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Out-of-time-order correlators (OTOCs) progressively play an important role in different fields of physics,
particularly in the nonequilibrium quantum many-body systems. In this paper, we show that OTOCs can be used
to probe the Floquet dynamical quantum phase transitions (FDQPTs). We investigate the OTOCs of two exactly
solvable Floquet spin models, namely, Floquet XY chain and synchronized Floquet XY model. We show that the
border of driving frequency range, over which the Floquet XY model shows FDQPT, is signaled by the global
minimum of the infinite-temperature time averaged OTOC. Moreover, our results manifest that OTOCs decay
algebraically in the long time, for which the decay exponent in the FDQPT region is different from that in the
region where the system does not show FDQPTs. In addition, for the synchronized Floquet XY model, which
reveals FDQPT at any driving frequency depending on the initial infinite or finite temperature, the imaginary
part of the OTOCs becomes zero whenever the system shows FDQPT.
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I. INTRODUCTION

Recently, out-of-time-order correlation (OTOC) has gained
much attention in the physics community across many dif-
ferent fields, due to its feasibility in experiments [1–8] and
also its richness in theoretical physics [9–25]. Recent progress
in the experimental detection of quantum correlations and in
quantum control techniques applied to systems as photons,
molecules, and atoms, made it possible to directly observe
an OTOC in nuclear magnetic resonance quantum simulators
[6,8] and trapped ion quantum magnets [5].

The OTOC was first introduced by Larkin and
Ovchinnikov in the context of superconductivity [25]. Lately,
it has been revitalized, because it propounds an interesting and
different insight into physical systems [23]. Some of the most
important results involve the dynamics of quantum systems
[9–14] such as quantum information scrambling [14–22,26]
and quantum entanglement [15,24,27]. The decay of OTOC
is closely related to the delocalization of information and
implies the information-theoretic definition of scrambling.
Scrambling is a process by which the information stored in
local degrees of freedom spreads over the many-body degrees
of freedom of a quantum system, becoming inaccessible to
local probes and apparently lost. A connection between the
OTOC and the growth of entanglement entropy, at the infinite
temperature, in quantum many-body systems has also been
discovered quite recently [15,24].
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In addition, the study of OTOC has renewed the interest
in the correspondence between classical and quantum chaos
[28–34] with some analytical advances in the field of high-
energy physics, mostly regarding the black hole information
problem [35] and the Sachdev-Ye-Kitaev model [36]. OTOCs
have been also developed into condensed-matter systems
[37–41] as well as in statistical physics [42,43]. For instance,
OTOC has been analyzed in conformal field theories [37],
fermionic models with critical Fermi surface [44], weakly
diffusive metals [37], Luttinger liquids [38], hard-core boson
model [45], random field XX spin chain [46], symmetric
Kitaev chain [47], and the O(N ) model [48]. In addition, it
has been shown that OTOC equals the thermal average of the
Loschmidt echo [49] and theoretically proposed that OTOC
can be used as an order parameter to dynamically detect
ergodic-nonergodic transitions [50,51], many-body localiza-
tion transition [21,52], excited-state quantum phase transition
[53,54], equilibrium quantum phase transitions [40,55,56],
and quench dynamical quantum phase transitions (DQPTs) in
many-body systems [1,40].

Despite considerable studies on OTOCs in a wide variety
of quantum systems, comparatively little attention has been
focused on the Floquet systems. In the present work, we study
OTOCs in two Floquet spin systems, where both models show
FDQPTs. In the first Floquet XY model, FDQPT occurs at any
temperature within a finite range of driving frequency, where
we show that the borders of the driving frequency window are
captured by the global minimum of the infinite-temperature
time averaged OTOCs. In other words, the time averaged
OTOC can be used as an order parameter to detect the range
of driving frequency over which FDQPTs occur. Moreover,
the long-time behavior of OTOCs represents power-law decay
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with an exponent, which is different in the FDQPT and no-
FDQPT regimes. Furthermore, in the synchronized Floquet
XY model, the imaginary part of OTOCs, which is comprised
of local and nonlocal operators, becomes zero when FDQPTs
are present. It has to be mentioned that FDQPTs occur for
any driving frequency at infinite or finite temperature in the
latter model.

The paper is organized as follows: In the next section we
define the OTOCs and some background materials. In Sec. III,
we review the notion of dynamical quantum phase transition
and its features. Section IV is dedicated to introducing the
Floquet XY Hamiltonian, its FDQPT features, and discussing
the OTOC behavior in the model. In Sec. V we first introduce
the synchronized Floquet XY model and its FDQPT proper-
ties, and then we study the OTOC characteristics.

II. OTOCS

Consider a system with a Hamiltonian H , an initial state
|ψ〉, and two local operators Wi and Vi+r , on sites i and i + r of
the system. The spreading of the operator Wi with time can be
probed through the expectation value of the squared module
of a commutator with a second operator Vi+r ,

Ci,r (t ) = 1
2 〈[Wi(t ),Vi+r (0)]†[Wi(t ),Vi+r (0)]〉, (1)

where Wi(t ) ≡ eiHtWi(0)e−iHt is the Heisenberg evolution of
the operator Wi, and 〈O〉 = Tr(e−βHO)/Tr(e−βH ) denotes
averaging over the thermal ensemble with β = 1/T the in-
verse temperature while setting the Boltzmann constant KB

to unity.
We consider a translational invariant system such that

Eq. (1) depends only on the distance between two opera-
tors. Assuming operators Wi and Vi+r are both Hermitian and
unitary, one can show that Cr (t ) ≡ Ci,r (t ) = 1 − Re[Fr (t )],
in which Fr (t ) = 〈Wi(t )Vi+r (0)Wi(t )Vi+r (0)〉 is dubbed OTOC
for its unconventional time ordering [57,58]. From the
operator delocalization assessment point of view, OTOC char-
acterizes the spreading behavior of information. Vanishing
Cr (t ) [or large Fr (t )] indicates that no information has traveled
from site i to i + r at time t .

