) =
e−iωkt e−�kt/2v̂k (0). Note that the bath temperature does not affect the time evolution of v̂k , although it does in general affect other
moments (such as n̂k). Assuming as before that the modes are thermal occupied, the correlation function becomes

〈X̂k (t )X̂k (0)〉 = e−�kt/2|ηk|2(e−iωkt TrV {[v̂†
k (0)v̂k (0) + 1]ρ̂V (0)} + eiωkt TrV [v̂†

k (0)v̂k (0)ρ̂V (0)]) (C7)

= e−�kt/2|ηk|2[e−iωkt (1 + n̄k ) + eiωkt n̄k] (C8)

= e−�kt/2|ηk|2[coth(βωk/2) cos(ωkt ) − i sin(ωkt )]. (C9)

APPENDIX D: DECAY OF THE COLLECTIVE SPIN PROJECTORS

For multiple spin- 1
2 particles, the coupled- and local-spin bases are related by Clebsch-Gordan coefficients. For two spins, the

collective states |J, M〉 are given in terms of the local states |m1, m2〉 as

|J = 1, M = 1〉 = ∣∣ 1
2 , 1

2

〉
, (D1)

|J = 1, M = 0〉 = 1√
2

(∣∣ 1
2 ,− 1

2

〉 + ∣∣ 1
2 ,− 1

2

〉)
, (D2)

|J = 1, M = −1〉 = ∣∣ − 1
2 ,− 1

2

〉
, (D3)

|J = 0, M = 0〉 = 1√
2

(∣∣ 1
2 ,− 1

2

〉 − ∣∣ 1
2 ,− 1

2

〉)
. (D4)

From these relations, the evolution of the collective-basis projectors using Eq. (50) is

P̂J,0(t ) = 1

2

(∣∣∣∣1

2
,−1

2

〉〈
1

2
,−1

2

∣∣∣∣ +
∣∣∣∣ − 1

2
,

1

2

〉〈
− 1

2
,

1

2

∣∣∣∣
)

+ (−1)J+1e−4IRe(t ;ω−,�− )

2

(∣∣∣∣1

2
,−1

2

〉〈
− 1

2
,

1

2

∣∣∣∣ +
∣∣∣∣ − 1

2
,

1

2

〉〈
1

2
,−1

2

∣∣∣∣
)

(D5)

= 1

2
[1 − (−1)J+1e−4IRe(t ;ω−,�− )]P̂1,0 + 1

2
[1 + (−1)J+1e−4IRe(t ;ω−,�− )]P̂0,0. (D6)

APPENDIX E: CONNECTION TO A SOLID-STATE ELECTRONIC-VIBRATIONAL MODEL

Consider the vibronic Hamiltonian, Eq. (71), but with multiple vibrational modes coupled to the two-level electronic emitter:

Ĥ = � ĵz +
∑

k

ωk

(
v̂

†
k v̂k + 1

2

)
+ |e〉〈e| ⊗

∑
k

(ηk v̂
†
k + η∗

k v̂k )

= � ĵz +
∑

k

ωk

(
v̂

†
k v̂k + 1

2

)
+ ĵz ⊗ 1

2

∑
k

(ηk v̂
†
k + η∗

k v̂k ) + 1

2

∑
k

(ηk v̂
†
k + η∗

k v̂k ). (E1)
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In the second line, we have used the fact that |e〉〈e| = 1
2 ( ĵz + Î ) for spin j = 1/2. One identifies this Hamiltonian as nearly

the same as our original spin-boson Hamiltonian with a few modifications. First, ηk → ηk/2. More importantly, we find an
additional coherent drive on the modes of strength |ηk|. However, we do not need to rely on this identification in order to solve
for the reduced spin state, as we show below.

Following the derivation in Sec. II, the interaction-picture propagator using the Hamiltonian equation (E1) is

Û (t ) = T exp

[
−i

∫ t

0
dt ′|e〉〈e| ⊗ V̂ (t ′)

]
; (E2)

compare this equation with the propagator in Eq. (4). We use the solutions in the main text by identifying the eigenvalues m = 1
for |e〉〈e| and m = 0 for |g〉〈g|. With this, the formal solution for the joint electronic-vibrational state at time t is found from
Eq. (10),

ρ̂(t ) = ρgg|g〉〈g| ⊗ ρ̂V (0) + ρge ⊗ e−i�(t )|g〉〈e|ρ̂V (0)ei
∫ t

0 dt ′ V̂ (t ′ )

+ ρeg|e〉〈g| ⊗ ei�(t )e−i
∫ t

0 dt ′ V̂ (t ′ )ρ̂V (0) + ρee|e〉〈e| ⊗ e−i
∫ t

0 dt ′ V̂ (t ′ )ρ̂V (0)ei
∫ t

0 dt ′V̂ (t ′ ), (E3)

where ρ jk := 〈 j|ρ̂el(0)|k〉 are the matrix elements of the initial electronic state.
Setting the initial state of the vibrational modes to be the multimode thermal state, Eq. (17), then the reduced electronic state,

ρ̂el(t ) := Trvib[ρ̂(t )], is found from Eq. (30) to be

ρ̂el(t ) = ρgg|g〉〈g| + ρgee−iIIm (t ;
ω)−IRe(t ;
ω)|g〉〈e| + ρegeiIIm (t ;
ω)−IRe(t ;
ω)|g〉〈e| + ρee|e〉〈e|. (E4)

We have written out the full reduced spin state because of its compact form for spin- 1
2 (as opposed to presenting the solution

matrix-element-wise as for the general case in the main text). As expected, the ground and excited states do not evolve, while
the coherences evolve in a non-Markovian fashion.

Including optical decay and additional dephasing

The Lindblad maps for a two-level system undergoing additional pure dephasing at rate �dp and optical decay into the vacuum
at a rate �op are

Ddp[ρ̂] := �dp(σ̂zρ̂σ̂z − ρ̂), (E5)

Dop[ρ̂] := �op
(
σ̂−ρ̂σ̂+ − 1

2 σ̂+σ̂−ρ̂ − 1
2 ρ̂σ̂+σ̂−

)
, (E6)

where σ̂− := |g〉〈e|, σ̂+− := |e〉〈g|, and σ̂z := |e〉〈e| − |g〉〈g|. The dephasing map simply generates decay of the coherences at
rate �dp. The final two terms on the right-hand side of the optical decay map are integrated directly in our solution in the standard

fashion as an anti-Hermitian Hamiltonian Ĥ = i �op

2 |e〉〈e|. The first term describes incoherent refeeding of the ground state |g〉
directly from the excited state |e〉. Both effects can be included directly into the solution above to obtain

ρ̂el(t ) = (1 − ρeee−�opt )|g〉〈g| + ρgee−(�dp+ �op
2 )t e−iIIm (t ;ω,�)−IRe(t ;ω,�)|g〉〈e|

+ ρege−(�dp+ �op
2 )t eiIIm (t ;ω,�)−IRe(t ;ω,�)|e〉〈g| + e−�optρee|e〉〈e|. (E7)

The apparent disappearance of the initial matrix element ρgg comes from the fact that the |g〉〈g| coefficient is ρgg + ρee(1 −
e−�opt ) = 1 − ρeee−�opt , where we used ρgg + ρee = 1. The above can be compared with the reduced-state equation derived by
Betzholz et al. [19], noting that their solution is in the Schrödinger picture, while Eq. (E7) is in the interaction picture with
respect to the bare electronic and vibrational Hamiltonians. We also note that �̃ should be �̃/2 in Eq. (75) of Ref. [19].
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