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Rotational g factors and Lorentz forces of molecules and solids from density
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Applied magnetic fields can couple to atomic displacements via generalized Lorentz forces, which are
commonly expressed as gyromagnetic g factors. We develop an efficient first-principles methodology based
on density functional perturbation theory to calculate this effect in both molecules and solids to linear order
in the applied field. Our methodology is based on two linear-response quantities: the macroscopic polarization
response to an atomic displacement (i.e., Born effective charge tensor), and the antisymmetric part of its first
real-space moment (the symmetric part corresponding to the dynamical quadrupole tensor). The latter quantity
is calculated via an analytical expansion of the current induced by a long-wavelength phonon perturbation,
and compared to numerical derivatives of finite-wave-vector calculations. We validate our methodology in finite
systems by computing the gyromagnetic g factor of several simple molecules, demonstrating excellent agreement
with experiment and previous density functional theory and quantum chemistry calculations. In addition, we
demonstrate the utility of our method in extended systems by computing the energy splitting of the low-frequency
transverse-optical phonon mode of cubic SrTiO3 in the presence of a magnetic field.
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I. INTRODUCTION

An applied magnetic field has a significant impact on
the lattice dynamics of molecules and solids via generalized
Lorentz forces, which are commonly expressed as gyromag-
netic g factors [1]. These are of great fundamental interest as
manifestations of “geometric magnetization” [2], and enjoy
an elegant formulation in terms of geometric phases [3] and
Berry curvatures [4]. They are also related to the angular
momentum of phonons via the so-called “phonon Zeeman
effect” [5,6], and are a crucial ingredient in the theory of the
phonon Hall effect (PHE) [4,7,8]. In recent years significant
advances have been made in the theoretical understanding of
Lorentz forces in real systems [3,9,10], but an accurate and
computationally efficient formalism for both molecules and
extended crystals is still lacking.

First-principles electronic-structure methods have tradi-
tionally been highly successful at calculating molecular g
factors. Reference values with chemical accuracy have been
obtained long ago in the context of post–Hartree–Fock ab
initio methods, like coupled-cluster (CC) or Møller–Plesset
(MP) perturbation theory [11]. The papers by Ceresoli and
Tosatti [1,12] later demonstrated that density functional the-
ory (DFT) can provide reliable values at a significantly lower
computational cost; also, their pioneering Berry-phase ap-
proach has paved the way towards the development of the
“modern theory of magnetization” [13–15].

The case of extended solids has been comparatively much
less explored. The reason is that previous approaches required

performing calculation in the presence of a finite external
magnetic field (B), which is a challenge to incorporate with
periodic boundary conditions. Though there has been theo-
retical work in this direction [16,17], so far a widespread
implementation is lacking. This situation is in stark contrast
with the case of isolated molecules, where finite-B methods
are well established in existing codes [18,19]. As a result,
reference theoretical values for the coupling constants be-
tween phonons in solids and an external magnetic field are
still scarce. Recent works by Spaldin and coworkers [5,6]
do report first-principles values for the phonon g factors in a
broad range of crystalline insulators; however, a point-charge
model for the microscopic currents associated with the ionic
orbits was assumed therein. This certainly constitutes a drastic
simplification from the computational perspective, as it only
requires calculating standard linear-response properties (e.g.,
the Born effective charge tensor); however, the validity of such
an approximation has not been tested yet.

Here we establish, in the framework of first-principles den-
sity functional perturbation theory (DFPT), an accurate and
computationally efficient methodology to compute both gen-
eralized Lorentz forces and g factors in molecules and solids.
Our strategy consists in defining both quantities in terms of the
microscopic electronic and nuclear currents J(r) that accom-
pany the adiabatic evolution of the system along the atomic
trajectories. In particular, the first spatial moment of J(r) can
be regarded as a geometric orbital magnetic moment m, which
couples linearly to the external B field and acts as an effective
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vector potential in the classical ionic Lagrangian. At the lead-
ing order in the ionic velocities v, the calculation of m can
be carried out in the framework of density functional pertur-
bation theory via a long-wave expansion of the macroscopic
polarization response to a phonon. Such expansion, in turn,
is written in terms of two linear-response tensors [20]: the
macroscopic polarization induced by an atomic displacement
J(0), corresponding to the Born effective charges (BECs), and
its first-order spatial dispersion J(1). BECs are routinely cal-
culated in many publicly-available density functional theory
codes [21–23]; the main technical challenge resides then in
the calculation of J(1).

In the course of this work we have implemented and used
two different approaches for accessing J(1), and compared
their mutual consistency as part of our numerical tests. The
first method, based on Ref. [24], consists in performing the
DFPT calculations of the polarization response at finite q, and
subsequently taking their long-wave expansion via numerical
differentiation. The second method, which we shall prefer
from the point of view of computational convenience, con-
sists in taking the long-wave expansions analytically via the
recently implemented [25,26] long-wave module of ABINIT

[27,28]. Note, however, that the existing implementation only
works for the symmetric part of J(1), corresponding to the
dynamical quadrupole tensor, while for the present purposes
we require the antisymmetric part of the tensor, which has
not been addressed earlier. For its implementation, we have
further extended the capabilities of ABINIT by incorporating
the wave-function response to an orbital B field. One can
show that the resulting formulation of the geometric orbital
magnetization nicely recovers the theory of Ref. [2], including
the additional topological contribution derived therein.

To demonstrate our method, we first consider the gyro-
magnetic g factor, which depends on the magnetic moment
that is associated with a uniform and rigid rotation of a finite
body. We show that our formula, based on the calculation
of J(1), consistently yields a vanishing magnetic moment in
the case of a neutral closed-shell atom, and correctly trans-
forms upon a change of the assumed center of rotation. Our
numerical results for several representative molecules show
excellent agreement with experiment and with earlier calcula-
tions, where available; the elements of J(1) that we obtained
via either finite-difference or analytical long-wave expansions
nicely match in all tested cases. For comparison, we also test
an alternative formulation, based on a coordinate transforma-
tion to the comoving frame of the rotating molecule [29],
and discuss its performance regarding numerical convergence
and other technical issues (e.g., related to the use of nonlocal
pseudopotentials).

Next, we consider the magnetization induced by a cir-
cularly polarized optical phonon, which we express as a
generalized Lorentz force in presence of a uniform magnetic
field. As a physical manifestation of this effect, we calculate
the splitting of the soft polar transverse-optical (TO) mode
frequencies of SrTiO3 at the Brillouin zone center due to
an external magnetic field. Our motivation for revisiting this
system comes the very recent measurement of a giant phonon
Hall effect [30] in the same material. As in the case of the

molecular g factors, we base our discussion on the calculation
of the J(1) tensor, which we perform both via the approach of
Ref. [24], and via the analytical long-wave method; again, we
find excellent numerical agreement between the two.

The remainder of the paper is organized as follows. Sec-
tions II and III are devoted to introducing the formalism
and computational implementation for calculating molecular
g factors and generalized Lorentz forces in extended solids.
In Sec. IV we present results on the gyromagnetic g factors
of some simple molecules and the computation of the gen-
eralized Lorentz force in cubic SrTiO3. The latter enables
the calculation of the frequency splitting of the TO modes
in presence of a magnetic field. We conclude the paper with
Sec. V.