In addition, Cr (t ) characterizes the quantum chaos via
an exponential growth bounded by a thermal Lyapunov ex-
ponent. In classical physics, a hallmark of chaos is that a
small difference in the initial condition results in an expo-
nential deviation of the trajectory, i.e., eλLt where λL is the
Lyapunov exponent (butterfly effect). The OTOC could be
considered as the overlap of two states Wi(t )Vi+r (0)|ψ〉 and
Vi+r (0)Wi(t )|ψ〉, where Vi+r (0) acts in different ways to af-
fect the growth of the time-evolved operator Wi(t ). In other
words, Cr (t ) explicitly exhibits the difference in the outcome
when the order of two operations Vi+r (0) and Wi(t ) is ex-
changed [5,39,59]. The exponential deviation of normalized
OTOC from unity, i.e., Fr (t ) ∼ 1 − #eλLt diagnoses the chaos
and the so-called “butterfly effect” in a quantum many-body
system. Unlike classical systems where the Lyapunov expo-
nent λL is unbounded, in quantum systems it is bounded by
2π/β (assuming h̄ = 1) [21]. Those systems which saturate
the aforementioned bound are called fast scramblers, with

examples including black holes [60,61], fermionic models
with critical Fermi surface [44], weakly diffusive metals [37],
and the O(N ) model [48]. However, some systems do not
show such exponential growth (e.g., Luttinger liquids [38]
and many-body localized systems [16,52,62]), and hence are
characterized as less chaotic or as slow scramblers. These
many-body quantum systems include rich information to con-
nect thermalization and information scrambling, and may also
be related to the study of hiding information behind the black
hole horizon.

A. OTOC in the one-dimensional spin-1/2 exactly solvable
models

In the one-dimensional spin-1/2 models, which are exactly
solvable by means of Jordan-Wigner transformation [63–70],
the operators W and V are replaced by single-site Pauli
matrices σα (α = {x, y, z}), and consequently the OTOC is
given by

Fμ,ν
r (t ) = 〈

σμ
r (t )σ ν

0 σμ
r (t )σ ν

0

〉
, (2)

where μ, ν = {x, y, z} and σα (t ) = eiHtσαe−iHt . Since the
model is exactly solvable by means of Jordan-Wigner trans-
formation, it is convenient to express Pauli matrices by
fermionic operators,

σ x
m = σ+

m + σ−
m

= 	l<m(1 − 2c†
l cl )(c

†
m + cm) = 	l<mAlBlAm,

σ y
m = −i (σ+

m − σ−
m )

= −i 	l<m(1 − 2c†
l cl )(c

†
m − cm) = −i 	l<mAl BlBm,

σ z
m = 2c†

mcm − 1 = −AmBm, (3)

where Am = c†
m + cm, Bm = c†

m − cm, and c†
m (cm) is the

fermionic creation (annihilation) operator.
In terms of Jordan-Wigner fermions, some spin opera-

tors are local and some become nonlocal. Local operator,
i.e., σ z

m, consists of fermions only located at site m, while
σ

x,y
m are nonlocal according to their connections with all

fermions located before site m. It has been shown that the
relation of two-point correlations and OTOCs of local op-
erators is different from nonlocal ones [57,58,71–73]. All
OTOCs can be expressed in terms of the thermal average
of Am and Bm sequences. So, we need to calculate the ex-
pectation values of long sequences of Am and Bm fermion
operators, which can be turned into the sum of all possible
products of two-point correlation functions, using the Wick’s
theorem. It should be noted that conservation of the fermion
parity via operators is necessary for using free-fermion
calculations and Wick’s theorem [57,58,74]. The basic time-
dependent correlation functions, which should be calculated,
are 〈Ap(t )Aq〉, 〈Ap(t )Bq〉, 〈Bp(t )Aq〉, and 〈Bp(t )Bq〉. Using
the Fourier transformations, the mentioned correlators are
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expressed as

〈Ap(t )Aq〉 = 1

N

∑
k

eik(p−q)〈U †
k (t )(c†

k + c−k )Uk (t )(c†
−k + ck )〉,

〈Ap(t )Bq〉 = 1

N

∑
k

eik(p−q)〈U †
k (t )(c†

k + c−k )Uk (t )(c†
−k − ck )〉,

〈Bp(t )Aq〉 = 1

N

∑
k

eik(p−q)〈U †
k (t )(c†

k − c−k )Uk (t )(c†
−k + ck )〉,

〈Bp(t )Bq〉 = 1

N

∑
k

eik(p−q)〈U †
k (t )(c†

k − c−k )Uk (t )(c†
−k − ck )〉,

(4)

where N + 1 is the size of the system and p, q denote the
position of operators in the spin chain.

B. OTOC of local operators

As mentioned, OTOCs characterize the delocalization of
operators, and the study of local operators plays a key role
in this context. By means of Jordan-Wigner transformation
[Eq. (3)], OTOC of local operators, F zz

r (t ), is given by

F zz
r (t ) = 〈Ar (t )Br (t )A0B0Ar (t )Br (t )A0B0〉, (5)

for the exactly solvable spin-1/2 chain. In the thermodynamic
limit, the above relation could be computed using the Wick’s
theorem. In this calculation, 〈Ap(t )Aq〉 and 〈Bp(t )Bq〉 terms
do not vanish and we must consider the combination of all
two-point correlation functions constructed with A and B op-
erators. We can simplify the calculation of Eq. (5) using the
Pfaffian method [75], which can be expressed in terms of
skew-symmetric matrix 
.

F zz
r (t ) = ±P f (
zz ) = ±

√
Det(
zz ), (6)

where 
zz is constructed from two-point correlation functions
[Eq. (4)], (
zz )i j = 〈XiXj〉, where Xi is the ith element inside
thermal average expression F zz

r (t ) [Eq. (5)].

C. OTOC of nonlocal operators

As mentioned before, the dynamical correlation functions
of nonlocal operators are qualitatively distinct from local
ones [57,72,73,76,77]. For two-point correlation functions at
nonzero temperature, the time dependent decaying of nonlocal
operators, which is exponential, is more similar to thermal
behavior, in comparison with the behavior of local operators,
which is power law. There are three different types of nonlocal
OTOCs corresponding to various combinations of local and
nonlocal operators. It should be mentioned that the operators
σ x

μ and σ
y
μ change the fermion parity. So their Heisenberg

evolution cannot be obtained simply from the free-fermion
Heisenberg-evolved operators Aμ(t ) and Bμ(t ), because the
Heisenberg evolution of the fermion operators are simple only
when the proposed Hamiltonian in free-fermion language is
fixed over the full Fock space, including both parity sectors.
However, we can use the “double trick” to deal with this case
[57,74], by defining the following quantity:

�μ,ν
r (t ) = 〈[

σ
μ
N/2(t )σμ

N−r (t )σ ν
0 σ ν

(N/2)−r

]2〉
. (7)

