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Photoinduced intradomain dynamics and nonthermal switching of metastable states in the
one-dimensional extended Peierls-Hubbard model
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We investigate the microscopic dynamics at the initial stage of photoinduced phase transitions in
tetrathiafulvalene-p-chloranil by exact diagonalization. We first show that the one-dimensional extended Peierls-
Hubbard model exhibits a neutral phase with small ionicity and negligible dimerization and an ionic phase
with moderate ionicity and dimerization. Aside from these phases, we find a doubly ionized phase with strong
dimerization that we call the “dipole” phase. These ground-state phases are characterized by various order
parameters and the Zak phase, which is relevant to electronic polarization. We further explore the microscopic
dynamics of the three phases triggered by short monocycle optical pulses. The electronic order parameters
and lattice displacement suggest that the neutral-ionic, ionic-neutral, and dipole-ionic transitions are induced.
Furthermore, clear spectroscopic changes are observed in the time-dependent spectral density and pump-probe
conductivity. A detailed analysis of the spectroscopy demonstrates the generation of coherent charge-transfer
strings via multiphoton absorption and the crucial roles of the excited states and the metastable ground state at
the new lattice position for the ultrafast dynamics.
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I. INTRODUCTION

Intense optical excitation is a novel tool to investigate the
intriguing regimes of a free-energy landscape that is hidden
under the equilibrium condition [1]. The recent progress of
experimental techniques such as ultrafast lasers, nanoscale
fabrication, and heterostructure engineering is rapidly expand-
ing the realm of nonequilibrium material science [2]. The
detailed knowledge of the states far away from equilibrium is
used to steer a system into a metastable state with a unique
attribute, which serves as a basis for future technological
application. A few examples of nonequilibrium material engi-
neering are optical modulation of Berry phase in graphene [3],
light-induced superconductivity in high-Tc superconductors
[4–6], and ultrafast structural transitions in transition metal
dichalcogenides [7]. While the light sources in these exam-
ples can be considered classical, strong coupling between a
material and quantum light is also a fascinating field of study.
For instance, novel exciton-polariton states are created in van
der Waals materials [8] or organic semiconductors [9,10].

Photoinduced phase transitions in tetrathiafulvalene-p-
chloranil (TTF-CA), an organic charge-transfer complex, are
one of the earliest demonstrations of optical manipulation
of solid-state systems [11–13]. Near the equilibrium transi-
tion temperature, bidirectional transitions can be triggered by
optical stimulation between the neutral phase with a cen-
trosymmetric crystal structure and the ionic phase with a
noncentrosymmetric structure [14–16]. Since the ionic phase
of TTF-CA has large electronic polarization [17,18], such a
conversion means optical switching of ferroelectricity, which
may be used for new types of capacitors or sensors. The
material in the ionic phase also shows a bulk photovoltaic ef-

fect (shift current generation) due to the noncentrosymmetric
nature [19].

Starting from the early studies using nanosecond lasers
[14,20,21], the recent focus is shifted towards more rapid
excitation of the system using femtosecond lasers. For ex-
ample, ultrashort laser pulses are used to induce coherent
electron-lattice dynamics [22–24] or to manipulate the po-
larization of photoinduced states [25–27]. Due to the strong
correlation in TTF-CA and its slow energy dissipation to
the environment, nonlinear dynamics that strongly depends
on the initial states and pump pulses appears. Such ultrafast
dynamics has been analyzed by various experiments using
pump-probe spectroscopy [28–31]. Thus, aside from the ex-
perimental progress, it is desirable to theoretically understand
the microscopic dynamics at the initial stage of the photoin-
duced phase transitions and their relation to the time-resolved
spectroscopy for the optical control of material properties.

For this aim, in this paper, we investigate the photoinduced
microscopic dynamics of TTF-CA by numerically studying
the one-dimensional extended Peierls-Hubbard model. We fo-
cus on the initial nucleation dynamics within a small homoge-
neous domain (intradomain) and ignore the subsequent slow
domain-wall motion [32–38]. In other words, we consider the
excitation of a charge-transfer (CT) string, the precursor for
the (equilibrium) phase transitions [15,20,39,40], of a fixed
size without boundaries [41]. Such a situation may be rele-
vant to the ultrafast dynamics within a few picoseconds. We
demonstrate that femtosecond monocycle pulses can gener-
ate coherent CT strings leading to very efficient conversions
between different phases, i.e., nonthermal switching of the
electronic and lattice orders [42–44].
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FIG. 1. (a) Schematics of the model and (b)–(d) possible ground-
state phases. The dashed arrows represent the dominant optical
excitation processes.

Using exact diagonalization, we first show that the model
hosts a neutral phase with small ionicity (TTF0CA0) and neg-
ligible dimerization and an ionic phase with moderate ionicity
(TTF+1CA−1) and moderate dimerization [see Figs. 1(b) and
1(c)]. While these two phases are experimentally relevant to
TTF-CA, we find that a doubly ionized phase (TTF+2CA−2)
with strong dimerization is also stable; we call this phase
the “dipole” phase [see Fig. 1(d)]. Aside from the various
local order parameters, we characterize these phases by the
Zak phase, which is related to electronic polarization [45,46].
While the Zak phase in the neutral phase is zero, as predicted
before, the other two phases are topologically distinct and
their electronic polarization is nonzero.

We then study the dynamics induced by ultrashort mono-
cycle pulses from these ground-state phases. While the lattice
motion is subject to damping, we find that the electronic part
reaches quasisteady states. The completeness of photoinduced
phase transitions depends nonlinearly on the pump pulse’s
duration and strength. Within the parameters that we use,
neutral-ionic, ionic-neutral, and dipole-ionic transitions are
achieved. The temporal changes of order parameters present
correlated dynamics between the electronic and lattice de-
grees of freedom. Furthermore, we calculate the time-resolved
spectral density and the pump-probe conductivity to obtain
a microscopic picture of the photoexcited states. After the
photoexcitation, these quantities exhibit rapid spectroscopic
changes that may be experimentally detected. We argue that
the intermediate Franck-Condon states are multiphoton ex-
cited states that already have the properties of the final target
phase. We also clarify the non-negligible role of the adiabatic
ground states.

The remainder of our paper is organized as follows.
Section II introduces the model that we consider and the

employed method. In Sec. III, we discuss the ground-state
properties of the model revealed by numerical diagonaliza-
tion and by a simple ansatz. Linear optical conductivity is
calculated for the ground states as well. Section IV is devoted
to the photoinduced dynamics of the model induced by short
monocycle pulses. The steady states, the real-time dynamics,
the time-dependent spectral density, and the pump-probe con-
ductivity are discussed. In Sec. V, we summarize the obtained
picture of photoinduced microscopic dynamics and compare
it to the previous studies. Section VI is the conclusion.

II. FORMALISM

A. Model

TTF-CA is a quasi-one-dimensional organic material that
consists of chains of alternatively stacked TTF molecules and
CA molecules [Fig. 1(a)]. TTF molecules are electron donors
and CA electron acceptors. Above the transition temperature
(81 K in equilibrium under ambient pressure), the material is
in the neutral phase, with a small charge transfer ρ ≈ 0.3 from
the donors to the acceptors without lattice modulation. Below
the transition temperature, the material transforms into the
ionic phase, where more electrons move to the acceptors, ρ ≈
0.6, and lattice dimerization occurs [47,48]. Upon increasing
pressure, an ionic phase without dimerization appears [39],
while we will not consider such a phase in this work.

Various models have been proposed to understand the
underlying physics of the equilibrium and nonequilibrium
phase transitions in charge-transfer materials [49]. A typical
example is the ionic Hubbard model, which contains only
the electronic degrees of freedom [50,51]. On top of such a
model, it is common to introduce lattice degrees of freedom
to better characterize the interplay between the electrons and
the phonons.