II. THEORY

A. Lagrangian for a solid under an applied magnetic field

Consider the nonadiabatic Ehrenfest Lagrangian of the
crystalline system under an applied magnetic field

L =
∑
lκα

1

2
Mκ

(
Ṙl

κα

)2 +
∑

lκ

ZκṘl
κ · A

(
Rl

κ

)

+
∑

j

〈φ j |
[
i∂t − Hel

(
A,

{
Rl

κ

})] |φ j〉 (1)

where A is the magnetic vector potential, Rl
κ represents the

position of ion lκ within the crystal (κ is a basis index and
l refers to the cell), Mκ is the mass of ion κ and Zκ its
bare (pseudo-)charge. Regarding the electronic part, φ j are
the Kohn-Sham orbitals and Hel is the electronic Hamiltonian,
depending parametrically on the ionic positions,

Hel
(
A,

{
Rl

κ

}) = 1
2 [p + A(r)]2 + Veff

({
Rl

κ

})
. (2)

(We use Hartree atomic units, i.e., the electron mass and
charge are me = 1 and −e = −1, respectively.) If we assume
that the external magnetic fields are small (an excellent ap-
proximation in the vast majority of cases), we can work at
linear order in the vector potential and write

L =
∑
lκα

1

2
Mκ

(
Ṙl

κα

)2 +
∑

lκ

ZκṘl
κ · A

(
Rl

κ

)

+
∑

j

〈φ j |
[
i∂t − Hel

({
Rl

κ

})] |φ j〉

+
∫

d3rA(r) · Jel(r), (3)

where the microscopic electronic currents (in zero external
field) are defined as

Jel(r) = −
∑

j

1

2
〈φ j | (p|r〉〈r| + |r〉〈r|p) |φ j〉 . (4)

As we treat the nuclei as classical point charges, the ionic
currents read as

Jion(r) =
∑

lκ

ZκṘl
κδ

(
r − Rl

κ

)
; (5)
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this allows us to reabsorb the effects of the external vector
potential in a single interaction term,

L =
∑
lκα

1

2
Mκ

(
Ṙl

κα

)2

+
∑

j

〈φ j | [i∂t − Hel
({

Rl
κ

})] |φ j〉

+
∫

d3rA(r) · J(r), (6)

where J = Jel + Jion. By choosing the symmetric gauge, A =
1
2 B × r, we can equivalently write∫

d3rA(r) · J(r) = B · m
({

Rl
κ

}
,
{
Ṙl

κ

})
, (7)

where m = ∫
d3rr × J/2 is the geometric magnetic moment

associated with the dynamical evolution of the ions along their
trajectories. We are now ready to take the adiabatic approxi-
mation, in a regime where the ionic velocities are small,

L =
∑
lκα

1

2
Mκ

(
Ṙl

κα

)2 + B ·
∑
lκα

Ṙl
καml

κα

({
Rl

κ

})
− EKS

({
Rl

κ

})
, (8)

where the two new terms are the Born-Oppenheimer potential
energy surface in zero field EKS plus a term that depends on
the dynamical orbital magnetic moment tensor,

ml
κα = ∂m

∂Ṙl
κα

∣∣∣∣
Ṙl

κα=0

. (9)

The latter quantity differs to the Born effective charge (BEC)
tensor in that the adiabatic macroscopic m, rather than the
adiabatic macroscopic current J, is differentiated with respect
to the ionic velocities. Note that ml

κα generally depends on the
electromagnetic gauge, unlike the BEC; however, as we shall
see shortly, its consequences on ionic dynamics are gauge
independent. This is a common feature of physical problems
that involve an applied external B; and indeed, the velocity-
dependent potential

Ãl
κα = B · ml

κα (10)

can be regarded as an effective vector potential Ãl
κ acting on

the ion lκ , and whose magnitude depends on the specific atom
under consideration. This leads to the following expression for
the classical Hamiltonian of the ions:

H =
∑
lκα

1

2
Mκ

[
Ṙl

κα − Ãl
κα

({
Rl

κ

})]2 + EKS
({

Rl
κ

})
, (11)

which is good up to linear order in the ionic velocities, and
where the vector potential emerges from the breakdown of
time-reversal symmetry (TRS) that is associated with the ex-
ternal B. One can show that this treatment is fully consistent
with the conventional expression [31], where Ãl

κα is written
as a Berry connection in the parameter space of the ionic
coordinates. The advantage of the present formulation rests on
the availability of efficient first-principles methods to compute
directly ml

κα , and hence the vector potential Ãl
κα , without the

need of incorporating an external B field in the simulation. We
shall discuss this point in the next subsection.

B. Geometric magnetization

The basic quantity we shall be dealing with is the micro-
scopic polarization response to the displacement of an isolated
atom [20],

Pκβ

(
r − Rl

κ

) = ∂J(r)

∂Ṙl
κβ

. (12)

Equation (12) always sets the coordinate origin to the atomic
site; therefore, the functions Pκβ (r) do not depend on the cell
index l . (Recall that l runs over all the unit cells, and Rl

κ =
Rl + τκ , where Rl is a Bravais lattice vector and τκ is the
position of ion κ within the unit cell.) Note that the vector
fields contain both electronic and ionic contributions, i.e.,

Pα,κβ (r) = Pel
α,κβ (r) + P ion

α,κβ (r), (13)

where the α subscript indicates the Cartesian component. The
ionic contribution comes in the form of a Dirac delta function
that carries the bare nuclear (or pseudopotential) charge Zκ ,

P ion
α,κβ (r) = Zκδαβδ(r). (14)

For most practical purposes, it is convenient to expand
the microscopic polarization field into a multipole series, by
writing the lowest-order moments as

J (0)
α,κβ =

∫
d3r Pα,κβ (r),

J (1,γ )
α,κβ =

∫
d3r rγPα,κβ (r). (15)

(Note that, in order to ensure the convergence of the above
integrals, some care is required in the treatment of the macro-
scopic electric fields; techniques to deal with this issue are
now well established [20,32].) J(0) corresponds to the Born
effective charge tensor and J(1) is the first moment of the
polarization response, whose symmetric part corresponds to
the dynamical quadrupole tensor [20,25]

Q(2,αγ )
κβ = J (1,γ )

α,κβ + J (1,α)
γ ,κβ . (16)

On the other hand, the antisymmetric part of J(1) contributes
to the magnetization response to the atomic velocity, and can
be expressed as

Mα,κβ = 1

2

∑
γ ,δ

εαγ δJ (1,γ )
δ,κβ , (17)

where εαγ δ is the Levi-Civita symbol. More precisely, M
is the magnetic moment of the electronic currents calculated
with respect to the unperturbed atomic position, which follows
from the definition of J(1) in Eq. (15).

The above definitions lead to the following formula for
the geometric magnetic moment associated with the adiabatic
motion of the ion lκ ,

ml
κβ = 1

2

∫
d3rr × Pκβ

(
r − Rl

κ

)
= 1

2
Rl

κ × Zκβ + Mκβ, (18)
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where Z∗
α,κβ = J (0)

α,κβ is the α component of the polarization
induced by a displacement of atom κ along β, i.e., the Born ef-
fective charge. This expression clarifies the gauge-dependence
of ml

κβ that we have anticipated in the previous subsection:
this quantity depends explicitly on the absolute atomic po-
sition, and hence on the arbitrary choice of the coordinate
origin.

In the case of an isolated and neutral molecule, it is in-
sightful to consider the sublattice sum of mκβ = m0

κβ , which
corresponds physically to the magnetic moment associated
with a rigid translation of the body. Because of the acoustic
sum rule, the origin indeterminacy disappears; then, by using
the dipolar sum rule of Appendix B, we arrive at

∑
κ

mα,κβ = 1

2

∑
γ

εβαγDγ , (19)

where D is the static dipolar moment of the molecule,

D =
∫

d3r r ρ (0)(r). (20)

Equation (19) is precisely the expected result for the uniform
rigid motion of a distribution of classical charges whose local
density equals ρ (0)(r).