Introducing the function �μ,ν
r (t ) results in parity cancellation

due to pairing of operators; and so one can simply use the
Wick’s theorem to expand the full function. For large size sys-
tem and considering the mirror symmetry Fμ,ν

r (t ) = Fμ,ν
−r (t ),

we have [57,74]

�μ,ν
r (t ) = 〈(

σ
μ
N/2(t )σ ν

(N/2)−r

)2〉〈(
σ

μ
N−r (t )σ ν

0

)2〉
= Fμ,ν

r (t )Fμ,ν
−r (t ) = [

Fμ,ν
r (t )

]2
. (8)

Therefore, to obtain F xx
r (t ), F xy

r (t ), and F xz
r (t ), we need

to calculate �xx
r (t ), �

xy
r (t ), and �xz

r (t ), respectively (see
Appendix A). Then, we perform a similar procedure as in
Sec. II B using the Pfaffian method of the appropriate antisym-
metric matrices and finally obtain the OTOC of the nonlocal
operator as

Fμ,ν
r (t ) = ±√

P f (
μ,ν ) = ±[Det (
μ,ν )]1/4. (9)

In this paper, we will study both local and nonlocal OTOCs of
two exactly solvable Floquet spin-1/2 models to investigate
the behavior of OTOC and its ability to capture the FDQPT.

III. DYNAMICAL QUANTUM PHASE TRANSITION

Recently, a new research area of quantum phase transition
has been investigated in nonequilibrium quantum systems,
called dynamical quantum phase transitions (DQPTs) as a
counterpart of equilibrium thermal phase transitions [78,79].
DQPT represents a phase transition between dynamically
emerging quantum phases, that occurs during the nonequi-
librium coherent quantum time evolution under quenching
[79–83] or time-periodic modulation of a Hamiltonian
[84–91]. In DQPT the real time acts as a control parameter
analogous to temperature in conventional equilibrium phase
transitions. The DQPT is characterized by the nonanalytical
behavior of dynamical free energy [49,53,78,79,86,92–99],
which is defined as

g(t ) = − lim
N→∞

1
N ln |GL(t )|2.

Here, N is the system size and GL(t ) is the Loschmidt ampli-
tude, which is given by GL(t ) = 〈ψ (0)|ψ (t )〉, where |ψ (0)〉
and |ψ (t )〉 are the initial state of the system and its corre-
sponding time evolved state at a later time t , respectively.

However, in experiments [100,101], to search the far-from-
equilibrium theoretical concepts, the initial state in which a
system is prepared, is a mixed state. This motivates one to pro-
pose the generalized Loschmidt amplitude (GLA) for mixed
thermal states, which perfectly replicates the nonanalyticities
manifested in the pure state DQPTs [102,103]. The GLA for
a thermal mixed state is defined as follows:

GL(t ) = Tr(ρ(0)U (t )),

where ρ(0) is the mixed state density matrix at time t = 0,
and U (t ) is the time-evolution operator.
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FIG. 1. Density plot of Czz
r (t ) versus separation, r, and time, t , for (a) ω = π/3, (b) ω = π , and (c) ω = 2π . The numerical simulation of

the Floquet XY model is done for N = 100, inverse temperature β = 0, and J = 0.25π, h = 0.5π, and γ = 0.5, which shows FDQPT for
π/2 < ω < 3π/2. Czz

r (t ) is plotted at fixed separations r = 1, 2, 3, 4 versus time and different driving frequency (d) ω = π/3, (e) ω = π , and
(f) ω = 2π .

IV. FLOQUET XY MODEL

The Hamiltonian of the one-dimensional periodically driv-
ing spin-1/2 chain, is given as follows:

H(t ) =
N/2∑

n=−N/2

{
[J−γ cos(ωt )]sx

nsx
n+1+[J+γ cos(ωt )]sy

nsy
n+1

− γ sin(ωt )
(
sx

nsy
n+1 + sy

nsx
n+1

) + hsz
n

}
, (10)

where N + 1 is the size of the system, J , h, and γ are system
parameters, and ω is the driving frequency. Here, Sα

n are the
spin-1/2 operators at the nth site, i.e., Sα

n = 1
2σα

n . In order to
calculate the spin correlation functions, we should diagonal-
ize the above Hamiltonian. The Hamiltonian can be exactly
diagonalized by a Jordan-Wigner transformation, which trans-
forms spins into spinless fermions. It should be mentioned that
the fermionic representation of the Hamiltonian is equivalent
to the one-dimensional p-wave superconductor with time-
dependent pairing phase (magnetic flux) [85,86]. The Fourier
transformed fermionic Hamiltonian can be expressed as the
sum of independent terms H(t ) = ∑

k∈BZ Hk (t ), in which

Hk (t ) = hz(k)(c†
kck − c−kc†

−k )

− ihxy(k)
(
e−iωt c†

kc†
−k + eiωt ckc−k

)
, (11)

where hz(k) = J cos(k) + h and hxy(k) = γ sin(k). The eigen-
states and eigenvalues of the Hamiltonian, Eq. (11),
are obtained by solving the time-dependent Schrödinger
equation [84–86,89] (see Appendix B).

It is straightforward to show that the exact expression of
the GLA is represented by [84,86]

GL(t ) = 	kGLk (t ), GLk (t ) = R(k, t ) + i I (k, t ) tanh(βεk ),

with

R(k, t ) = cos(εkt ) cos(ωt/2) − Bz(k)

εk
sin(εkt ) sin(ωt/2),

I (k, t ) = sin(εkt ) cos(ωt/2) + Bz(k)

εk
cos(εkt ) sin(ωt/2),

where Bz(k) = hz − ω/2 and εk =
√

h2
xy(k) + B2

z (k). It has

been shown that the model shows FDQPTs, at any temper-
ature, when the driving frequency ranges from 2(h − J ) to
2(h + J ), i.e., 2(h − J ) < ω < 2(h + J ), where the system
experiences adiabatic cyclic processes [84,85]. In the fol-
lowing we will examine the behavior of the OTOCs in the
Floquet XY model to obtain their early and long-time scaling
behavior.