In this work, we consider the one-dimensional extended
Peierls-Hubbard model, whose specific form reproduces the
basic experimental properties of TTF-CA. The interchain in-
teraction is ignored for simplicity. Such a model was proposed
and solved by the Hartree-Fock method in Refs. [32,52]. Its
photoinduced dynamics was studied by the time-dependent
Hartree-Fock method in Refs. [25,34,35,53]. These studies
focus on thermal and spatial fluctuations, while quantum fluc-
tuations are not fully taken into account. Here, we solve the
model by exact diagonalization, where quantum fluctuations
arising from the competing phases are properly included. The
method is also suitable to calculate various (time-dependent)
spectral functions, as shown below.

There are other models that also describe the neutral–ionic
phase transitions in organic mixed-stack compounds. A com-
monly used one includes the electron-phonon coupling on
the electron’s hopping energy as in the Su-Schrieffer-Heeger
model [54–58]. Compared to the model in this work, the bro-
ken centrosymmetry on the single-particle level presumably
produces more complex behavior in electronic polarization
[59,60] and, hence, in infrared spectra [61]. Here, considering
that the kinetic energy is small compared to the interaction
energy in the material, we will not include such a coupling.
Effects of Holstein phonons, which couple to the local elec-
tron density, have been also studied in Refs. [36,41,62–65].
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First, we take the ionic Hubbard model as the electronic
part [see Fig. 1(a)]

Hel = −
∑
l,σ

J0[e−i e
h̄ aA(t )c†

l+1,σ
clσ + H.c.]

+ U
∑

l

nl↑nl↓ +
∑

l

�

2
(−1)l nl , (1)

where J0 is the hopping amplitude, and clσ and c†
lσ annihi-

lation and creation operators at site l of spin σ . Here we
take odd sites as the highest occupied molecular orbital of
the donors (TTF) and even sites as the lowest unoccupied
molecular orbital of the acceptors (CA). � is the staggered
potential representing the difference of site energies (i.e., the
redox energy), and U the onsite Hubbard interaction. The den-
sity operators are given by nlσ = c†

lσ clσ and nl = nl↑ + nl↓.
We assume no net spin polarization and focus on half-filling,
where the number of particles N = ∑

l nl is equal to the num-
ber of sites L. This model has been investigated to understand
organic crystals or transition metal oxides [66–69].

Optical fields are introduced by a spatially uniform time-
dependent vector potential A(t ), entering the model via
Peierls’ substitution as Eq. (1). This corresponds to the electric
field parallel to the stacking axis (a axis). In the remainder
of the paper, we use e = h̄ = c = 1 and include the lattice
constant a in the vector potential. The electric field is given by
E (t ) = −∂t A(t ). Motivated by recent experiments using short
monocycle pulses [70], we consider the following monocycle
pump pulses for t ∈ [tpump, tpump + Tpump] [outside this range,
A(t ) = 0],

Apump(t, tpump) = A0{cos [ωpump(t − tpump)] − 1}, (2)

where A0 is the pump strength, ωpump the pump frequency,
tpump the pump starting time, and Tpump = 2π/ωpump the width
of the pump. As a probe pulse (if included in the simulations)
[71], we use a step function at time tprobe,

Aprobe(t, tprobe) = −E0�(t − tprobe), (3)

which gives an electric field of a delta function
Eprobe(t, tprobe ) = E0δ(t − tprobe). Both pump and probe
fields are polarized parallel to the stacking axis. The current
operator is given by

j = −
∑
l,σ

[iJ0e−iA(t )c†
l+1,σ

clσ + H.c.]. (4)

The phonon part is given by

Hph =
∑

l

[
P2

l

2Ml
+ S1

2
(Ql − Ql+1)2 + S2

4
(Ql − Ql+1)4

]
,

(5)

where Ml is the mass of the molecule at site l , Ql and Pl

the corresponding displacement and momentum. For the sake
of simplicity, we use dimensionless displacements ql ≡ Ql/a
measured by the equilibrium lattice constant a ≈ 3.6 Å; other
quantities are also renormalized as ml ≡ Mla2, pl ≡ Pla, s1 ≡
S1a2, and s2 ≡ S2a4,

Hph =
∑

l

[
p2

l

2ml
+ s1

2
(ql − ql+1)2 + s2

4
(ql − ql+1)4

]
. (6)

s1 and s2 represent harmonic and anharmonic potentials.

TABLE I. Parameters of the model in the units of eV taken from
Ref. [32].

J0 � U s1 s2 V0 β1 β2

0.17 2.716 1.528 4.86 3400 0.604 1 8.54

The displacement of molecules modifies the nearest-
neighbor Coulomb interaction, which gives the electron-
phonon coupling as

Hel-ph =
∑

l

V (ql , ql+1)ρlρl+1. (7)

Here ρl is the total charge density at site l ,

ρl =
{

2 − nl at the donor sites (odd l),

−nl at the accepter sites (even l).
(8)

The coupling constant depends on the lattice displacement as

V (ql , ql+1) = V0 + β1(ql − ql+1) + β2(ql − ql+1)2. (9)

The parameters that we use are summarized in Table I.
The bare optical phonon frequency is given by ωopt =√

2s1(m1 + m2)/(m1m2) ≈ 5.43 meV, which corresponds to
the period of ≈ 0.78 ps. Once the electron-phonon coupling is
included, the frequency of phonon oscillation estimated by a
real-time simulations is reduced to ≈ 0.5 ps, which is closer
to the observed period ≈ 0.6 ps [26].

B. Order parameters

To characterize the phases, we consider the order parame-
ters of the charge-density wave (CDW) and the spin-density
wave (SDW),

OCDW = 1

L2

∑
k,l

〈nknl (−1)k−l〉 ,

OSDW = 1

L2

∑
k,l

〈
Sz

kSz
l (−1)k−l

〉
,

(10)

where Sz
l = nl↑ − nl↓ is the spin density operator at site l .

They represent the spatial charge and spin density modulation
with wave vector π/a. We also measure the degree of charge
transfer (or ionicity) by

ρ = 1

L

∑
l

〈ρl〉(−1)l+1. (11)

Similarly, dimerization of the lattice is quantified by

OPeierls = 1

L2

∑
k,l

〈qkql (−1)k−l〉 . (12)

C. Method

We solve the model H = Hel + Hph + Hel-ph by exact di-
agonalization with the Lanczos method [72]. The periodic
boundary condition is employed. The system is time evolved
after initializing the wave function to be a ground state. The
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phonons are treated semiclassically, and their equation of mo-
tion follows the Ehrenfest dynamics,

dql

dt
= pl

ml
,

d pl

dt
= −

〈
δH (t )

δql

〉
− γ

dql

dt
, (13)

where 〈. . . 〉 is the expectation value in terms of the wave
function at time t , the force from the electrons takes the form
of the Hellmann-Feynman force, and a phenomenological
damping constant γ is also included. The positions of ions are
time-dependent parameters in the electronic Hamiltonian, and
the wave function of the electrons follows the time-dependent
Schrödinger equation

ih̄
d

dt
|ψ (t )〉 = [Hel + Hel-ph] |ψ (t )〉 . (14)

We use the fourth-order Runge-Kutta method for the numer-
ical integration of these equations. The time step is fixed to
dt = 0.002; the relatively small time step here ensures that
the norm of the wave function is preserved for the entire
simulation time.

III. GROUND-STATE PROPERTIES

A. Potential energy surfaces and order parameters

Before we look at the photoinduced dynamics, we first
elaborate on the ground-state properties of the model. While
the two essential phases, i.e., the neutral (N) and ionic (I)
phases, were found for the model previously, we show that
the model possesses another possible state that we call the
dipole (D) phase characterized by strong dimerization and
large charge transfer.