C. Magnetization by rotation: Rotational g factors

We now derive the rotational g factor, which is relevant
for molecules and other finite systems. Consider an isolated
molecule to which we apply a time-dependent counter-
clockwise rotation along the axis b by an angle θb. In general,
the magnetic moment can be expressed as [33]

ma = 1

2

∑
j

ga jL j, (21)

where ga j is the g tensor. Lj is the angular momentum, given
by

Lj =
∑

b

Ijbωb, (22)

where I is the moment of inertia matrix. (ωb = θ̇b is the angu-
lar velocity, defined as time derivative of the rotation angle.)
Thus,

∂ma

∂ωb
= 1

2

∑
j

ga jI jb. (23)

In the reference frame where I is diagonal, the g tensor can
then be written as

gab = 2

Ibb

∂ma

∂ωb
. (24)

We shall now derive a closed formula for the magnetic mo-
ment induced by a uniform rotation of the molecule. We
shall present two alternative results, the first calculated in the
standard Cartesian frame based on the quantities introduced
in the previous section, and the second based on the comoving
frame theory of Ref. [29].

1. Cartesian frame

A rigid rotation about an arbitrary axis can be represented
as the following displacement of the individual atoms,

uκ = θ × τκ , (25)

where we have introduced the rotation pseudovector θ = θ r̂b.
By combining Eq. (25) with Eq. (18), the magnetic moment
associated with the rigid rotation of the sample can be ex-
pressed in terms of the dynamical magnetization and Born
effective charge tensors defined in the previous subsection,

∂ma

∂ωb
=

∑
κ, j,β

εb jβτκ j

[
Ma,κβ + 1

2

∑
i,α

εaiατκiJ
(0)
α,κβ

]
. (26)

This formula, containing the first moment of the dynamical
magnetic dipoles and the second moment of the dynamical
electrical dipoles, is valid only if the electromagnetic gauge
origin coincides with the center of rotation of the molecule;
this ensures, via rotational symmetry, that the linear-response
result coincides with the average geometric magnetization
accumulated in a cyclic loop [29]. In Appendix A we shall
prove that, upon a simultaneous shift of the gauge origin and
center of rotation by R, the above formula transforms as

∂ma(R)

∂ωb
− ∂ma(0)

∂ωb
= RaDb + RbDa

2
− δabR · D. (27)

Thus, ∂ma(R)/∂ωb is origin-independent in nonpolar
molecules (i.e., molecules with vanishing static dipole).
In other cases, the result depends on the assumed center of
rotation, which is usually set as the center of mass of the
system.

2. Comoving frame

By using the theory of Ref. [29], the rotational geometric
magnetization can be expressed as [34]

∂ma

∂ωb
= −2χ

mag
ab + 1

2

∫
d3r

∂[r × (ω × r)]a

∂ωb
ρ (0)(r)

= −2χ
mag
ab + 1

2

∑
i jβ

εaiβεb jβ
∫

d3rrir jρ
(0)(r)

= −2χ
mag
ab + 1

2

∫
d3r(δabr2 − rarb)ρ (0)(r). (28)

The first term is proportional to the magnetic susceptibility,
and originates from the electronic currents in the reference
frame that is rigidly rotating with the sample; the second
term describes the magnetic moment generated by the rigid
rotation of the ground-state charge density of the molecule,
and serves to convert the result to the laboratory frame. Upon
a shift of the gauge origin, χ

mag
ab remains unaltered while the

second term trivially transforms as in Eq. (27). (Clearly, the
quadrupole becomes origin-dependent whenever a nonzero
dipolar moment is also present, consistent with the above
arguments.)

As part of the validation of our implementation, we shall
compute the geometric magnetization by using both methods,
Eqs. (26) and (28). We can anticipate, however, that Eq. (26) is
preferable in practical applications, for the following reasons.
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First, the widespread use of nonlocal pseudopotentials is a
concern in regards to Eq. (B3), which is a prerequisite for
Eq. (28) to be valid. [In particular, the equivalence between
Eqs. (26) and (28) rests on the translational invariance at
the quadrupolar order, see the discussion around Eq. (B17).]
Because of this issue, we find that Eq. (28) yields qualitatively
incorrect results for systems where ∂ma/∂ωb must vanish
identically, e.g., in isolated noble gas atoms or molecular
dimers that rotate about their axis. Second, even in cases
where Eq. (28) is exact (e.g., in the H2 molecule whenever
hydrogen is described by a local pseudopotential), its nu-
merical implementation involves the calculation of the static
quadrupolar moment of the molecule, which might converge
slowly as a function of the cell size. (We shall illustrate this
point in practice in Sec. IV A.)

D. Magnetization induced by a circularly polarized optical
phonon: Generalized Lorentz force

We now turn to extended systems, and consider the case
of a circularly polarized optical phonon describing a cyclic
path along orbits in a given plane. In presence of time-reversal
symmetry (TRS), the clockwise and counterclockwise orbits
are degenerate. Here, we take the approach of breaking TRS
via an external B field oriented along γ , and discuss the
implications on lattice dynamics within the harmonic regime
of small displacements.

In order to compute the derivatives of the Lagrangian with
respect to the ionic displacements (ul

κ ) and velocities (u̇l
κ ),

we expand the total orbital magnetic moment of the system
up to first order in both ul

κ and u̇l
κ , and the Kohn-Sham en-

ergy up to second order in ul
κ (harmonic approximation). The

Lagrangian of Eq. (8) then reads as

L =
∑
lκα

1

2
Mκ

(
u̇l

κα

)2 +
∑
lκα

(
∂mγ

∂ u̇l
κα

u̇l
καBγ − ∂EKS

∂ul
κα

ul
κα

)

+
∑
lκα

l ′κ ′β

(
∂2mγ

∂ul
κα∂ u̇l ′

κ ′β
ul

κα u̇l ′
κ ′βBγ − ∂2EKS

∂ul
κα∂ul ′

κ ′β
ul

καul ′
κ ′β

)
.

(29)

The first line consists, next to the kinetic term, in a constant
vector potential field acting on individual ions, which can be
gauged out; and in the static forces in the initial configuration,
which we assume to vanish. Based on these observations, we
can now obtain the Euler-Lagrange equations of motion via

d

dt

∂L
∂ u̇0

κα

− ∂L
∂u0

κα

= 0, (30)

which leads to

Mκ ü0
κα = −

∑
lκβ

[
�κα,κ ′β (0, l )ul

κ ′β − �
γ

κα,κ ′β (0, l )u̇l
κ ′βBγ

]
,

(31)

Here � is the usual real-space interatomic force-constant ma-
trix and we have defined

�
γ

κα,κ ′β = ∂2mγ

∂uκα∂ u̇κ ′β
− ∂2mγ

∂ u̇κα∂uκ ′β
, (32)

which is the (antisymmetric) generalized Lorentz force pro-
duced by the external magnetic field. By using this result in
combination with Eqs. (9) and (18), we obtain

�
γ

κα,κ ′β = �
pc,γ
κα,κ ′β + �

di,γ
κα,κ ′β + �

ea,γ
κα,κ ′β. (33)

The meaning of the three terms on the right-hand side (rhs)
goes as follows. First, we have an on-site contribution that
only depends on the Born dynamical charges,

�
pc,γ
κα,κ ′β = 1

2
δκκ ′

∑
l

(εγαlZ∗
l,κβ − εγβlZ∗

l,κα ). (34)

The “point-charge” (pc) denomination indicates that, in ab-
sence of electrons, the Z tensor becomes a constant, Z∗

l,κα =
Zκδαl , and Eq. (34) reduces then to the well-known Lorentz
force (L) acting on a classical test particle of charge Zκ ,

�
L,γ

κα,κ ′β = δκκ ′Zκε
γαβ. (35)

This term was described in Refs. [5] and [6]. Next, we have a
“dispersion” (di) contribution, which stems from the fact that
the electronic currents associated with ionic motion are spread
out in space around the nuclear site,

�
di,γ
κα,κ ′β = ∂

∂τκα

Mγ ,κ ′β − ∂

∂τκ ′β
Mγ ,κα. (36)

This additional term was neglected in earlier studies; its
explicit calculation constitutes one of the main technical ad-
vances of this work. Finally, we have a third contribution in
the form

�
ea,γ
κα,κ ′β = 1

2

∑
j,l

εγ jl

(
τκ ′ j

∂J (0)
l,κ ′β

∂τκα

− τκ j

∂J (0)
l,κα

∂τκ ′β

)
, (37)

which is different from zero only when κ �= κ ′, and corre-
sponds to the electrical anharmonicity (ea) tensor discussed
by Roman et al. [35]. This term is present only if the site
symmetries of the occupied Wyckoff position lack the space
inversion operation; if, on the other hand, every atom in the
crystal sits at an inversion center (e.g., cubic perovskites like
SrTiO3), �

ea,γ
κα,κ ′β vanishes identically.