A. OTOC of local operators in Floquet XY model

The OTOCs in the Floquet XY model can be obtained by
lengthy and tedious calculation (see Appendix C). Figure 1
represents Czz

r (t ) of the Floquet XY model versus time at
infinite temperature, β = 0, for different values of driving fre-
quency and N = 100. As seen, Czz

r (t ) reveals a bounded cone
structure (which indicates the bound of butterfly effect) with
the velocity of wave front c ≈ 0.66 for ω = π/3 and 2π (no
FDQPTs regime), and c ≈ 0.28 for ω = π (FDQPTs regime).
The numerical value of velocities is in good agreement with
the maximum quasiparticle group velocities (∂εk/∂k) of the
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FIG. 2. The maximum quasiparticle group velocity of time-
independent Floquet Hamiltonian Eq. (C1) versus ω/π . The
maximum group velocity reaches a minimum at the middle of the
driving frequency window, where the Floquet dynamical phase tran-
sition occurs.

effective time-independent Floquet Hamiltonian, Eq. (C1),
at fixed frequencies [104]. The maximum quasiparticle
group velocity of the effective time-independent Floquet
Hamiltonian has been plotted in Fig. 2 versus ω. As seen, the
maximum quasiparticle group velocity gets a minimum at the
midfrequency of the region, where FDQPT occurs, namely,
ω = π . Comparing Figs. 1(a)–1(c) indicates that the system in
the FDQPTs regime [Fig. 1(b)] reveals a narrower light cone
with slower spreading of the local operator which expresses
slower information propagating, witnessed by Fig. 2. This
can be expected as the system evolves adiabatically in the
FDQPTs regime [85], while the system experiences a nonadi-
abatic cyclic process in the no-FDQPTs regime. To accurately
examine the behavior of Czz

r (t ) for small value of separations
r, Czz

r (t ) has been depicted versus time in Figs. 1(d)–1(f). As
seen, Czz

r (t ) typically enhances in a short time from zero to
its maximum value and then decreases to vanishing at long
time in a periodic manner. Indeed, we observe that the OTOCs
comprised of local operators show no sign of scrambling,
namely, limt→∞ Czz

r (t ) = 0 (which is the same as the value
at t = 0).

In addition, as is clear, the maximum value of Czz
r (t ) de-

creases by increasing the separation r. So, it is important to
probe how OTOC behaves at the early and the long times with

FIG. 4. Time average of Czz
r versus driving frequency, for sev-

eral fixed separations of the Floquet XY model and N = 100, in
the presence of the periodically time-dependent Hamiltonian. The
Hamiltonian parameters are J = 0.25π, h = 0.5π, and γ = 0.5.

fixed sites. The numerical simulation of Czz
r (t ) is illustrated in

Fig. 3 for separations r = 1, 2, 3, 4, and we can see clearly
that the early time behavior is growing power law, t2r , for
any values of driving frequency. However, the long-time be-
havior represents t−1 decay in the no-FDQPTs regime (ω =
π/3, 2π ), independent of r and β. In the FDQPTs regime
(ω = π ) the long-time decaying behavior of Czz

r (t ) is t−2.6

and approximately disordered. Consequently, we expect that
Czz

r (t ) could show signatures to detect the range of driving
frequency over which the FDQPT occurs. For this purpose
we have calculated the infinite-temperature time average of
Czz

r (t ) as a function of frequency C̄zz
r = 1

T

∫ T
0 Czz

r (t ′)dt ′, with
T = 2π

ω
. The numerical results have been illustrated in Fig. 4

for different r. As indicated, C̄zz
r is roughly constant in the

no-FDQPT regime while in the FDQPT regime it experi-
ences large variation and its global minimums signal the
boundary values of the window frequency over which the
system shows FDQPTs. So, the time average of local OTOC
can serve as a dynamical order parameter that dynamically
detects the range of driving frequency over which FDQPTs
occur. Moreover, the different long-time decaying behavior of
Czz

r (t ) at the FDQPT and no-FDQPT regimes can be inter-
preted as an indicator of nonadiabatic to adiabatic topological
transition [85].

FIG. 3. The scaling behavior of Czz
r versus time at fixed separation r = 1, 2, 3, 4 for the Floquet XY model, considering N = 100. The

dashed lines are used for power-law fitting, which show t2r power-law growth at early time, independent of the driving frequency, (a) ω = π/3,
(b) ω = π , and (c) ω = 2π . In addition, we see t−1 decaying behavior at long time, except for (b) which shows t−2.6. The inverse temperature
is β = 0 and the Hamiltonian parameters are J = 0.25π, h = 0.5π, and γ = 0.5.
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FIG. 5. Time evolution of nonlocal OTOC, Cxx
r , versus time for fixed separations r = 1, 2, 3, 4, of the Floquet XY model, with β = 0 and

different values of driving frequency, (a) ω = π/3, (b) ω = π , and (c) ω = 2π . The model parameters are J = 0.25π, h = 0.5π, γ = 0.5,
and N = 100.

B. OTOC of nonlocal operators in Floquet XY model

As mentioned before, for an exactly solvable spin-1/2
model by means of Jordan-Wigner transformation, there are
five kinds of OTOC of nonlocal operators. In Figs. 5(a)–5(c),
Cxx

r (t ) has been depicted for r = 1, 2, 3, 4 in the FDQPT
and no-FDQPT regimes. We can see that Cxx

r (t ) in both the
FDQPT and the no-FDQPT regimes increases rapidly at short
initial time from zero to reach its saturated value, 1. Since
nonlocal operators bear nonlocal information about operators,
the OTOCs comprised of nonlocal operators show the signa-
ture of scrambling which is their main difference compared
with local ones. As can be seen from Fig. 5(b), enhancement
of Cxx

r (t ) in the FDQPT regime is slower than that in the
no-FDQPT regime, which means delocalization of informa-
tion in the FDQPT regime occurs more slowly in comparison
with the no-FDQPT case. Other OTOCs of nonlocal operators
show similar behaviors (see Fig. 11 in Appendix C).

V. SYNCHRONIZED FLOQUET XY MODEL

The Hamiltonian of the synchronized Floquet XY model is
given by [90]

H (t ) = −
N∑

n=1

{
J (t )

2

[
(1 + γ )σ x

n σ x
n+1 + (1 − γ )σ y

n σ
y
n+1

]

+ h(t )σ z
n

}
, (12)

where J (t ) = λh(t ), h(t ) = h0 + h1 cos(ωt ), and γ represents
the anisotropy. The Hamiltonian in Eq. (12) is exactly solv-
able by means of Jordan-Wigner transformation [90] (see
Appendix D).