To obtain the adiabatic potential energy surfaces (PESs),
we calculate the ground states of the model by exact diag-
onalization using the Lanczos method for a fixed amount of
dimerization q0, i.e.,

ql = q0(−1)l . (15)

The dimerization order parameter is given by OPeierls = q2
0

in this case. Figure 2(a) shows the PESs for three different
values of V0. Due to the insulating nature of these ground
states, the finite-size effects are small. At V0 = 0.56 eV, the
global minimum is located at q0 = 0, corresponding to the
neutral phase. For q0 � 0.065, the ground state has strong
dimerization, which is the dipole phase, as we will discuss
further below. The ionic phase with moderate dimerization
q0 ≈ 0.03 is not stable in this regime. At V0 = 0.604 eV (i.e.,
the experimentally relevant case), the ionic phase obtains the
global minimum at q0 ≈ 0.03, while the local minimum of
the dipole phase is nearly degenerate to the global minimum.
Finally, at V0 = 0.635 eV, the dipole phase becomes the most
stable phase. Therefore, as V0 increases, the most stable phase
changes from the neutral phase to the ionic one and then to
the dipole one.

We characterize the three possible phases by lattice dimer-
ization, ionicity, and the electronic order parameters. Figure 3
plots these order parameters of the ground state (correspond-
ing to the global minimum of the PES) as functions of the

FIG. 2. (a) Adiabatic potential energy surfaces, (b) the Zak phase
ν, and (c) the localization length λ in terms of dimensionless dimer-
ization q0 at various V0’s calculated by exact diagonalization of
L = 12 sites. The dots mark the points corresponding to the global
minimum of each PES.

bare electron-phonon coupling V0. For V0 < 0.587 eV, dimer-
ization is nearly absent, q0 ≈ 0, and the electrons are localized
at the donor sites, ρ ≈ 0.3, which gives a finite CDW order.
On the other hand, the SDW order is absent. Thus, this phase
corresponds to the neutral phase of TTF-CA. For 0.587 eV
< V0 < 0.623 eV, moderate dimerization is induced, q0 ≈
0.03, and the electron occupation is nearly equal on donor and
acceptor sites leading to moderate ionicity, ρ ≈ 1.0. While
the CDW order is absent, the SDW is developed; the system
is in the Mott insulating state with antiferromagnetic corre-
lation. Therefore, this state corresponds to the ionic phase
of TTF-CA. Finally, for V0 > 0.623 eV, strong dimerization,
q0 ≈ 0.066, occurs and the CDW order becomes finite again.
However, the electrons are mostly localized on the acceptor
sites, leading to large ionicity, ρ ≈ 2.0. Such a dimer naively
possesses a strong dipole moment, and we thus call this phase
the dipole phase.

The order parameters change abruptly between these
phases, which indicates the first-order nature of the phase
transitions [73]. In the ionic Hubbard model Hel, the transition
between the neutral phase and the ionic phase occurs as U
increases, and the existence of a bond order between the two
is suggested [74]. However, we do not observe such a bond
order in this work, probably due to the small system size.

The forms of the adiabatic potential energy surfaces are
readily understood by considering the case of the vanishing
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FIG. 3. Order parameters of the ground state at the global mini-
mum of each PES for various V0: (a) dimerization q0, (b) ionicity ρ,
(c) CDW order, and (d) SDW order. For V0 < 0.587 eV, the system
is in the neutral phase. For 0.587 eV � V0 < 0.623 eV, the system is
in the ionic phase. For V0 > 0.623 eV, the dipole phase is the most
stable. The dotted vertical lines indicate the phase boundaries.

hopping amplitude J0 = 0. Since the realistic value of J0 ≈
0.17 eV is much smaller than the other energies (U , V0, and
�), this limit gives a simple but reliable picture for the ground
states. In the absence of hopping, any Fock state (in the real-
space occupation basis) is an eigenstate of the Hamiltonian.
Here we assume spin-dependent staggered occupation

〈nlσ 〉 = 1
2 + (−1)lδnσ . (16)

This leads to OCDW = (δn↑ + δn↓)2 and OSDW = (δn↑ −
δn↓)2.

The resultant energy density ε = 〈H〉 /L is found to be

ε(δn↑, δn↓, q0)

= U

(
1

4
+ δn↑δn↓

)
+ �

2
(δn↑ + δn↓)

− Ṽ (q0)(1 + δn↑ + δn↓)2 + 2s1q2
0 + 4s2q4

0, (17)

where Ṽ (q0) = V0 + 4β2q2
0 represents the effective nearest-

neighbor Coulomb interaction modified by lattice dimeriza-
tion. We see that the onsite interaction U tends to suppress
double occupation. The staggered potential � prefers large
occupation on the donor (odd) sites, i.e., δn↑,↓ < 0. On the
other hand, the negative sign in front of Ṽ (q0) indicates that
this interaction favors larger occupation on the acceptor (even)
sites, i.e., δn↑,↓ > 0. The competition between these three

FIG. 4. The energy densities in Eq. (18) obtained in the limit of
J0 = 0 at V0 = 0.604 eV. The lowest energy among the three (black
line) qualitatively reproduces the PES in Fig. 2(a).

terms leads to the nearly degenerate phases, and quantum
phase transitions among them.

To find the ground state, we numerically minimize Eq. (17)
in terms of δnσ ∈ [−0.5, 0.5] at each q0. The obtained diabatic
PESs are plotted in Fig. 4, which qualitatively reproduces the
results with J0 > 0. However, contrarily to the finite hopping
case, the PESs with J0 = 0 show sharp kinks between differ-
ent phases. They are the energy-level crossings of the three
energy eigenstates given by

(1) δn↑ = δn↓ = −0.5 (neutral states),
(2) δn↑ = −δn↓ = ±0.5 (ionic states),
(3) δn↑ = δn↓ = 0.5 (dipole states).
The corresponding energies are

εN = U

2
− �

2
+ 2s1q2

0 + 4s2q4
0,

εI = −Ṽ (q0) + 2s1q2
0 + 4s2q4

0,

εD = U

2
+ �

2
− 4Ṽ (q0) + 2s1q2

0 + 4s2q4
0. (18)

From these expressions, we see that the effective interaction
Ṽ (q0) becomes more dominant as V0 or q0 increases and
prefers the dipole state.

Finally, we note the direct relevance of the dipole phase
to TTF-CA is yet unclear. For example, the additional next-
nearest-neighbor interaction effectively enhances the onsite
Hubbard interaction U and the staggered potential �. There-
fore, such a term favors the neutral phase and hinders the
dipole phase. Nevertheless, the precise degree of the suppres-
sion of the dipole phase depends on the actual parameters of
materials, and it can still remain as a local energy minimum.
Therefore, it may appear in other systems or as a metastable
state during a photoinduced phase transition.

B. Zak phase and localization length

Aside from various local order parameters, electronic po-
larization is another important quantity to characterize the
ground states. The modern formulation of macroscopic po-
larization developed since the early 1990s sheds new light on
the concept of electronic polarization [75,76]. Now, there is
experimental and theoretical evidence that the polarization of
the ionic phase in TTF-CA is mainly of the electronic origin,
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not the ionic origin, even though it is accompanied by lattice
dimerization.