One can verify that all three contributions are antisymmet-
ric under κα ↔ κ ′β, consistent with the definition of Eq. (32)
and also that they are independent of the choice of the coor-
dinate origin. As a final comment, we expect all these three
terms to vanish for large interatomic distances, although there
may be long-range contributions mediated by electrostatic
forces; their detailed analysis, while interesting, goes beyond
the scope of our work, as we will only focus on zone-center
phonons.

E. Phonon g factors and frequency splitting

We now demonstrate how the formalism of Sec. II D can
be used to calculate the g factor for the phonon modes of the
system [5,6,12]. Recalling the equations of motion of the ions
given by Eq. (31), as usual, we seek a solution of the type

ul
κβ (t ) = U q

κβei(q·Rl
κ−ωt ), (38)

094305-5



ZABALO, DREYER, AND STENGEL PHYSICAL REVIEW B 105, 094305 (2022)

where ω is the frequency. We shall specialize to the q = 0 case
henceforth, and thus remove the q subscript. We obtain,

ω2Ũκα =
∑
κ ′β

(
D(0)

κα,κ ′β + iωBγ Dγ

κα,κ ′β

)
Ũκ ′β, (39)

with Uκα = Ũκα/
√

Mκ and

D(0)
κα,κ ′β = 1√

MκMκ ′

∑
l

�κα,κ ′β (0, l ),

Dγ

κα,κ ′β = 1√
MκMκ ′

∑
l

�
γ

κα,κβ (0, l ). (40)

We shall treat the frequency- and B-dependent contribution
of Dγ

κα,κ ′β to Eq. (39) as a small perturbation of the zero-B
phonon dynamics in the following.

Consider a cubic crystal with a twofold degenerate trans-
verse optical mode at the � point (e.g., the “soft” [36] polar
mode in cubic SrTiO3). The unperturbed (zero-B) frequency
ω(0) can be determined by solving the following eigenvalue
problem [

ω
(0)
i

]2
V (i)

κα =
∑
κ ′β

D(0)
κα,κ ′βV (i)

κ ′β, (41)

where i runs over the degenerate modes and V (i)
κ ′β are the

eigenvector components, where κ ′ runs from 1 to N (number
of ions in the cell) and β runs over the Cartesian directions.
We choose i = 1, 2 to span the plane orthogonal to B in such
a way that they form a right handed coordinate system. We
shall now apply degenerate perturbation theory to Eq. (41) by
choosing the unperturbed eigenvectors as

|+〉 = 1√
2

( ∣∣V (1)
〉 + i

∣∣V (2)
〉 )

,

|−〉 = 1√
2

( ∣∣V (1)
〉 − i

∣∣V (2)
〉 )

, (42)

where 〈κ ′β |V (i)〉 = V (i)
κ ′β . Here |κ ′β〉 stands for a unit displace-

ment of ion κ ′ along the Cartesian direction β while the rest
of ions remain still; |V (i)〉 is therefore a 3 × N dimensional
vector. |+〉 and |−〉 are circularly polarized phonon modes
expressed as a superposition of linearly polarized modes. In
order to account for the frequency splitting and to verify that
the eigenvectors given by Eq. (42) diagonalize the perturba-
tion, we build the perturbation matrix gi j ,

gi j = i

(〈+| Dγ |+〉 〈+| Dγ |−〉
〈−| Dγ |+〉 〈−| Dγ |−〉

)
, (43)

which we identify with the gyromagnetic gi j tensor of the
phonon modes [1,5,6,12]. Assuming cubic symmetry, this
reduces to

gi j =
(

g 0
0 −g

)
, (44)

where

g = i 〈+| Dγ |+〉
= i 〈+| (Dpc,γ + Ddi,γ ) |+〉 (45)

= gpc + gdi

is the g factor of the phonon modes. We have explicitly indi-
cated the two contributions on Dγ coming from Eq. (34) and
Eq. (36); there is only a difference of a mass factor between
�γ and Dγ , which is given in Eq. (40). Once the g factor is
computed it is easy to give an expression for the frequency
splitting of the modes,

ω(±) 	 ω(0) ± 1
2 gBγ . (46)

Before closing this section, we briefly comment on the
relationship between our methodology to calculate the phonon
g factors and previous first-principles approaches. Spaldin and
coworkers [5,6] calculated the “pc” contribution, while the
“di” term was systematically neglected, resulting in a point-
charge approximation to the full g factor; we will show below
that for the soft polar mode in SrTiO3, both terms are the same
order of magnitude. In Ref. [12], Ceresoli presents a point
charge model, in addition to a similar perturbative treatment
to our Eq. (39). In the latter, it was assumed that the Born
effective charge tensor was isotropic for each sublattice κ ,
which is not the case for cubic perovskites like SrTiO3. Also,
Ceresoli’s version of our dispersion contribution Ddi,γ was in
the form of a Berry curvature. While formally equivalent to
our expression [which can be seen by writing the Lagrangian
in terms of the effective vector potential given by Eq. (10)],
it is more computationally demanding compared to the DFPT
implementation given here.

III. IMPLEMENTATION

We now discuss the practical calculation of the dynamical
magnetic moments M in the framework of density functional
perturbation theory. (The other materials-dependent quantity
entering the g factors, i.e., the Born effective charge tensor
Z, is straightforward to calculate within standard implemen-
tations of DFPT [21–23].)

A. Polarization response to a long-wavelength phonon

As a first step, we express the real-space moments of
Eq. (12) in a form that is more practical from the computa-
tional perspective. To that end, we consider the macroscopic
(cell-averaged) adiabatic current that is associated with the
distortion pattern of Eq. (38),

∂Jmac(r)

∂U q
κβ

= −iωPq
κβei(q·r−ωt ). (47)

The quantities defined in Eq. (15) can then be recast as a long-
wave expansion [20],

Jq
κβ = J(0)

κβ − iqγ J(1,γ )
κβ + · · · , (48)

where Jq
κβ = �Pq

κβ , � being the cell volume. The advantage
of this reciprocal-space formulation is that the macroscopic
polarization response at any q can be defined and calculated
using a primitive unit cell as

Jq
α,κβ = −2 Im

∫
[d3k]

∑
n

〈
uAα

nk,q

∣∣uτκβ

nk,q

〉
, (49)

where
∫

[d3k] ≡ �
(2π )3

∫
BZ d3k. Here |uλ

nk,q〉 indicates the adi-
abatic first-order response of the electronic band nk to the
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perturbation λ, where λ = Aα stands for the electromagnetic
vector potential and λ = τκβ refers to the phonon perturbation
Eq. (38) taken at ω = 0. The implementation described in Ref.
[24] allows one to calculate Jq

κβ directly via Eq. (49); J (1,γ )
α,κβ

can be then obtained by taking numerical derivatives around
q = 0. The same finite-q implementation [24] allows one to
compute the magnetic susceptibility of the system, which we
shall use in our numerical tests of Eq. (28).