It has been shown that the GLA of the synchronized Flo-
quet XY model is obtained to be [90]

GLk (t ) = cos(εkτ ) + i sin(εkτ ) tanh(|h(0)|εkβ ), (13)

where εk =
√

P2(k) + Q2(k), P(k) = 2λ cos(k) + 2, Q(k) =
2λγ sin(k), τ = ∫ t

0 h(t ′)dt ′, and h(0) = h0 + h1. The GLA
becomes zero if the temperature goes to infinity, i.e., β −→ 0,
at time instances τ ∗ = (2n + 1)π/2εk (n = 0, 1, 2, . . .). In
addition, the FDQPTs occur for all temperatures if h(0) =
h0 + h1 becomes zero, i,e., h0 = −h1. In other words, FDQPT
in a synchronized Floquet system depends on the initial con-
ditions, which occurs for all ranges of driving frequency and
at any finite or infinite temperature. For simplicity and without

loss of generality we consider the isotropic case γ = 1, which
corresponds to the synchronized Floquet Ising model.

OTOC of local operators in the synchronized Floquet XY model

Firstly, we investigate the case in which our model shows
FDQPTs at infinite temperature, i.e., the initial magnetic field
is nonzero h(0) �= 0. The local operator spreading in the syn-
chronized Floquet XY model is probed by analyzing F zz

r (t ),
where its vanishing at long-time limit signals the information
scrambling. Figure 6 shows numerical simulations of the real
and imaginary parts of F zz

r (t ) versus time and spin separa-
tion r for the synchronized Ising model γ = 1, at infinite
(β = 0) and finite (β = 1) temperature with N = 200 and the
strong synchronized coupling λ = 1. The real part of F zz

r (t ),
Fig. 6(a), reveals the bounded cone structure with the velocity
of wave front c = 2. The situation for weak synchronized
coupling λ = 0.1 is shown in Fig. 7, where the parameters
of the model are the same as those in Fig. 6. As seen in Fig. 7,
the diagrams of the real part of F zz

r exhibit a narrower cone
structure, representing slower spreading of local operators
with the velocity c = 0.2. It indicates that the speed of op-
erator spreading depends monotonically on the synchronized
coupling strength.

It should be mentioned that, since the synchronized Floquet
XY model cannot be transformed to the time-independent
effective Floquet Hamiltonian (unlike the Floquet XY model),
the quasiparticle group velocity cannot be defined here. So,
the velocity of the wave front in the synchronized system
cannot be related to the quasiparticle group velocity of the
model. Moreover, it is clear that in both Figs. 6(b) and 7(b)
the imaginary part of F zz

r (t ) is zero at infinite temperature (the
FDQPT case).

The numerical results have also shown that
limt→∞ Re{F zz

r (t )} = 1, indicating no scrambling in
OTOCs of local operator, analogous to that of the Floquet
XY model. Although the qualitative behavior of F zz

r (t ) at
finite temperature (the no-FDQPTs case) is approximately
similar to that at infinite temperature, the imaginary part of
F zz

r becomes nonzero at finite temperature independent of the
synchronized coupling value [Figs. 6(c) and 7(c)].

Furthermore, analyzing the OTOCs of nonlocal oper-
ators has shown that the system is scrambled at in-
finite and finite temperature, which is expected from
the nonlocal nature of inherited information (see Ap-
pendix E). At infinite temperature (the FDQPTs case), the
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FIG. 6. Density plot of F zz
r (t ) versus time and separation, for the synchronized Ising model at the strong coupling λ = 1, in the presence of

h(t ) = h0 + h1 cos(ωt ). (a) Real part of F zz
r (t ) for both β = 0, 1. The imaginary part of F zz

r (t ) for (b) infinite temperature β = 0 and (c) finite
temperature β = 1. We consider N = 200 and Hamiltonian parameters are h0 = 1, h1 = 1, and ω = π/2.

imaginary part of OTOCs of nonlocal operators is also
zero, while in the no-FDQPTs case (finite temperature) the
imaginary part of OTOCs of nonlocal operators becomes
nonzero.

As the second case, we consider h(0) = 0, where FDQPTs
occur at any temperature for any values of driving frequency.
The density plot of the real and imaginary parts of F zz

r , are
shown in Figs. 8 and 9 for strong and weak synchronized cou-
pling λ = 1 and λ = 0.1, respectively. The numerical analysis
exhibits that, the behavior of the real part of OTOCs of both
local and nonlocal operators at infinite and finite temperature
is the same. However, the imaginary part of OTOCs of both
local and nonlocal operators vanishes at any temperature.
Consequently, we come to the conclusion that the OTOCs
with both local and nonlocal operators can be considered as a
diagnostic tool to dynamically detect the FDQPTs in the syn-
chronized Floquet XY model. In other words, the imaginary
part of OTOCs becomes zero when the system undergoes the
FDQPT.

Finally, to exactly assess how a local operator behaves
dynamically and to verify its universal form, the evolution
of Czz

r for some fixed separations at finite and infinite tem-
perature, has been depicted in Fig. 10. Since the interactions
of Hamiltonian are local, we expect the power-law growth
of Czz

r , similar to previous studies [57,58]. As is clear, the
short-time behavior of Czz

r , in the case of h(0) �= 0 [h(0) =
0] at any temperature, reveals the power-law trend t n with
position-dependent power n ≈ 4r − 3 (n ≈ 10r − 3), which
has been extracted from the numerical results. Moreover,
Czz

r approaches its limiting value at long times, in a slow

power law t−1, independent of the value of separations and
temperature.