Here, we follow the approach by Resta and Sorella [60],
which is shown to be also useful for strongly correlated sys-
tems [77]. The quantity of interest is a complex number zN

defined as

zN ≡ 〈� | e−i 2π
L X̂ | �〉, (19)

where the expectation value is taken for a ground state |�〉.
X̂ = ∑

l lnl is the position operator in the open boundary
condition, and the exponential operator is a proper position
operator for the periodic boundary condition. The phase of zN

is related to the Zak phase [45,46,59,60,78–80]

ν = i
∫

dk
〈
�0

k

∣∣∂k�
0
k

〉 
 Im ln zN , (20)

where |�0
k〉 is the ground state of a Hamiltonian with an

additional phase on the hopping amplitude J0 → J0eik/L . An
intriguing topological property given by the Zak phase in
the ionic Hubbard model was revealed by Ref. [59], and
experimentally realized by using ultracold atoms [81]. The
macroscopic polarization is given by the Zak phase as [46]

P = eν

2π
. (21)

The amplitude of zN is related to the localization length λ of
the ground-state wave function as (at half-filling)

λ =
√

−N ln |zN |2/(2π ). (22)

We calculate zN using the periodic ansatz from Ref. [79] to
circumvent the severe finite-size effects. We take the number
of the supercells M = 100.

Figure 2(b) shows the Zak phase ν corresponding to the
three PESs in Fig. 2(a). At V0 = 0.560 eV, we see that the
neutral phase at small q0 has ν = 0 and thus is topologically
trivial. However, the ionic phase at large q0 obtains an addi-
tional phase ν = π and thus is topologically nontrivial. This
result is consistent with the previous result for the pure ionic
Hubbard model [59]. By increasing q0 further, we reach the
dipole phase, which has ν = 2π , i.e., another topologically
distinct state. Therefore, the Zak phase clearly distinguishes
the three quantum phases. In particular, the transition between
the neutral and the ionic phases is more evident in the Zak
phase compared with the PESs in Fig. 2(a). Furthermore, the
relation in Eq. (21) suggests that the macroscopic polariza-
tion is nonzero for the ionic and dipole phases (bigger for
the latter), while the neutral phase has no polarization; this
agrees with the paraelectric (ferroelectric) nature of the neu-
tral (ionic) phase in TTF-CA. At V0 = 0.604 eV, the neutral
and ionic states are nearly degenerate, and ν increases slowly
from 0 to π at small q0 � 0.02. However, as q0 further in-
creases, the Zak phase becomes 2π (the dipole phase). Finally,
at V0 = 0.635 eV, we only observe the ionic phase (ν = π )
and the dipole phase (ν = 2π ).

Figure 2(c) shows the localization length λ calculated from
zN . As discussed in Sec. III A, the transitions among different
phases are caused by level crossings or gap closing. Such
gap closing signals metallic behavior [79], and correspond-
ingly the localization length diverges. For the three values
of V0’s, the calculated λ’s are indeed enhanced at the phase

boundaries. The data points corresponding to the global min-
imum of the PES for each V0 are plotted as the dots. We
find that the localization length is the largest in the neutral
state at V0 = 0.56 eV, and the smallest in the dipole phase at
V0 = 0.635 eV. This order agrees with the fact that the neutral
(dipole) phase has the smallest (largest) optical charge gap, as
shown in Sec. III C.

C. Linear optical conductivity

In the next section, we calculate the pump-probe conduc-
tivity of the system after photoexcitation. To understand the
spectral changes in this quantity, here, we present the linear
optical conductivity of the three ground-state phases. The real
part of the optical conductivity σ (ω) for an energy eigenstate
|i〉 with eigenenergy Ei can be written as [69,82,83]

Re [σ (ω)] = Dδ(ω) + σ reg(ω),

D = −π

L
〈K〉i − 2π

L

∑
n �=i

| 〈i| j0|n〉 |2
En − Ei

,

σ reg(ω) = π

L

∑
n �=i

| 〈i| j0|n〉 |2
En − Ei

× [δ(En − Ei − ω) + δ(En − Ei + ω)], (23)

where 〈K〉i is the expectation value of the kinetic energy in
terms of |i〉, |n〉 the nth eigenstate with eigenenergy En, and
j0 the current operator without the vector potential in Eq. (4).
D is the Drude weight and σ reg(ω) is related to the absorption
of a photon at ω. When |i〉 is equal to the ground state |0〉, the
second term in σ reg(ω) vanishes for ω > 0, and the expression
is reduced to the conventional one. We will use this general
expression to understand the pump-probe optical conductivity
in Sec. IV D. The excited states are calculated based on the
Franck-Condon principle; the lattice displacement is fixed to
the initial-state configuration. In Fig. 5, we plot the opti-
cal conductivity of the three ground-state phases for L = 8
and 12.

In the neutral phase, there is a dominant peak around ω ≈
0.2 eV, and this corresponds to the transfer of an electron from
a donor to a neighboring acceptor [see Fig. 1(b)]. In the case
of J0 = 0 eV, the excitation energy is given by

ωN
1 = � − U − V N

12 ≈ 0.63 eV, (24)

which is close to the experimental value 0.6 eV [84]. Here
V N

12 is the electron-phonon coupling in Eq. (9) between sites
1 and 2 with the equilibrium value of dimerization qN

0 for the
neutral phase. The peak frequency of such excitation shifts to
lower values as J0 increases from 0 eV. The negative values at
ω = 0 are the finite-size effect [69,85]; as shown in the inset,
the Drude weight becomes exponentially small as the system
size increases (for L = 10 and 14, we use the antiperiodic
boundary condition). Therefore, the system is insulating.

The ionic phase has a more complex structure as depicted
in Fig. 5(b). While the system is also an insulating state
(the inset shows the vanishing Drude weight as L increases),
we observe a few dominant peaks. They originate from the
excitation paths shown in Fig. 1(c). For an ionic ground state,
an electron can hop between a donor and an acceptor in both
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FIG. 5. Real part of linear optical conductivity Re[σ (ω)] for (a) a
neutral state (V0 = 0.56 eV), (b) an ionic state (V0 = 0.604 eV), and
(c) a dipole state (V0 = 0.635 eV). Solid and dashed lines are for L =
8 and 12. The insets in (a) and (b) show the system-size dependence
of the Drude weight.

ways. Furthermore, the electron transfer can occur between a
dimerized donor-acceptor pair or between a donor and an ac-
ceptor in neighboring dimers. In total, there are four possible
excitation paths. The excitation energies for J0 = 0 eV are

ωI
1 = −� + U + 2V I

12 + V I
23 ≈ 0.65 eV,

ωI
2 = −� + U + V I

12 + 2V I
23 ≈ 0.77 eV,

ωI
3 = � + U − 2V I

12 − 3V I
23 ≈ 1.14 eV,

ωI
4 = � + U − 3V I

12 − 2V I
23 ≈ 1.02 eV. (25)

Once J0 takes the experimentally relevant value 0.17 eV, the
peak locations are modified, while the four-peak structure is
still visible. The change from the one-peak structure in the
neutral phase to a two-peak structure in the ionic phase has
been experimentally observed [84,86] and also theoretically
predicted [32] using electric fields along the stacking axis.
Since ωI

1,2 and ωI
3,4 are close, these may give the two-peak

structure in the experiment. We note that, for L = 8, weak
absorption at very small energy ω ≈ 0.1 eV is possible, while
it disappears for larger L’s.

Finally, for the dipole phase, absorption at low frequencies
is suppressed, and the dominant peaks shift to larger values
ω � 1.0 eV. Again, in the limit of J0 = 0 eV, the possible
excitation paths are moving an electron from an acceptor to

a donor either close or away [Fig. 1(d)]:

ωD
1 = −� − U + 4V D

12 + 3V D
23 ≈ 1.11 eV,

ωD
2 = −� − U + 3V D

12 + 4V D
23 ≈ 1.38 eV. (26)

Due to the strongly insulating nature of the phase, including a
small value of J0 = 0.17 eV does not shift the peak locations
from the above values.