B. Analytical long-wave expansion

An alternative approach, which we shall prefer in the con-
text of this work, consists in taking the long-wave expansion
of Eq. (49) analytically by using the formalism described in
Ref. [25]. A straightforward differentiation of Eq. (49) leads
to

J (1,γ )
α,κβ = −2 Im

∫
[d3k]

∑
n

(〈
uAα

nk,γ

∣∣uτκβ

nk

〉 + 〈
uAα

nk

∣∣uτκβ

nk,γ

〉)
,

(50)

where we have defined the wave function response to the
spatial gradient of the perturbation λ as

∣∣uλ
nk,γ

〉 = ∂
∣∣uλ

nk,q

〉
∂qγ

∣∣∣∣∣
q=0

. (51)

Explicit computation of |uτκβ

nk,γ
〉 would imply a major computa-

tional effort; this can be, however, circumvented via a careful
use of the “2n + 1” theorem [25], which yields the second
term in the round brackets of Eq. (50). The calculation of
〈uAα

nk,γ
| (first term in Eq. 50, indicated as “T5” in Ref. [25])

is comparatively uncomplicated, and can be, in principle,
carried out by following the guidelines of Ref. [25]. The exist-
ing implementation [25], however, focuses on the dynamical
quadrupoles Q(2,αγ )

κβ [see Eq. (16)], which are symmetric under
exchange of Cartesian indices α ↔ γ . Thus only the symmet-
ric components of 〈uAα

nk,γ
| are currently available. To access

the antisymmetric components, as required by Eq. (50), the
calculation of 〈uAα

nk,γ
| needs to be generalized as we describe

in the following.

C. Response to a long-wavelength vector potential field

This section is devoted to give explicit expressions for the
response to a vector potential A. A detailed derivation of the
perturbing operators for the response of a vector potential A
is given in the Appendix of Ref. [25]; here we summarize the
main results. (In general, the response functions have both
valence and conduction band components. However, in the
present case the valence band part turns out to be irrelevant
since it is multiplied by a conduction band state; we focus on
the conduction band part in the following.) The wave-function
response (in the long-wave limit) to a vector potential can be
written in terms of the following Sternheimer equation [25](

Ĥ (0)
k + aP̂k − ε

(0)
mk

) ∣∣uAα

mk,γ

〉 = −Q̂kÔk
∣∣u(0)

mk

〉
, (52)

where H (0)
k is the ground state Hamiltonian of the system, ε

(0)
mk

is its energy eigenvalue, a is a parameter that ensures stability
[37] and Q̂k = 1 − P̂k is the conduction band projector with

P̂k = ∑
m |u(0)

mk〉 〈u(0)
mk|. The perturbing operator Ôk in Eq. (52)

is given by

Ôk = 2∂γ Ĥ (0)
k ∂αP̂k − 2∂γ P̂k∂αĤ (0)

k + ∂2
γαĤ (0)

k , (53)

where ∂α ≡ ∂/∂kα is a gradient in k space. Interestingly, the
symmetric (S) part (under the exchange α ↔ γ ) of the per-
turbing operator Ôk corresponds to the d2/dkdk perturbation,

ÔS
k = +∂γ Ĥ (0)

k ∂αP̂k + ∂αĤ (0)
k ∂γ P̂k

− ∂γ P̂k∂αĤ (0)
k − ∂αP̂k∂γ Ĥ (0)

k + ∂2
γαĤ (0)

k , (54)

which is already implemented in the publicly available ABINIT

code [27,28]; while its antisymmetric (A) contributions gives
rise to the response of a uniform B field, as defined in
Ref. [38],

ÔA
k = +∂γ Ĥ (0)

k ∂αP̂k − ∂αĤ (0)
k ∂γ P̂k

− ∂γ P̂k∂αĤ (0)
k + ∂αP̂k∂γ Ĥ (0)

k . (55)

We therefore conclude that the computational cost of calculat-
ing the response to a vector potential as defined in Eq. (52) and
the response to a uniform B field is the same as for the usual
d2/dkdk perturbation. Furthermore, given the similarities of
the perturbing operators (their differ only by a couple of signs)
their implementation turns out to be straightforward.

D. Computational parameters

The formalism described in Secs. III A and III B has
been implemented in the ABINIT code [21,27,28,39]. We use
the Perdew-Wang [40] parametrization of the local density
approximation (LDA) and optimized norm-conserving Van-
derbilt pseudopotentials (ONCVPSP) [41] in all the DFT and
DFPT calculations.

Our numerical results on rotational g factors in molecules
are obtained employing a large cell of 20 × 20 × 20 bohr3 to
avoid interactions between neighboring images. A maximum
plane-wave cutoff of 100 Ha (60 Ha for CH4, C5H5N and
C6H5F) is used and the Brillouin zone is sampled with a single
k point at �. The structural optimization for the geometry
of the molecules is performed to a tolerance of 5 × 10−7

Ha/bohr on the residual forces.
For our calculations on SrTiO3, we use the five-atom prim-

itive cubic cell, with a plane-wave cutoff of 80 Ha and an
8 × 8 × 8 mesh of k points to sample the Brillouin zone;
with this setup we obtain an optimized cell parameter of
a0 = 7.288 bohr. For the derivative with respect to the dis-
placement of atoms appearing in Eq. (36), ∂/∂τκα , we apply
a displacement of 0.01 bohr to atom κ along the Cartesian
direction α and compute the derivative via finite differences;
this means that 3N (where N is the number of atoms in
the cell) of such calculations are needed to compute the full
Dγ matrix. This number could be reduced significantly via
use of symmetries; however, in our calculations we opt for
a straightforward calculation of all components, and check
that the resulting generalized Lorentz force tensor enjoys the
expected symmetries as part of the validation procedure.
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FIG. 1. Convergence of the g factor of H2 (with dexp = 1.4 bohr)
with respect to the plane-wave cutoff. Calculations are performed
using a single k point (�) with a box size of 203 bohr3.

IV. RESULTS

A. Rotational g factor of molecules

To begin with, we present a detailed study of the H2, N2,
and F2 molecules, since they constitute the simplest nontrivial
test of our methodology. In the case of elemental diatomic
molecules, the gyromagnetic g factor is only defined for rota-
tions about an axis that is perpendicular to the bond. Assuming
that the bond is aligned with the x Cartesian direction, and that
the rotation axis passes through the center of mass, the g factor
reduces to

g = J (1,x)
y,1y − J (1,y)

x,1y

I
, (56)

where I = Md2/2 is the moment of inertia. (d stands for the
interatomic distance, and M is the atomic mass in units of the
proton mass.)

Figure 1 shows the convergence with the plane-wave cut-
off of the g factor of H2 using the experimental geometry
(dexp=1.4 bohr), calculated using the analytical long-wave
approach described in Sec. III B. We see that the result is
well converged at a relatively modest (for a molecule in a
box) cutoff of 50 Ha. We can compare the converged value
of 0.8956 to the finite-q calculations described in Sec. III A,
which gives precisely 0.8956. For N2 (dexp=2.074 bohr) and
F2 (dexp=2.668 bohr), the analytical long-wave approach gives
−0.2704 and −0.1043, also in excellent agreement with the
finite-difference method, which yields −0.2708 and −0.1045,
respectively. The excellent agreement confirms the accuracy
of our implementation described in Sec. III B.