VI. CONCLUSION

In this paper, we have studied the dynamical quan-
tum phase transition of two periodically time driving
Hamiltonians, the Floquet XY model and the synchronized
Floquet XY model, via analyzing the behavior of out-of-time-
order correlation. Our results indicate that out-of-time-order
correlation is a proper diagnostic tool for studying the dy-
namical characteristics of quantum systems and can represent
features of dynamical behavior. We discovered that out-
of-time-order correlation of local operators could precisely
detect the dynamical quantum phase transition. In the Floquet
XY chain, the infinite-temperature time averaged out-of-time-
order correlation of local operators can serve as a dynamical
order parameter that dynamically detects the range of driving
frequency over which FDQPTs occur. The aforementioned
time average gets a jump with a minimum at the boundary
of the FDQPT region. Moreover, the speed of the wave front
of information spreading in the system becomes minimum in
the region, which shows FDQPT. In the synchronized Floquet
XY chain, it was indicated that vanishing of the imaginary
part of OTOC signals the occurrence of dynamical quantum
phase transition. In addition, the temperature dependence of
the generalized Loshmidt echo comes from its imaginary part,
which suggests that there is a connection between the real and
imaginary parts of the generalized Loschmidt echo and those
of the out-of-time-order correlation. Further investigations

FIG. 7. Density plot of the real and imaginary parts of F zz
r (t ) for weak coupling λ = 0.1 while other parameters are the same as in Fig. 6.
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FIG. 8. Density plot of F zz
r (t ) versus time and separation, for the synchronized Ising model at the strong coupling λ = 1, in the presence

of h(t ) = h0 + h1 cos(ωt ). (a) Real part of F zz
r (t ) for both infinite and finite temperature β = 0, 1. (b) Imaginary part of F zz

r (t ) for (b) β = 0
and (c) β = 1. The model is in strong coupling λ = 1 and h0 = 1, h1 = −1, ω = π/2, and N = 200, which represents FDQPT at any
temperature. The imaginary part of F zz

r (t ) is always zero.

FIG. 9. Density plot of the real and imaginary parts of F zz
r (t ) for weak coupling λ = 0.1 while other parameters are the same as in Fig. 8,

with the imaginary part of F zz
r (t ) zero everywhere in (b) and (c).

FIG. 10. Scaling behavior of Czz
r with the universal form for several fixed separations of the synchronized Ising model, in the presence of

h(t ) = h0 + h1 cos(ωt ). The upper plots indicate the results of h(0) �= 0 and the lower plots are for h(0) = 0. The dashed lines are used for
power-law fitting. We see approximately t4r−3 (t10r−3) power-law fashion at short times and t−1 decay at long times for the case of h(0) �= 0
(h(0) = 0). We consider N = 200, frequency ω = π/2, and Hamiltonian parameters h0 = 1 and h1 = ±1. The strong/weak coupling and
infinite/finite temperature cases are (a) λ = 1, β = 0, (b) λ = 1, β = 1, (c) λ = 0.1, β = 0, (d) λ = 0.1, β = 1, (e) λ = 1, β = 0, (f) λ =
1, β = 1, (g) λ = 0.1, β = 0, and (h) λ = 0.1, β = 1.
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would be interesting to establish a precise relation between the
real and imaginary parts of the generalized Loschmidt echo
and those of out-of-time-order correlation.

APPENDIX A: OTOC OF NONLOCAL OPERATORS

Using Eqs. (3) and (7), the expressions of �xx
r (t ), �

xy
r (t ),

and �xz
r (t ) are written in the following forms:

�xx
r (t ) = 〈[

σ x
N/2(t )σ x

N−r (t )σ x
0 σ x

(N/2)−r

]2〉
=

〈[( N−r−1∏
l=N/2

Bl (t )Al+1(t )

)( N/2−r−1∏
l=0

BlAl+1

)]2〉

�xz
r (t ) = 〈(

σ x
N/2(t )σ x

N−r (t )σ z
0σ z

(N/2)−r

)2〉
=

〈[( N−r−1∏
l=N/2

Bl (t )Al+1(t )

)(
A0AN/2−rB0BN/2−r

)]2〉

�xy
r (t ) = 〈(

σ x
N/2(t )σ x

N−r (t )σ y
0 σ

y
(N/2)−r

)2〉
=

〈[( N−r−1∏
l=N/2

Bl (t )Al+1(t )

)( N/2−r−1∏
l=0

AlBl+1

)]2〉
.

(A1)

APPENDIX B: EXACT SOLUTION OF THE FLOQUET XY
CHAIN

Considering the identity
∑

k∈BZ cos(k) = 0, one can
rewrite Eq. (11) as follows:

Hk (t ) = hz(k)(c†
kck + c†

−kc−k )

− ihxy(k)
(
e−iωt c†

kc†
−k + eiωt ckc−k

) − h. (B1)

It is convenient to use the following basis for the kth
subspace, which is defined in the Heisenberg picture

|0〉, c†
k |0〉, c†

−k|0〉, c†
kc†

−k|0〉. (B2)

In this representation, the Hamiltonian Hk (t ) can be expressed
as

Hk (t )=

⎛
⎜⎜⎝

−h ihxy(k)eiωt 0 0
−ihxy(k)e−iωt 2hz(k)−h 0 0

0 0 hz(k)−h 0
0 0 0 hz(k)−h

⎞
⎟⎟⎠.

(B3)

By solving the time-dependent Schrödinger equation, we
obtain the eigenvalues and eigenvectors of Hamiltonian Hk (t ):

i
d

dt
|ψ±

k (t )〉 = Hk (t )|ψ±
k (t )〉. (B4)

The exact solution of the Schrödinger equation is found
by going to the rotating frame given by the periodic unitary
transformation

UR(t ) =

⎛
⎜⎝

1 0 0 0
0 e−iωt 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠. (B5)

In the rotating frame the eigenstate is given by |χ±
k (t )〉 =

U †
R (t )|ψ±(k, t )〉. Substituting the transformed eigenstate into

the Schrödinger equation, the time-dependent Hamiltonian
is transformed to its time-independent form Hk|χ±

k (t )〉 =
E±|χ±

k (t )〉 where

Hk=

⎛
⎜⎝

−h ihxy(k) 0 0
−ihxy(k) 2hz(k)−h − ω 0 0

0 0 hz(k) − h 0
0 0 0 hz(k) − h

⎞
⎟⎠.