IV. PHOTOINDUCED DYNAMICS

A. Steady states

We now turn to the dynamics of the model induced by
monocycle optical pulses. We focus on the case with L = 8
and the damping constant γ = 600. The initial states are the
neutral, ionic, and dipole ground states at V0 = 0.5825, 0.604,
and 0.6275 eV, respectively. The initial lattice dimerization
is located at the global minimum of each PES, i.e., q0 =
0.00108, 0.02916, and 0.0657, respectively. The velocities of
the ions are set to zero. The pump is induced around t =
500 eV−1 and the simulation time is tf = 6000 eV−1. Due to
the periodic boundary condition and spatially uniform optical
excitation, the system remains in a translationally symmetric
state; all the TTF sites are equivalent, and so are the CA
sites. Therefore, the lattice displacement can be written in
the form of Eq. (15) after removing the degree of freedom
corresponding to the translation of the whole system.

First, Fig. 6 presents the average ionicity ρ and dimeriza-
tion q0 after photoexcitation of different pump duration Tpump

and amplitude A0. The time average is taken for t ∈ [tf/2, tf ].
As we will see below, the electronic observables almost imme-
diately reach quasisteady values after the optical excitation.
Similarly, while the optical phonon mode oscillates, it ap-
proaches a long quasisteady value due to the weak damping.
Thus, the time-averaged values well represent the quasisteady
state after the pump pulse. This observation is also reinforced
by the fact that the electronic observable ρ (upper panels) and
dimerization q0 (lower panels) have the same dependence on
A0 and Tpump for each V0.

We see that the pump-pulse dependence of the quasisteady
states is similar regardless of the initializations. For a pulse
with a small amplitude or long duration [case (i)], the system
remains in the initial state. As the pulse becomes stronger or
shorter [case (ii)], the system shows a photoinduced transi-
tion to a metastable state. As the pump pulse becomes too
strong [case (iii)], the system is heated up to be the infinite-
temperature state [87]; there is no electronic order, and the
double-occupation density

∑
l〈nl↑nl↓〉/L approaches to 1

4 .
These three regimes (i)–(iii) are labeled in Fig. 6(b1). The
steady states depend sensibly on the pump parameters for the
N-I transition, giving an intricate structure within regimes (i)
and (ii).

The boundaries between the three regimes can be un-
derstood by the energy of the pump pulse, which is about
A2

0ω
2
pump/2. If we assume that the transitions to metastable

states occur when the amount of energy exceeds some critical
energy scale εc, the phase boundaries are determined by

Tpump ∼ 2π |A0|/
√

2εc. (27)
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FIG. 6. The time-averaged ionicity ρ (upper panels) and dimerization q0 for systems initialized as (a) a neutral state (V0 = 0.5825 eV),
(b) an ionic state (V0 = 0.604 eV), and (c) a dipole state (V0 = 0.6275 eV). Three distinct regimes in (b1) correspond to (i) the initial state, (ii)
the photoinduced metastable state, and (iii) the infinite-temperature state. Lines are fitted by Eq. (27).

In Fig. 6, we observe that the boundaries of the three regimes
indeed follow a linear relation [highlighted by the lines in
Fig. 6(b1)]. Such threshold behavior has been observed exper-
imentally [15,20,22]. We can associate the threshold energy
scale εc to the energy to create a sizable CT string while
paying the lattice potential energy, a manifestation of the
cooperative (or competitive) nature of strongly correlated sys-
tems [34,53]. Finally, regardless of V0, the transitions to the
infinite-temperature state [case (iii)] occur around Tpump ∼
20|A0|, or εc ≈ 0.05.

Now let us focus on the intermediate regime [case (ii)].
At V0 = 0.5825 eV, ionicity increases, ρ ∼ 0.5, and dimer-
ization becomes nonzero, q0 ∼ 0.025, which indicates a
transformation of the system into an ionic state. At V0 =
0.604 eV, ionicity changes from ∼ 1 to a slightly smaller value
∼ 0.7 and dimerization also diminishes. Thus, the photoin-
duced metastable state is partially neutral. Finally, at V0 =
0.6275 eV, metastable ionic states appear in a very narrow
range just before the infinite-temperature regime. This is be-
cause the energy barrier to the ionic state is larger than the
one at the ionic-neutral phase boundary [Fig. 2(a)]. These
metastable states in case (ii) can be considered the precur-
sor CT strings that further grow to achieve bulk transitions
[15,20,39,40].

In principle, two pulses with opposite signs ±A0 applied
to an ionic state or a dipole state can give different dynamics
since these two phases break the inversion symmetry. How-
ever, the actual dynamics does not depend much on the sign
of A0. This is because the monocycle optical pulse is not
directional in average, i.e.,

∫
Epump(t )dt = 0. Instead, we have

confirmed that directional pulses induce distinct dynamics for
different signs of A0.

B. Real-time dynamics

1. Order parameters

To further characterize the photoinduced dynamics, we
look at the real-time dynamics of several cases where clear

photoinduced phase transitions are observed. Figure 7 shows
the real-time dynamics of several observables for (a) an
N-I transition, (b) an I-N transition, and (c) a D-I transi-
tion. The parameters for the three cases are (V0, Tpump, A0) =
(0.5825, 60, 1.2), (0.604, 60, 1.0), and (0.6275, 10, 0.6), re-
spectively. For the comparison with experiments, we convert
the time units to ps via 1 eV−1 ≈ 0.658 fs.

In all three cases, the electronic order parameters ρ and
OCDW/SDW rapidly change after the optical excitation in a
few femtoseconds and retain quasisteady values afterwards.
In contrast, the lattice displacement q0 shows slow oscillations
in addition to gradual decay in a few picoseconds due to the
finite damping. While the oscillation periods are similar to
that of the bare optical phonon mode (≈ 0.6 ps), they sensibly
depend on the modified ionicity, which renormalizes the op-
tical phonon frequency through the electron-phonon coupling
in Eq. (7). Experimentally, pump-dependent coherent oscilla-
tions were demonstrated in Ref. [26]. Detailed studies of the
coherent oscillations including Holstein phonons can be found
in Refs. [41,64].

At V0 = 0.5825 eV in Fig. 7(a), the transformation to
the ionic phase is nearly complete in terms of dimerization,
ionicity, and the CDW order. However, the SDW order pa-
rameter after the photoexcitation ≈ 0.14 is still below that
of the equilibrium ionic phase ≈ 0.3. The D-I transition at
V0 = 0.6275 eV also leads to a nearly complete ionic state
and the metastable SDW order, in this case, is close to that of
the equilibrium ionic phase [Fig. 7(c4)]. As shown below, it is
generally difficult to find an excited state that breaks the spin
SU(2) symmetry, while the ground states can evolve adiabat-
ically to an ionic state. Therefore, the difference between the
two cases is due to the different ratios of the weights on the
excited and ground states at the new lattice positions.

In contrast to the transition to an ionic state, the I-N transi-
tion is a partial transformation to a neutral state. Dimerization
q0 and ionicity ρ are slightly reduced from their initial values
but still away from the equilibrium values of the neutral phase.
The CDW (SDW) order is enhanced (suppressed) only mod-
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FIG. 7. The real-time dynamics of order parameters (from top to bottom): (1) dimerization q0, (2) ionicity ρ, (3) CDW order OCDW, and
(4) SDW order OSDW. Three columns are for (a) N-I transition, (b) I-N transition, and (c) D-I transition. The inset in (a2) shows a femtosecond
dynamics of ρ(t ).

erately. We consider that the difficulty to achieve a complete
transformation to a neutral state stems from the instability
at q0 = 0 point [see Fig. 2(a)]. Since the PES has a local
maximum at q0 = 0, lowering q0 is energetically hindered;
only a slight reduction of q0 occurs. On the other hand, in
principle, we can imagine transforming an ionic state to the
dipole phase, which has a local minimum in the PES. How-
ever, we do not observe such a transformation for the used
parameters, probably due to the relatively high-energy barrier
between the ionic and dipole phases.