Since the H atom is well described by a local pseu-
dopotential, we can use the H2 molecule to benchmark the
performance of the two alternative formulations of ∂ma/∂ωb,
i.e., Eq. (26) [which reduces to Eq. (56) in this case] and
Eq. (28). In Fig. 2(a) we the plot the calculated g factor for H2

versus inverse cell size by using either method. As we antici-
pated in Sec. II C, we find that Eq. (28) is quite challenging to
converge, while the corresponding results of Eq. (56) display

FIG. 2. (a) Calculation of rotational g factor of H2 (with dexp=1.4
bohr) using the expression for ∂ma/∂ωb from Eq. (28) (dots) and
from Eq. (26) (triangles) vs inverse of the simulation cell size side
length. (b) Convergence of terms in Eq. (28) vs inverse of the simu-
lation cell size. Purple dashed line in (b) is the extrapolated value for
the quadrupole term; the purple cross in (a) is the g factor calculated
with the extrapolated quadrupole term.

an optimally fast convergence. To understand the origin of
such a behavior, we show in Fig. 2(b) a decomposition of
Eq. (28) into the two contributions on the rhs. This analysis
clarifies that the convergence of is limited by the quadrupole
term [i.e., the second term in Eq. (28)], while the magnetic
susceptibility of the molecule is already converged at a rela-
tively small box size. If we extrapolate this term to the limit
of an infinitely large cell parameter (1/a → 0, purple dashed
curve), then we see that our g factor indeed converges to the
value we obtain using the methodology of Sec. III B [purple
cross on Fig. 2(a)]. The agreement for large cell sizes provides
an independent confirmation of the accuracy of our approach,
though the methodology of Sec. III B is clearly superior from
a computational perspective.

As we anticipated, a further issue with Eq. (28) consists in
the fact that it may yield qualitatively incorrect results when
nonlocal pseudopotentials are used, i.e., in the vast majority
of first-principles simulations that are being performed nowa-
days. An obvious example is that of a neutral (and isolated)
closed-shell atom, where the rotationally induced magnetiza-
tion must vanish exactly. This requirement is trivially fulfilled
by our Eq. (26): both dynamical charges and dynamical mag-
netic moments identically vanish in this system due to charge
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TABLE I. Calculated rotational g factors for selected simple
molecules compared with the relevant literature data. “HF/DFT” and
“MP/CCD” stand for computational results at various level of theory
(Hartree-Fock/density functional theory, and Møller-Plesset per-
turbation theory/Coupled-Cluster with double excitations); “Exp.”
refers to experimental measurements.

Rotational g factor

This paper HF/DFT MP/CDD Exp.

H2 0.8901 0.9103a 0.8899a 0.8829c

0.8755b

N2 −0.2699 −0.2872a −0.2653a −0.2593c

F2 −0.1003 −0.0900a −0.1136a −0.1208c

HF 0.7603 0.7624a 0.7488a 0.7392c

HNC −0.1004 −0.0996a −0.0968a

FCCH −0.0065 −0.0077d

H2O 0.6699 0.6640a 0.6507a 0.6450c

NH3 0.5289 0.5061a 0.5044a

CH4 0.3629 0.3019a 0.3190a 0.3133c

0.2985e

C5H5N 0.0411 0.0428d

C6H5F 0.0276 0.0266d

aReference [11].
bReference [1].
cReference [42].
dReference [43].
eReference [44].

neutrality and inversion symmetry. In the context of Eq. (28)
one would expect a vanishing result, too: Langevin’s theory of
diamagnetism expresses the susceptibility as the quadrupolar
moment of the spherical atomic charge, which should cancel
out exactly with the second term on the rhs. In presence
of nonlocal pseudopotentials, however, Langevin’s result no
longer holds, and Eq. (28) yields a nonzero value for all
noble gas atoms except He. (The latter, just like H, is well
described by a local pseudopotential.) We regard this as a se-
rious concern in this context, and we therefore caution against
a straightforward application of Eq. (28) to the calculation of
rotational g factors.

In addition to the aforementioned elemental diatomic
molecules, we consider several other examples: HF, HNC, and
FCCH (still linear, but with a finite dipole moment), nonlinear
molecules such as NH3, H2O, and CH4, and the aromatic
compounds C5H5F and C6H5F. At difference with H2 and re-
lated structures, in all these cases Eq. (24) contains a nonzero
contribution from the Born effective charges; therefore, these
additional examples provide us with the opportunity to test
the full formula, Eq. (26) [in combination with Eq. (24)],
rather than its simplified version, Eq. (56). The molecular
geometries and rotational axes used in this work are discussed
in Appendix C.

In Table I we compare our results for the rotational g
factors to experimental measurements from Refs. [42] and
[43]. In addition, we report the results of previous calculations
using Hartree-Fock (HF) and post Hartree-Fock methods [11],
as well as DFT calculations using the Berry-phase method
[1,44]. Since the inclusion of electron-electron correlations,

TABLE II. g factor of the soft polar TO mode at the zone center
in cubic SrTiO3. Units are in 10−4 atomic units.

g gpc gdi

SrTiO3 −1.2083 0.6679 −1.8763

either at at the level of Møller-Plesset (MP) perturbation the-
ory or coupled cluster with double excitations (CCD), seems
to improve the agreement with experiment in many cases [11],
we include those data as well for comparison. We see that our
DFPT based method compares well even with the best theo-
retical values obtained via more computationally demanding
methods. Our results in Table I are also in excellent agreement
with experiment, where available. CH4 appears to be the only
exception, though the reason for the larger discrepancy is not
clear.

B. Soft-mode frequency splitting of cubic SrTiO3

We now turn to the splitting of the soft polar TO mode at
the zone center in cubic SrTiO3. As we did in the case of the
rotational g factors in Sec. IV A, we can test the accuracy of
our generalized Lorentz forces by comparing the implemen-
tation described in Sec. III B with the alternative approach of
Sec. III A. In Table V of Appendix D we present the compo-
nents of (Ddi,γ )κα,κ ′β elements [see Eq. (36)] for cubic SrTiO3

using both methods; we see quite good agreement, giving us
confidence that gdi is accurately calculated.

The results for the g factors are shown in Table II. Fol-
lowing Eq. (45), we separate the two different contributions
coming from the J(0) (gpc) and J(1) (gdi) terms. As mentioned
earlier, some papers [5,6] have only accounted for the terms
depending on the Born effective charges within a point-charge
approximation, roughly corresponding to our calculated gpc.
It is immediately clear from Table II that such an approxi-
mation is inappropriate: the remainder (gdi) has opposite sign
and is almost three times larger (in absolute value) than the
contribution coming from gpc; as a result, the total g factor
disagrees with gpc both in magnitude and sign. This indicates
that an accurate computation of the J(1) tensor is crucial in this
particular case and that these terms should not be neglected.

For a more quantitative comparison, note that Ref. [12]
and Ref. [6] computed gpc for tetragonal SrTiO3, obtain-
ing values of gpc = 5.76 × 10−5 cm−1/T and gpc = 4.78 ×
10−5 cm−1/T, respectively. In those units, our result for cu-
bic SrTiO3 is gpc = 6.23 × 10−5 cm−1/T. The agreement is
rather good, especially considering that: (i) we are considering
the full tensorial form of the Born effective charge tensor
and (ii) our analysis is carried out in the cubic, and not
tetragonal, phase of SrTiO3. Note that Ref. [12] also reports
a result for the total g factor, g = −7.95 × 10−5 cm−1/T,
which again compares well to our calculated value of
g = −11.28 × 10−5 cm−1/T.

To gain some insight on the physics, we perform a further
decomposition of gpc and gdi into the individual contribu-
tions of each atomic sublattice. In the case of gpc, such a
decomposition is straightforward, as this term mediates an
on-site coupling between the displacement of each atom and
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TABLE III. Contribution of each atom to gpc and gdi
κ=κ ′ , which are

defined as the on-site (κ = κ ′) contributions to gdi. Units are in 10−4

atomic units.