(B6)

The Hamiltonian Hk is in block-diagonal form, which
leads to the following eigenvalues and eigenvectors:

E1,2
k =

(
hz(k) − h − ω

2

)
± εk,

E3,4
k = hz(k) − h, (B7)

where εk =
√

[hxy(k)]2 + [hz(k) − ω
2 ]2 and

|χ1
k 〉 =

(
cos(γk/2)
sin(γk/2)

)
,

|χ2
k 〉 =

(
sin(γk/2)

− cos(γk/2)

)
, (B8)

in which

γk = 2 arctan

[
hz(k) − ω

2 − εk

hxy(k)

]
. (B9)

APPENDIX C: CALCULATION OF THE FLOQUET OTOC

To obtain the time evolution operator of Floquet
Hamiltonian, Uk (t ) = UR(t )UF (t ), we need to calculate
UF (t ) = e−iHkt . The upper-left block of Hk is given by H′

k:

H′
k =

( −h ihxy(k)
−ihxy(k) 2hz(k) − h − ω

)

=
[

hz(k) − ω

2
− h

]
1 + εkĥl (k) · �σ . (C1)

At first, we calculate e−iH′
kt ,

e−iH′
kt = e−it[−h+hz (k)−(ω/2)]e−itεk ĥl (k)·�σ

= e−it[−h+hz (k)−(ω/2)][cos(εkt ) − i sin(εkt )(ĥl (k) · �σ )]

= e−it[−h+hz (k)−(ω/2)]

(
cos(εkt ) + i hz (k)−ω/2

εk
sin(εkt ) hxy (k)

εk
sin(εkt )

− hxy (k)
εk

sin(εkt ) cos(εkt ) − i hz (k)−ω/2
εk

sin(εkt )

)
. (C2)

094304-9



SARA ZAMANI, R. JAFARI, AND A. LANGARI PHYSICAL REVIEW B 105, 094304 (2022)

Using the above equation, we arrive at

UF (t ) = e−it[hz (k)−h]

⎛
⎜⎜⎜⎝

[
cos(εkt ) + i hz (k)−ω/2

εk
sin(εkt )

]
eiωt/2 hxy (k)

εk
sin(εkt )eiωt/2 0 0

− hxy (k)
εk

sin(εkt )eiωt/2
[

cos(εkt ) − i hz (k)−ω/2
εk

sin(εkt )
]
eiωt/2 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠, (C3)

and the time evolution operator is given by

Uk (t ) = e−it[hz (k)−h]

⎛
⎜⎜⎜⎝

[
cos(εkt ) + i hz (k)−ω/2

εk
sin(εkt )

]
eiωt/2 hxy (k)

εk
sin(εkt )eiωt/2 0 0

− hxy (k)
εk

sin(εkt )e−iωt/2
[

cos(εkt ) − i hz (k)−ω/2
εk

sin(εkt )
]
e−iωt/2 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠. (C4)

Similarly, the initial mixed state density matrix of the Floquet system in thermal equilibrium with a heat bath, corresponding
to Hk is

ρk (0) = e−βHk

Tr(e−βHk )
= 1

2[cosh(βεk )eβω/2 + 1]
×

⎛
⎜⎜⎜⎝

[
cosh(βεk ) + hz (k)−ω/2

εk
sinh(βεk )

]
eβω/2 −i hxy (k)

εk
sinh(βεk )eβω/2 0 0

i hxy (k)
εk

sinh(βεk )eβω/2
[

cosh(βεk ) − hz−ω/2
εk

sinh(βεk )
]
eβω/2 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠. (C5)

Since the Hamiltonian is decomposable, one can find the density matrix at time t for the kth subspace, by solving the Liouville
equation. Using Eqs. (C4) and (C5) and following the relation ρk (t ) = Uk (t )ρk (0)U †

k (t ), one can conclude the density matrix at
time t . To compute the OTOC we must first calculate c†

k ± c−k , c†
−k ± ck as follows:

c†
k + c−k =

⎛
⎜⎝

0 0 0 1
0 0 0 1
1 −1 0 0
0 0 0 0

⎞
⎟⎠, c†

k − c−k =

⎛
⎜⎝

0 0 0 −1
0 0 0 −1
1 1 0 0
0 0 0 0

⎞
⎟⎠,

c†
−k + ck =

⎛
⎜⎝

0 0 1 0
0 0 −1 0
0 0 0 0
1 1 0 0

⎞
⎟⎠, c†

−k − ck =

⎛
⎜⎝

0 0 −1 0
0 0 −1 0
0 0 0 0
1 −1 0 0

⎞
⎟⎠. (C6)

Then, by considering Eq. (4), and the above equations, time-dependent correlation functions are obtained. Finally, following the
procedure of the Pffafian method (Secs. II B and II C), one would compute the local and nonlocal OTOCs (Fig. 11).

APPENDIX D: EXACT SOLUTION OF THE
SYNCHRONIZED FLOQUET XY MODEL

Applying Jordan-Wigner as well as Fourier transforma-
tions on Eq. (12), and within the antiperiodic boundary
condition used to minimize boundary effects, the Hamiltonian
in terms of fermionic creation and annihilation operators is
identical to

H (t ) =
∑
k>0

{2[−J (t ) cos(k) − h(t )](c†
kck − c−kc†

−k )

− 2[iJ (t )γ sin(k)](c†
kc†

−k + ckc−k )}. (D1)

The resulting Hamiltonian can be written as H (t ) =∑
k>0 Hk (t ), where the local Hamiltonian reads

Hk (t ) = hz(k, t )(c†
kck + c†

−kc−k ) − ihxy(k, t )(c†
kc†

−k + ckc−k ),
(D2)

where hz(k, t ) = −2J (t ) cos(k) − 2h(t ), hxy(k, t ) =
2J (t )γ sin(k) and the wave number k is equal to
k = (2p − 1)π/N and the integer p runs from −N/2 + 1

to N/2, where N is the total number of spins (sites) in the
chain. Hence, Hk (t ) can be diagonalized using the procedure
of Bogoliubov transformation, which is given by

ck = ukγk + ivkγ
†
−k,

c−k = ukγ−k − ivkγ
†
k ,

c†
k = ukγ

†
k − ivkγ−k,

c†
−k = ukγ

†
−k + ivkγk . (D3)

The Bogoliubov transformation completes the diagonalization
of Hamiltonian as

Hk (t ) =
∑
k>0

�k (t )

(
γ

†
k γk − 1

2

)
, (D4)

where �k (t ) = {[hz(k, t )]2 + [hxy(k, t )]2}1/2 is the disper-
sion of elementary excitations and by considering uk (t ) =
cos[θk (t )/2] and vk (t ) = sin[θk (t )/2], the Bogoliubov angle
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FIG. 11. Time evolution of Cxy
r and Cxz

r for several fixed separations in the Floquet XY model, with β = 0 and different values of ω. We
consider N = 100, and the Hamiltonian parameters are J = 0.25π, h = 0.5π, and γ = 0.5.