The electronic observables show two types of oscillations:
slow oscillations with picosecond frequencies and fast ones
with femtosecond frequencies [see the inset of Fig. 7(b2)].
The slow oscillations come from the lattice displacement as
indicated by the synchronized dynamics of q0(t ) and ρ(t ).
The most evident example is the D-I transition [Fig. 7(c)]. The
origin of the fast oscillations can be understood by looking at
the electronic spectral density

S(ω; t ) ≡
∑
n=0

|〈ψ (t ) | n(t )〉|2δ[ω − En(t ) + E0(t )], (28)

where |n(t )〉 is the nth energy eigenstate of an instantaneous
Hamiltonian with q0(t ) with eigenenergy En(t ). Figure 8
shows the Fourier spectrum of ρ(t ) and the time-averaged
spectral density S̄(ω; t ) after the pump pulse. We see that the
peaks in ρ(ω) agree with those of the spectral density. As we
will see in more detail below, the slow lattice dynamics does
not change the weights of the spectral density |〈ψ (t ) | n(t )〉|2,
but only shifts the peak positions slightly En(t ); adiabaticity
holds here. Therefore, we can consider the system to be in a

quasistationary state

|ψ (t )〉 =
∑
n=0

c̃n(t ) |n(t )〉 

∑
n=0

cne−iEn (t )t |n(t )〉 , (29)

FIG. 8. (a) Fourier spectrum of ρ(t ) for the I-N transition. (b) Av-
eraged spectral density after the pump in the logarithmic scale. The
delta function in Eq. (28) is approximated by the Lorentzian function
with a small broadening factor η = 0.05.
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FIG. 9. Time evolution of energy densities in the units of eV (from top to bottom): (1) electronic energy εel, (2) phononic energy εph, (3)
electron-phonon interaction energy εel-ph, and (4) total energy εtot. Three columns are for (a) N-I transition, (b) I-N transition, and (c) D-I
transition.

where c̃n(t ) is the time-dependent amplitude of the nth
eigenstate, and cn is the corresponding approximate constant
amplitude. The expectation value of an observable Ô can be
approximated as [88]

〈Ô〉 

∑

n,n′=0

cncn′ei[En (t )−En′ (t )]t 〈n(t ) | Ô | n′(t )〉. (30)

The temporal fluctuations from the matrix element are pre-
sumably very slow, following the dynamics of the lattice.
Instead, the phase factors induce interference between dom-
inant eigenstates, giving rise to the fast oscillations in the
electronic observables.

2. Effect of damping

As shown in Fig. 7(c1), the role of damping is not neg-
ligible for the lattice dynamics. In the absence of damping,
lattice dimerization shows large persistent oscillations be-
tween −0.05 to 0.05 when a dipole state is excited. This is
due to the degeneracy of dimerized states in terms of the in-
version symmetry (q0 ↔ −q0); the system oscillates between
the different broken-symmetry sectors. Such degeneracy can
also induce intriguing phenomena such as soliton formation
[89]. For a few parameter sets, we find similar behavior for the
N-I transition where the photoinduced dimerization switches
between the two possible ionic metastable states. However,
we do not observe any switching of dimerization by mono-
cycle pulses for the I-N transition. In contrast, as is shown in
Ref. [58], half-cycle pulses can induce switching behavior for
both the I-N and N-I transitions.

While the switching behavior seems an attractive option to
control electronic polarization, as the lattice damping is in-
cluded (γ = 600), it disappears after a few flips. For example,
in Fig. 7(c1), dimerization first changes its signs, but then it
quickly reaches a quasisteady value q0 ≈ −0.03 (correspond-
ing to the ionic phase). Therefore, we expect the switching
to disappear completely in the overdamped regime, and the
system remains in the initial broken-symmetry sector. Both
degenerate states are reachable for weaker damping, while
precise control to arbitrarily select a final state seems difficult.

We also note that the observables do not show a clear
tendency of relaxation to the initial states within the timescale
of our simulations; the system is trapped in a quasisteady
state. Since the model lacks thermal relaxation, the excited
states cannot transit to lower-energy eigenstates. Furthermore,
thermal fluctuations are also absent in our simulations, which
are required for the system to overcome an energy barrier
between metastable states. Instead, the phenomenological
damping in the phonon motion leads to the decay of the
phonon oscillations in a few picoseconds, which agrees with
the experimental observations [26].

3. Energy transfer

To better understand the energy flow after the photoex-
citation, in Fig. 9, we plot the time evolution of the pure
electronic energy density εel, the phonon energy density εph,
the electron-phonon interaction energy density εel-ph, and the
total-energy density εtot. While the absorbed energy per site is
about 0.05 eV for all the cases, the heat distribution to each
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part of the system depends on the initial states. For the N-I
transition, the electronic and phononic energies are increased
while the electron-phonon interaction loses energy. On the
other hand, the electron-phonon interaction gains energy for
the I-N and D-I transitions, while the electronic and phononic
energies are decreased.

These qualitative features can be understood by the ansatz
(18). The electronic energy densities of the three phases are
approximately

εN
el 
 1

2 (U − �), εI
el 
 0, εD

el 
 1
2 (U + �), (31)

which indicates εN
el < εI

el < εD
el for 0 < U < �. This explains

the reduction of εel for the I-N and D-I transitions, and the
increase for the N-I transition. Similarly, the electron-phonon
interaction energies are

εN
el-ph 
 0, εI

el-ph 
 −Ṽ
(
qI

0

)
, εD

el-ph 
 −4Ṽ
(
qD

0

)
, (32)

where qI,D
0 are the equilibrium dimerization for the ionic

and dipole phases. These expressions indicate εN
el-ph > εI

el-ph >

εD
el-ph, and thus the opposite trends to εel are observed. Finally,

the phononic energies are εph = 2s1q2
0 + 4s2q4

0 and the equi-
librium q0’s for the three phases satisfy qN

0 < qI
0 < qD

0 . Thus,
the trend of εph is similar to that of εel.

In accord with the adiabatic evolution of the elec-
tronic states, the energies of the electronic part and the
electron-phonon interaction are nearly constant after the pho-
toexcitation. On the other hand, the phononic energy shows
large oscillations and slow decays in a few picoseconds; they
include both the potential energy and the kinetic energy of
ions. In particular, immediately after the photoexcitation, the
kinetic energy is not ignorable. When the damping exists,
the molecules lose their kinetic energy to the bath, and the
positions of the molecules approach the quasisteady values.
For example, for the N-I transition, εph(t ) reaches nearly
0.018 eV, which is close to the equilibrium value of the ionic
phase [see Fig. 9(a2)]. In contrast, for the I-N transition, the
phonons have non-negligible residual energy (nearly half of
the initial value) compared to the equilibrium neutral phase
≈ 0 eV, indicating the incompleteness of the transition in this
case.

While the total energy gradually decreases in the presence
of damping, we find that the total energy does not go back
to the initial values but rather converges to quasisteady val-
ues. This observation again exemplifies the metastable nature
of the obtained photoexcited states (we will discuss thermal
relaxation to the initial states in Sec. V). Furthermore, the
total-energy loss is small compared to the absorbed energy
(at most 40% for the D-I transition). The reason is that the
energy dissipation occurs only through the phonon damping in
our model, and the phononic energy is an order of magnitude
smaller than the electronic energies.