Sr Ti O1 O2 O3 Total

gpc –0.0197 –0.1082 0.2985 0.2985 0.1987 0.6679
gdi

κ=κ ′ –0.0118 –0.1246 –0.6429 –0.6429 –0.0062 –1.4284

its own velocity. [This can be appreciated by observing that
the corresponding contribution to the generalized Lorentz
force, Eq. (34), contains a δκκ ′ prefactor.] The case of gdi is
less obvious: the nondiagonal (on the atomic index) nature
of �di implies that the velocity of a given atom can produce
forces not only onto itself, but also on its neighbors. Thus,
prior to attempting a decomposition of gdi, we first isolate the
basis-diagonal κ = κ ′ terms in �di, and use them to define
an on-site contributions to gdi (indicated as gdi

κ=κ ′ henceforth).
Apart from enabling the aforementioned decomposition, this
analysis also gives a flavor of the overall importance of the
off-site contributions to gdi.

The results are summarized in Table III. Regarding gpc, we
find that the contribution of the oxygen atoms largely dom-
inates over the rest, consistent with the conclusions of Ref.
[12]. Due to their smaller mass, oxygens evolve along larger
orbits, which amplifies their contribution to the magnetic mo-
ment. Regarding gdi, we find that the on-site terms represent
more than the 75% of the total gdi factor, which indicates that
intersite couplings have a relatively minor importance. At the
level of gdi

κ=κ ′ , we find that the contribution of the equatorial
oxygens is by far the largest, and primarily responsible for
reversing the sign of the overall g factor.

Finally, we use the above results to calculate the frequency
splitting of the TO modes. Considering a magnetic field of
B = 100 T we obtain gB ∼ 0.01 cm−1, of the same order as
predicted in Ref. [5]. This is a very small value that appears
challenging to resolve even for the most powerful experi-
mental techniques available nowadays. Our hope is that the
computational tools developed here allow for a more efficient
screening of candidate materials where this effect may be
measurable.

V. CONCLUSIONS

We have developed a complete theoretical approach for
calculating orbital magnetization from rotations and pseu-
dorotations (circularly polarized optical phonons) within the
context of first-principles theory. The approach is based on
density functional perturbation theory calculations of the
polarization induced by an atomic displacement (i.e., Born
effective charges), and its first real-space moment. We have
demonstrated an implementation to calculate the latter quan-
tity via generalization of the existing long-wave approach
to dynamical quadrupoles; thus, we have established a con-
nection between spatial dispersion phenomena and orbital
magnetism, and demonstrated its accuracy via comparison
with finite-difference calculations. Our methodology allows
for efficient and optimally accurate computation, and works
equally well for molecules and solids. We have used this

approach to determine rotational g factors of some simple
molecules, and demonstrated excellent agreement with exper-
imental results where available. Finally, we have developed a
strategy to calculate the generalized Lorentz force on atoms
in presence of a magnetic field, and utilized it to study the
splitting of the soft optical phonons in cubic SrTiO3. In the
latter system, we demonstrated that contributions to phonon
g factor from the first moment of the induced polarization,
which had been neglected in some previous approaches, dom-
inate the response.

In spite of this correction, the overall g factor remains of the
same order of magnitude as the values quoted in Refs. [5,12].
Therefore, our theory as it stands appears unlikely to explain
the large phonon Hall [30] effects reported experimentally.
To move forward in this direction, we suspect that it may be
necessary to take into account the quantum paralectric nature
of SrTiO3 at low temperatures, e.g., by going beyond the
Ehrenfest Lagrangian of Eq. (1). We regard this as an exciting
avenue for further study.
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APPENDIX A: TRANSLATIONAL SYMMETRY OF THE
GEOMETRIC MAGNETIZATION

To see how a change in the assumed center of rotation (and,
simultaneously, in the gauge origin) affects the result, consider

∂ma(R)

∂ωb
=

∑
κ, j,β

εb jβ (τκ j − Rj )

×
[
Ma,κβ + 1

2

∑
i,α

εaiα (τκi − Ri )J
(0)
α,κβ

]

= −
∑
κ, j,β

εb jβRj

[
Ma,κβ + 1

2

∑
i,α

εaiατκiJ
(0)
α,κβ

]

− 1

2

∑
κ, j,β,i,α

εb jβεaiατκ jRiJ
(0)
α,κβ + ∂ma(0)

∂ωb

= −1

2

∑
κ, j,i,α

εb jαεaiαRjDi

− 1

2

∑
κ, j,β,i,α

εb jβεaiατκ jRiJ
(0)
α,κβ + ∂ma(0)

∂ωb
.

(A1)
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[In the last step we have used the sum rule Eq. (19).] It is use-
ful now to observe the following property of the Levi-Civita
symbol, ∑

i, j,α

εb jαεaiα = δabδi j − δbiδa j . (A2)

This leads to

−1

2

∑
κ, j,i,α

εb jαεaiαRjDi = − 1

2
(δabR · D − RaDb). (A3)

In the second line we can write

−
∑

κ

τκ jJ
(0)
α,κβ =

∑
κ

J (1, j)
α,κβ − D j . (A4)

The second term yields the same as above, with the ab indices
switched; the first term can be written in terms of J (1). The
final result, after collecting all the contributions is

∂ma(R)

∂ωb
− ∂ma(0)

∂ωb

= −1

2
(δabR · D − RaDb − RbDa)

+ 1

2

∑
j,β,i,α

εb jβεaiαRi

∑
κ

J (1, j)
α,κβ . (A5)

The second term on the right-hand side vanishes: The sub-
lattice sum of the J (1, j)

α,κβ tensor coincides with the proper
piezoelectric tensor times a trivial volume factor, and is
therefore symmetric with respect to β j. (An antisymmetric
contribution would describe a steady macroscopic current that
is generated by a rotating body in its comoving reference
frame, and must vanish on general physical grounds, see
Sec. III.D.2 of Ref. [29].) The remainder leads to Eq. (27).

APPENDIX B: DIPOLAR SUM RULE FOR BOUNDED
SYSTEMS

Statement of the problem. We will prove the following
sum rule, valid for an isolated molecule in open electrostatic
boundary conditions,∑

κ

(
J (1,γ )
α,κβ + τκγ Z∗

α,κβ

) = δαβDγ , (B1)

where D is the static dipole moment of the molecule,

Dγ =
∫

d3rrγ ρ (0)(r). (B2)

In absence of nonlocal pseudopotentials the proof is straight-
forward: It suffices to observe that Z∗

α,κβ = J (0)
α,κβ , and then use

the definition of the J (n)
α,κβ moments provided in the main text

together with the following relation (translational invariance)
for the microscopic polarization response,∑

κ

Pα,κβ (r) = δαβρ (0)(r). (B3)

If nonlocal pseudopotentials are present, Eq. (B3) breaks
down; however, we will show that Eq. (B1) is exact even in
that case.

Proof. To prove Eq. (B1) without passing through Eq. (B3),
we will use another (exact) sum rule, relating the J (1,γ )

α,κβ mo-
ments to the clamped-ion piezoelectric tensor,

− 1

�

∑
κ

J (1,γ )
α,κβ = ēα,βγ . (B4)

To apply this rule, we need first of all to place the isolated
molecule in a large box of volume �, and work in periodic
boundary conditions. Then, Eq. (B4) describes the proper
piezoelectric response of the resulting crystal lattice to an
infinitesimal strain. [To avoid complications due to long-range
interactions between repeated images, we will assume that the
Coulomb kernel is cut off at the boundary of the box, and
that all objects entering Eq. (B1) are consistently calculated
in such conditions.]