θk (t ) satisfies the relation tan[θk (t )] = − hxy (k,t )
hz (k,t ) . The ground

state (Bogoliubov vacuum), the state that is annihilated by γk ,
and the excited state of the above Hamiltonian, for antiperi-
odic boundary conditions, are given by

|�ap
0 〉 = 	k{cos[θk (t )/2] + i sin[θk (t )/2]c†

kc†
−k}|0〉,

|�ap
1 〉 = 	k{i sin[θk (t )/2] + cos[θk (t )/2]c†

kc†
−k}|0〉, (D5)

where |0〉 is the vacuum of the system. For the syn-
chronized model [J (t ) = λh(t )], that we consider afterward,
we have hz(k, t ) = −h(t )P(k), hxy(k, t ) = h(t )Q(k), �k (t ) =
h(t )εk , and tan[θ ′

k (t )] = Q(k)
P(k) , in which P(k) = 2λ cos(k) − 2,

Q(k) = 2λγ sin(k), and εk = {[P(k)]2 + [Q(k)]2}1/2 are time
independent. Moreover, we focus on the case of the harmoni-
cally time-dependent magnetic field h(t ) = h0 + h1 cos(ωt ).

In the Bogoliubov basis [Eq. (D5)], the Hamiltonian Hk (t ),
density matrix ρk (0), and time evolution operator Uk (t ) are
expressed as

Hk (t ) = h(t )

(− εk
2 0

0 εk
2

)
, (D6)

Uk (t ) =
(

ei(εk/2)τ 0
0 e−i(εk/2)τ

)
,

(D7)

ρk (0) = 1

2 cosh
[
βh(0) εk

2

](
eβh(0)(εk/2) 0

0 e−βh(0)(εk/2)

)
,

(D8)

where τ = ∫ t
0 h(t ′)dt ′, and the density matrix at time t is

obtained to be ρk (t ) = Uk (t )ρk (0)Uk (t ).

APPENDIX E: OTOC IN SYNCHRONIZED XY CHAIN

Considering Eq. (D3), we obtain

c†
k + c−k = e−iθ ′

k/2(γ †
k + γ−k ),

c†
k − c−k = eiθ ′

k/2(γ †
k − γ−k ),

c†
−k + ck = eiθ ′

k/2(γ †
−k + γk ),

c†
−k − ck = e−iθ ′

k/2(γ †
−k − γk ). (E1)

FIG. 12. Density plot of the real and imaginary parts of F xx
r versus time and separation, for the synchronized Ising model, in the presence of

h(t ) = h0 + h1 cos(ωt ) for inverse temperature β = 0 and β = 1. We consider N = 200 and strong coupling λ = 1, and the other parameters
are h0 = 1, h1 = 1, and ω = π/2.
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FIG. 13. Density plot of the real and imaginary parts of F xx
r versus time and separation, for the synchronized Ising model, in the presence of

h(t ) = h0 + h1 cos(ωt ) for inverse temperature β = 0 and β = 1. We consider N = 200 and weak coupling λ = 0.1, and the other parameters
are h0 = 1, h1 = 1, and ω = π/2.

Then using Eq. (4) we get

〈Ap(t )Aq〉 = 1

N

∑
k

eik(p−q) × 〈U †
1k (t )(γ †

k + γ−k )U1k (t )(γ †
−k + γk )〉,

〈Ap(t )Bq〉 = 1

N

∑
k

eik(p−q)e−iθ ′
k × 〈U †

1k (t )(γ †
k + γ−k )U1k (t )(γ †

−k − γk )〉,

〈Bp(t )Aq〉 = 1

N

∑
k

eik(p−q)eiθ ′
k × 〈U †

1k (t )(γ †
k − γ−k )U1k (t )(γ †

−k + γk )〉,

〈Bp(t )Bq〉 = 1

N

∑
k

eik(p−q) × 〈U †
1k (t )(γ †

k − γ−k )U1k (t )(γ †
−k − γk )〉. (E2)

Finally, following the above equations and considering Eqs. (D6)–(D8), time-dependent correlation functions for the mixed state
synchronized case are given by

〈Ap(t )Aq〉 = 1

N

∑
k

eik(p−q) ×
{

cos(εkτ ) − i sin(εkτ ) tanh

[
βh(0)

εk

2

]}
,

〈Ap(t )Bq〉 = 1

N

∑
k

eik(p−q)e−iθ ′
k ×

{
cos(εkτ ) tanh

[
βh(0)

εk

2

]
− i sin(εkτ )

}
,

〈Bp(t )Aq〉 = − 1

N

∑
k

eik(p−q)eiθ ′
k ×

{
cos(εkτ ) tanh

[
βh(0)

εk

2

]
− i sin(εkτ )

}
,

〈Bp(t )Bq〉 = − 1

N

∑
k

eik(p−q) ×
{

cos(εkτ ) − i sin(εkτ ) tanh

[
βh(0)

εk

2

]}
. (E3)

FIG. 14. Density plot of the real and imaginary parts of F xx
r versus time and separation, for the synchronized Ising model, in the presence

of h(t ) = h0 + h1 cos(ωt ) where h0 = 1, h1 = −1, ω = π/2, i.e., h(t = 0) = 0. (a) The real part of F xx
r is the same for β = 0 and β = 1. The

imaginary part of F xx
r is plotted for inverse temperature (b) β = 0 and (c) β = 1. The system is in the strong coupling λ = 1 and N = 200.
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FIG. 15. The explanation is the same as for Fig. 14, except the coupling λ = 0.1, which is weak.

OTOC of nonlocal operators in the synchronized Floquet XY
model

The general behavior of the OTOC comprised of nonlocal
operators for the synchronized Ising model, is illustrated in
Figs. 12–15, using the procedure described in Sec. II, for
N = 200. As seen, the xx OTOC shows the signature of oper-
ator spreading, although with some differences in comparison
with the zz OTOC. Figures 12 and 13 exhibit the evolution of
the real and imaginary parts of F xx

r in time, at high and low
temperature and for the h(0) �= 0 case.

The OTOC with nonlocal operators has been depicted in
Figs. 14 and 15 for the h(0) = 0 case. As can be observed, the

diagrams reveal no temperature dependence and so decreasing
the temperature from its infinite value, does not significantly
alter the quantitative behavior of the OTOC in this context.
Hence, similar to the situation of Czz

r , when the initial time
magnetic field is zero, vanishing of the imaginary part of F xx

r
signals the occurrence of a FDQPT independent of tempera-
ture, which is in agreement with the results of the Loschmidt
amplitude analysis. So, it would be suitable to detect the
mixed state FDQPT of the synchronized Ising chain due to
analyzing the vanishing of Im(F zz

r ) as well as Im(F xx
r ) at any

temperature.
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