C. Time-dependent spectral density

Let us now elaborate on the nature of photoexcited states
by studying the time-dependent spectral density, Eq. (28),
more closely. In Fig. 10, we plot S(ω; t ) for the three cases
without damping corresponding to the dashed lines in Fig. 7.
In all the presented cases, the weights transfer from the initial
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FIG. 10. Time-dependent spectral densities for (a) N-I transition,
(b) I-N transition, and (c) D-I transition. γ = 0 is used. The initial
ground states |N, I, D〉, the new ground states |g〉, and the most
dominant excited states |e〉 are labeled. The inset in (c) shows the
weight of the ground state, i.e., |c̃0|2 in Eq. (29).

ground states to the excited states within femtosecond pump
pulses. After that, the system evolves almost adiabatically,
i.e., the weights on each adiabatic instantaneous eigenstate
|〈ψ (t ) | n(t )〉|2 are preserved. The lattice displacement only
modifies the adiabatic eigenvalues En(t ) slightly. Such adia-
baticity holds even when the lattice displacement returns to
the initial position. Only at the initial stage of the N-I or
D-I transitions (t � 1.0 ps), we see slight nonadiabaticity and
transfer of weights [see the inset of Fig. 10(c)].

Next, we discuss the distributions of the weights |c̃n|2
in Eq. (29) in the time-evolved states after the the pump
pulses. For the sake of simplicity, we focus on two classes
of eigenstates. The first is the ground states at the new lattice
positions, which we denote as |g〉N–I, |g〉I–N, and |g〉D–I for the
three cases. The second class is the most dominant excited
states denoted as |e〉N–I, |e〉I–N, and |e〉D–I, which are located
around ω ≈ 0.4, 0.25, and 0.1 eV in Fig. 10. For t � tpump,
the eigenstate decomposition in Eq. (29) can be schematically
rewritten as

|ψ (t )〉 ∼ c̃g |g〉 + c̃e |e〉 +
∑

n �=g,e

c̃n(t ) |n(t )〉 . (33)

Table II summarizes the weights of these two classes of eigen-
states taken at t = 0.8 ps. For the N-I transition and for the
I-N transition [Figs. 10(a) and 10(b)], the weights on the new
ground states are reduced to |c̃g|2 ≈ 10%, and the dominant
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TABLE II. The weights of the ground states at the new lattice
positions and the most dominant excited states for the N-I, I-N, and
D-I transitions taken at t = 0.8 ps.

N-I I-N D-I

|c̃g|2 0.05 0.10 0.33
|c̃e|2 0.43 0.55 0.34

excited states have about half of the total weight. We will
explain below why these similar distributions still give rise
to a nearly complete photoinduced N-I transition, while the
I-N transition is incomplete. We also note that the high con-
centration of the weights on a few states is characteristic of
one-dimensional systems due to spin-charge separation [83].
For the D-I transition [Fig. 10(c)], the weights of the new
ground state and the dominant excited state are both around
30%. Because the N-I and D-I transitions are nearly complete,
the different distributions of the weights are puzzling.

To elucidate the different attributes of the photoinduced
phase transitions, we plot the expectation values of the elec-
tronic order parameters in terms of the most dominant excited
states (|e〉’s), the new ground states (|g〉’s), and the initial
ground states in Fig. 11. It is clear that the dominant excited
states are distinct from their initial ground states; they possess
the electronic order parameters that are rather close to those
of the target phases. For example, |e〉N-I and |e〉D-I have the
almost ideal ionicity for the ionic phase ρ ≈ 1. While the
ionicity of |e〉I-N (≈ 0.5) is still larger than the value of the
neutral phase (≈ 0.33), the other order parameters are close
to those of the neutral phase. These observations mean that
the intermediate Franck-Condon states already have the prop-
erties of the final target phases even though the former is not
adiabatically connected to the latter.

FIG. 11. Electronic order parameters of the initial ground states
(left), the most dominant excited states |e〉’s at t = 0.8 ps (middle),
and the lowest-energy eigenstates |g〉’s at t = 0.8 ps (right).

The subtle difference among the three transitions can be
understood by further considering the new ground states at
the new lattice positions, i.e., |g〉’s in Eq. (33). The electronic
order parameters of these states shown in Fig 11 suggest that
all three states show ionic nature. This is because the final
dimerization q0 for the three cases is always around 0.03,
where the corresponding ground state is the ionic phase as
shown in Fig. 2(a). Therefore, for the N-I and D-I transitions,
both the metastable ground state and the dominant excited
state are ionic, amounting to 60%–70% of the total weight.
Thus, the phase transitions are nearly complete in these cases.
In contrast, for the I-N transition, the metastable ground state
remains ionic, while the dominant excited state is neutral.
Therefore, the photoinduced transition to the neutral phase
is incomplete. The underlying difficulty of the transition to
the neutral phase is that displacement cannot achieve q0 = 0,
which is an energy maximum.

Finally, we note that |e〉D-I is not a single-photon excited
state corresponding to the peaks in the linear optical conduc-
tivity in Fig. 5(c); |e〉D-I has the excitation energy ω ≈ 0.1 eV,
which is well below the gap energy in the optical conduc-
tivity. On the other hand, |e〉I-N corresponds to the peak at
ω ≈ 0.28 eV of the linear optical conductivity in Fig. 5(b).
We confirm that the overlap of the two states is over 99%.
Similarly, |e〉N-I has a large overlap with the small peak at
ω ≈ 0.5 eV in Fig. 5(a). However, the final weights on |e〉N-I
and |e〉I-N in |ψ (t )〉 are much larger than the ones from the
single-photon excitation captured by the linear optical con-
ductivity. These indicate that the photoinduced transitions are
triggered by multiphoton absorption [88,90], and the optical
fields need to have relatively high intensity.

D. Pump-probe optical conductivity

In Sec. IV C, we have identified the dominant excited
states after the pump pulse. The natural question then is
on the optical properties of these excited states, which is
relevant to the experimentally obtained spectroscopic in-
formation. Here, we scrutinize the time-dependent optical
conductivity to characterize the photoinduced metastable
states. We employ the two-dimensional spectroscopy ap-
proach as Refs. [88,91,92], which gives the time-dependent
optical conductivity σ pp(ω; t ). To obtain this quantity, we re-
peat the pump-probe simulations with impulsive probe pulses
at different tprobe’s in Eq. (3). The extra current induced by the
probe pulse is given by

δ j(t, tprobe) =
∫ t

−∞
�(t, t ′)Eprobe(t ′, tprobe )dt ′

= �(t, tprobe)E0, (34)

where �(t, t ′) is the general conductivity response function
[93]. Introducing a new variable s ≡ t − tprobe, we can write

δ j(t, s) = �(t, s)E0. (35)

Finally, Fourier transforming over s, we define the pump-
probe conductivity

σ pp(ω; t ) ≡
∫

ds �(t, s)e−iωs = δ j(t, ω)/E0. (36)
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FIG. 12. Pump-probe optical conductivity for (a) N-I transition,
(b) I-N transition, and (c) D-I transition.

Let us first consider the N-I transition. The pump-probe
conductivity is plotted in Fig. 12(a). Before the pump pulse,
there is an absorption peak around ω ≈ 0.1 eV. After the pump
pulse, a new absorption peak appears around ω ≈ 0.5 eV. At
the same time, an emission peak also appears around ω ≈
0.15 eV, which corresponds to the second term of σ reg(ω)
in Eq. (23). The spectroscopic change is a clear sign of a
photoinduced phase transition and occurs in a few subpicosec-
onds. The Drude weight, which is initially negative due to
the finite-size effect [see Fig. 5(a)], becomes mostly positive,
while rapid fluctuations also exist. The change in the Drude
weight may indicate metallic behavior. However, the numer-
ical resolution at the low frequency is not good enough to
decisively conclude this statement.