Since the images of the molecule are isolated in space,
the macroscopic polarization of the crystal is exactly given
by the Clausius-Mossotti formula as the static dipole moment
divided by the volume,

P = D
�

. (B5)

ēα,βγ , however, is not defined as a straightforward strain
derivative of P (that would be the so-called improper piezo-
electric tensor). To arrive at ēα,βγ we first need to introduce
the direct lattice vectors ai and their duals bi in such a way
that ai · b j = δi j . Then, the reduced polarization is defined in
units of charge as the flux of P through a facet of the crystal
cell,

pi = �bi · P = bi · D. (B6)

Finally, the proper piezoelectric tensor is defined as

ēα,βγ = 1

�

∑
i

aαi
∂ pi

∂ηβγ

, (B7)

where η is the Cauchy infinitesimal strain tensor. This leads to
the following formula, without factors of volume,∑

κ

J (1,γ )
α,κβ = −

∑
i

(ai)α
∂ (bi · D)

∂ηβγ

. (B8)

In order to calculate the derivative of the scalar product,
note that an infinitesimal strain corresponds to the following
linear transformation of the atomic coordinates and direct
lattice vectors,

τ ′
κ = (I + η)τκ , (B9a)

a′
i = (I + η)ai. (B9b)

The first relation yields

∂τκσ

∂ηβγ

= δβσ τκγ , (B10)

and immediately (by using the definition of the Born charge
tensor),

∂Dα

∂ηβγ

=
∑
κσ

∂Dα

∂τκσ

∂τκσ

∂ηβγ

=
∑

κ

Z∗
α,κβτκγ . (B11)

The second relation is used to determine the transforma-
tion law for the duals. The reciprocal-space vectors need to
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TABLE IV. Molecular geometries for selected simple molecules
after relaxation. Distances are in bohr.

Relaxed geometry

H2 d = 1.446
N2 d = 2.066
F2 d = 2.622
HF d = 1.760
HNC dHN = 1.908

dNC = 2.202
FCCH dFC = 2.396

dCC = 2.260
dCH = 2.022

H2O dHO = 1.835
∠HOH = 104.8◦

NH3 dNH = 1.930
∠HNH = 107.3◦

CH4 dCH = 2.070
C5H5N d1,2 = 2.509, d2,3 = 2.615

d3,4 = 2.611, d2,7 = 2.071
d3,8 = 2.063, d4,9 = 2.064

∠6, 1, 2 = 117.54◦, ∠1, 2, 3 = 123.42◦

∠2, 3, 4 = 118.52◦, ∠3, 4, 5 = 118.58◦

C5H5F d1,2 = 2.603, d2,3 = 2.614
d3,4 = 2.616, d1,7 = 2.534
d2,8 = 2.062, d3,9 = 2.063

d4,10 = 2.062, ∠6, 1, 2 = 122.43◦

∠1, 2, 3 = 118.40◦, ∠2, 3, 4 = 120.45◦

∠3, 4, 5 = 119.86◦

preserve the orthonormality condition to linear order in the
strain, which leads to the following result,

b′
i 	 (I − ηT )bi. (B12)

From this, we deduce

∂ (bi)ξ
∂ηβγ

= −δγ ξ (bi )β. (B13)

By using the orthonormality rule
∑

i(ai)α (bi )β = δαβ , we
eventually arrive at∑

κ

J (1,γ )
α,κβ = Dγ −

∑
κ

Z∗
α,κβτκγ , (B14)

thereby concluding our proof.
General consequences. The above results allow us to fur-

ther specify the validity of Eq. (B3) in the case of an isolated
molecule. While the microscopic formula breaks down in
presence of nonlocal pseudopotentials, one can expand both
sides into Cartesian multipoles and ask at what order the
equality no longer holds. At order zero the equality clearly
holds, ∑

κ

∫
d3rPα,κβ (r) = δαβ

∫
d3rρ (0)(r), (B15)

since macroscopic currents are well described; in the case of
a neutral molecule Eq. (B15) reduces to the acoustic sum rule
on the Born charge tensor components. In this Appendix, we
have provided a formal proof that Eq. (B3) works equally well

(a) (b)

FIG. 3. Cartoon illustrating the relaxed geometries used in this
paper for (a) C5H5N (the N atom is in blue) and (b) C6H5F (F atom
is in light blue).

at first order,∑
κ

∫
d3r rγPα,κβ (r) = δαβ

∫
d3r rγ ρ (0)(r). (B16)

On the other hand, we already know from earlier works that
the second order does not work if nonlocal potentials are used
in the calculation,∑

κ

∫
d3r rγ rλPα,κβ (r) �= δαβ

∫
d3r rγ rλρ

(0)(r). (B17)

This breakdown of translational invariance at the quadrupo-
lar level explains why Eqs. (26) and (28) disagree in
presence of nonlocal potentials.

APPENDIX C: STRUCTURE OF MOLECULES USED
IN THIS WORK

Here we show the molecular structures used in this paper.
For the aromatic compounds, we also display a cartoon of the
molecules in Fig. 3, labeling each atom with a number. This
figure, in combination with Table IV, enables to construct the
C5H5N and C5H5F molecules.

TABLE V. (Ddi,z )κα,κ ′β elements [see Eq. (36)] for cubic SrTiO3

calculated with the “DFPT” implementation described in Sec. III B,
and the “finite q” implementation described in Sec. III A.

(κα, κ ′β ) DFPT Finite q

(Sr x, Sr y) 1.5320 1.5317
(Sr x, Ti y) 2.4483 2.4526
(Sr x, O1 y) −0.4487 −0.4489
(Sr x, O2 y) −2.3829 −2.3874
(Sr x, O3 y) −1.1537 −1.1542
(Ti x, Ti y) 8.4125 8.4037
(Ti x, O1 y) −9.6112 −9.6131
(Ti x, O2 y) −2.4061 −2.3937
(Ti x, O3 y) 3.7315 3.7336
(O1 x, O2 y) −6.3272 −6.3416
(O2 x, O1 y) 3.9400 3.9416
(O2 x, O2 y) 8.3977 8.3987
(O3 x, O1 y) −0.3842 −0.3845
(O3 x, O2 y) −2.0026 −2.0041
(O3 x, O3 y) 0.0642 0.0653
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In order to calculate the g factor, the rotation axis is taken
to be perpendicular to the molecular axis in linear molecules
(H2, N2, F2, HF, HNC, and FCCH), perpendicular to the
molecular plane for C5H5N, C6H5F and H2O, along one of
the bonds in CH4 and perpendicular to the plane formed by the
H atoms in NH3; the field is taken to be parallel to the rotation
axis.

APPENDIX D: COMPARISON BETWEEN DFPT AND
FINITE q CALCULATIONS FOR CUBIC SrTiO3

Here we present a comparison between the “DFPT” im-
plementation described in Sec. III B, and the “finite q”
implementation described in Sec. III A for the generalized

Lorentz force in cubic SrTiO3. Specifically, we compare the
(Ddi,z )κα,κ ′β elements, see Eq. (36). All of the independent ele-
ments for both methods are presented in Table V. Note that our
labeling convention for the oxygen is, in reduced coordinates:
O1 = (0, 1/2, 1/2), O2 = (1/2, 0, 1/2), O3 = (1/2, 1/2, 0).
The additional (κα, κ ′β ) can be determined from the follow-
ing symmetry requirements on the tensor in cubic SrTiO3.
For κ and κ ′ either (or both) Ti, Sr, or O3, x ↔ y results in
the same magnitude coefficient, with a change of sign. For
terms involving O1 and/or O2, exchanging x ↔ y as well as
O1 ↔ O2 also results in a different sign, but same magni-
tude coefficient. Overall, we see quite good agreement, to the
second or third decimal places, between the very distinct im-
plementations; this confirms the accuracy of our methodology.
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