Next, the pump-probe conductivity of the I-N transition is
shown in Fig. 12(b). After the pump pulse, the two absorption
peaks become an emission peak and an absorption peak at
lower energy. Since |e〉I–N corresponds to the dominant single-
photon absorption peak, we can associate the emission peak
with the transition to the ground state and the new absorption
peak with the transition to a state near the second largest
peak (�ω ≈ 0.5 eV) in the linear optical conductivity [see
Fig. 5(b)]. The Drude weight retains a finite negative value.

For the D-I transition [Fig. 12(c)], the high-energy peak at
ω ≈ 1.0 eV is transformed into low-energy peaks around ω ≈
0.3 and 0.9 eV. The two-peak structure is the clear signature of
the ionic ground state [see Fig. 5(b)], which arises from |g〉D–I.

FIG. 13. Comparison of the time-dependent conductivity for
(a) N-I transition, (b) I-N transition, and (c) D-I transition. Solid lines
are the pump-probe conductivity σ pp(ω) in Eq. (36). Dashed lines
are the static conductivity σ ex(ω) in Eq. (23) for the most dominant
excited states |e〉’s. The data are taken at t = 0.8 ps.

We do not observe an emission peak since the wave function
|ψ (t )〉 is dominated by |g〉D–I and |e〉D–I; the former has no
lower-energy state and the latter is a multiphoton excited state
that cannot transit to |g〉D–I via single-photon emission. The
two peaks intersect each other at t ≈ 0.8 and 1.3 ps, where
dimerization reaches the largest amplitude [Fig. 7(c1)]. While
the Drude weight is initially ignorable, the strong pump in-
duces a finite negative Drude weight. Again, it is unclear if
this indicates metallic behavior due to the severe finite-size
effect.

In order to better understand these changes, we calculate
the optical conductivity of the dominant excited eigenstates
|e〉N–I, |e〉I–N, and |e〉D–I by Eq. (23). Since the initial state is
an excited state, the second contributions in σ reg(ω) do not
vanish even for ω > 0. Figure 13 compares the pump-probe
conductivity σ pp(ω; t ) at t = 0.8 ps and the corresponding
conductivity of the excited states σ ex(ω). The two quantities
agree for the N-I and I-N transitions since the quasisteady
states are dominated by |e〉’s. In contrast, for the D-I tran-
sition, the pump-probe conductivity σ pp(ω) shows emission
and absorption peaks at low frequencies, while the static
conductivity of |e〉D-I, σ ex(ω), has a large gap ≈ 0.7 eV. The
discrepancy comes from the fact that the quasisteady state
contains a large portion of ionic ground state |g〉D–I.
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FIG. 14. Schematics of the photoinduced dynamics in the po-
tential energy surfaces for (a) N-I transition, (b) I-N transition, and
(c) D-I transition. The dashed line in (a) shows the diabatic PES
of the ionic phase. The size of the bulbs represents the weight of
each energy eigenstate. The initial states (the gray dots) are split
into the excited states by the optical excitation (solid arrows). The
Franck-Condon states then adiabatically move to metastable states
by lattice modulation (dashed arrows).

V. DISCUSSION

In this section, we summarize the obtained picture of the
photoinduced dynamics in our model and compare it with the
previous studies. Since our model considers only the fixed sys-
tem size and homogeneous excitation, we do not discuss the
size dependence of the CT string [15,94,95] or the subsequent
domain-wall motion [32–38].

Figure 14 shows the schematic excitation paths that our
simulations describe for the three transitions that we have
discussed in Sec. IV. The first step is the transition from the
initial ground states to the Franck-Condon states by multi-
photon absorption (solid arrows). We find that the excited
states already possess similar properties as the final target
phases in terms of the electronic order parameters. While this
apparently indicates that the Franck-Condon states are on the
branch of the diabatic PES for the final phase [the dashed line
in Fig. 14(a)] as considered in Refs. [15,16,33], we believe
that they are on a different PES. This is because the energy
of the Franck-Condon state is away from the diabatic PES.
For example, for the N-I transition, the Franck-Condon state
is roughly 0.4 eV above the ground state, while the diabatic
PES of the ionic phase is only 0.1 eV above that of the neutral

phase at q0 = 0. For the I-N and D-I transitions, the former has
smaller energy than the latter. Furthermore, the energy of the
excited state is much bigger than the gap due to the avoided
crossing ≈ 0.01 eV (estimated from the PESs for J0 = 0 and
0.17 eV).

As the absorbed energy is transferred to the lattice, the
Franck-Condon states and the residual ground states at the
initial lattice position adiabatically transform into the ones at
the new lattice position (see the dashed arrows in Fig. 14).
If the dominant excited states and the ground states at the
new lattice position have similar properties, the resultant states
have a nearly complete transformation to the final phases as
the N-I and D-I transitions in this work. On the other hand, the
excited state and the ground state have different attributes in
the I-N transition, which results in only partial transformation.
In any case, the states after the lattice relaxation are still
coherent superpositions of a few dominant energy eigenstates.

Thermal relaxation, which is not included in our model,
may lead to two more processes. The first is the relaxation
from the dominant excited states towards the metastable
ground states at the new lattice position. A similar process
is discussed in Refs. [15,16], while the relaxation is supposed
to occur at the avoided crossing point, indicating relatively
quick decay to the metastable ground state. On the other
hand, the intermediate excited state in our model is away from
the avoided crossing, and we expect a longer decay time.
After this process, the absorption peaks in the pump-probe
optical conductivity will disappear since the system is in the
lowest-energy eigenstate at the new lattice position. The sec-
ond process is the relaxation from the metastable ground state
to the initial ground state; the system needs to overcome the
energy barrier of the adiabatic PES.

Our picture suggests a nonthermal path to the desired
long-lived excited states achieved by multiphoton absorption
processes. A similar mechanism was discussed for optical
switching from a CDW state to a nonequilibrium supercon-
ducting state in the extended Hubbard model [96]. While the
tailored optical pulse targeting the nonequilibrium supercon-
ducting state was used there, the photoinduced transitions in
our model occur in broad parameter regimes as shown in
Fig. 6. This is because the different optical pulses change only
the weights of a few excited states but not the set of the states.
This may be connected to the spin-charge separation, which
allows only the discrete number of excited states [83], and
possible localization in the energy eigenstates [87].

VI. CONCLUSION

In this work, we have theoretically investigated the pho-
toinduced microscopic dynamics of the one-dimensional
extended Peierls-Hubbard model by exact diagonalization.
Aside from the neutral and ionic ground states relevant for
TTF-CA, we identified a stable phase (called the dipole phase
in this work) with a doubly ionized charge configuration
(TTF+2CA−2) and strong lattice dimerization (≈ 6%). The
Zak phases calculated for the three ground states indicate that
they are topologically distinct states. We have also shown that
the three phases have distinctive spectroscopic characteristics
in linear optical conductivity.
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The ultrafast dynamics of these phases after monocycle
optical pulses has been further investigated. We have detected
the neutral-ionic, ionic-neutral, and dipole-ionic transitions
and carefully analyzed their real-time dynamics using time-
dependent spectral density and pump-probe conductivity. The
spectral weights indicate that the Franck-Condon states have
the same properties as the final target phases, even though they
are away from the diabatic PESs of the latter. Multiphoton ab-
sorption achieves such excitation, and the resultant states are
long-lived coherent states. This process suggests nonthermal
switching of electronic and lattice orders and the generation
of coherent CT strings.

Our work focuses on the nucleation of a fixed-size CT
string and intradomain dynamics. A microscopic picture of
subsequent slow dynamics involving domain walls and soli-

tons is desirable for precise control of their dynamics, while it
requires larger system sizes, thermal relaxation, and interchain
coupling. The effects of finite temperatures, including dissipa-
tion and thermal and radiative relaxation of excited states, are
left for future investigation.
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