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Shiba states in systems with density of states singularities
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Magnetic impurities placed in the superconductor can lead to the emergence of Yu-Shiba-Rusinov bound
states. Coupling between the impurity and the substrate depends on the density of states (DOS) at the Fermi
level and can be tuned by DOS singularities. In this paper, we study the role of DOS singularities using the
real space Bogoliubov–de Gennes equations for chosen lattice models. To uncover the role of these singularities
(Dirac point, van Hove singularity, or the flat band), we study honeycomb, kagome, and Lieb lattices. We show
that the properties of the Shiba state strongly depend on the type of lattice. Nevertheless some behaviors are
generic, e.g., dependence of the critical magnetic coupling on the DOS at the Fermi level. However, the Shiba
states realized in the Lieb lattice exhibit extraordinary properties, which can be explained by the presence of a
few nonequivalent sublattices. Depending on the location of the magnetic impurity in the chosen sublattice, the
value of critical magnetic coupling Jc can be reduced or enhanced when the flat band is located at the Fermi
level. In this context, we also present differences in the local DOS and coherence lengths for different sublattices
in the Lieb lattice.

DOI: 10.1103/PhysRevB.105.094204

I. INTRODUCTION

The interplay between a superconducting system and mag-
netic impurity can lead to the emergence of Yu-Shiba-Rusinov
(YSR) bound states [1–3] (the Shiba states for short), due to
local breaking of the Cooper pairs by the magnetic moment of
the impurity [Fig. 1(a)]. This leads to the formation of in-gap
states inside the superconducting gap, with spatially oscillat-
ing wave function [4]. Recent progress in the experimental
techniques has resulted in increased experimental [5] as well
as theoretical [6] attention in this field.

Dimensionality of the system plays a critical role in the
formation of the Shiba state. The three-dimensional conven-
tional superconductor shows a fast decay of the YSR states
away from the magnetic impurity. Contrary to this, in the case
of two-dimensional systems the YSR states are characterized
by the long-range coherence length [7,8].

The YSR states can be observed experimentally within the
topographic scanning tunneling microscopic (STM) imaging
of the surface. It was first reported in the presence of Mn
and Gd adatoms on the surface of a single-crystal Nb sample
[9]. Increased resolution allows mapping of the YSR states
occurring from individual orbitals of the atom. Such cases
have been reported in transition metal atoms deposited on
conventional superconductors (Pb [10–14] or Nb [15–18]).
YSR states were also realized by depositing Fe on the NbSe2

surface [7,19–21]. Similar observations can be made in the
presence of magnetic molecules, such as (Mn, Cu, V, or Co)
phthalocyanine [14,22–28] or (Fe or Mn) porphyrin [29–31].
Also, recently the fabrication of YSR states in the iron-based
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unconventional superconductor attracted a lot of attention
[32–34].

The presence of artificial structures of magnetic atoms can
lead to the emergence of in-gap Shiba bands. If the nontrivial
topological phase is realized [35], the Majorana end modes
can occur [36]. Recently this type of structures were realized
in many experiments [37–43].

Motivation. In the simplest case, the magnetic impurity
gives rise to a pair of in-gap states, symmetric in energy with
respect to the Fermi level, characterized as YSR states. For the
classical spin, the energies of the in-gap YSR states are given
as

EYSR = ±�
1 − α2

1 + α2
, (1)

where α2 = πN (EF)J is the dimensionless impurity coupling
(neglecting Coulomb scattering), � is the superconducting
gap, N (EF) denotes the density of states (DOS) at the Fermi
level EF, while J describes coupling between magnetic mo-
ment and electrons. At J = Jc the YSR states cross the Fermi
level [EYSR(Jc) = 0]. That point is related to the quantum
phase transition (QPT), also known as the 0-π transition. Dur-
ing the QPT, the ground state is changed from the BCS-type
spinless state (for the weak coupling J < Jc) to the singly
occupied (spinful configuration (for strong coupling J > Jc)
[44]. As we can see from Eq. (1), the value of Jc is propor-
tional to 1/N (EF). Indeed, previous study of the YSR states
in the presence of the van Hove singularity (VHS) show that
the tuning of N (EF) by the VHS can lead to enhanced Jc [45].
A similar observation was reported in the case of the critical
temperature of the s-wave and d-wave superconductors on a
square lattice, where it was shown that Tc can be tuned by
increasing N (EF) [46]. Similarly for the hexagonal lattice,
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FIG. 1. (a) Schematic representation of the magnetic atom
(brown ball) deposited on the superconducting surface (silver balls).
Studies performed on two-dimensional lattices and their density of
states: (b) hexagonal, (c) kagome, and (d) Lieb lattices. The colors
of the dots (red, green, or blue) denote nonequivalent sites, while
the yellow quadrangle marks the primitive unit cell. In the case of a
hexagonal and a kagome lattice, the Dirac point (DP) is realized. The
flat bands (FBs) are observed in the Lieb and kagome lattices. The
saddle points in the band structures give rise to van Hove singularities
(VHSs) in all lattices.

in the presence of the magnetic field, the VHS can lead to
superconductivity reentrant behavior [47].

General behavior of the in-gap energies is well known from
the milestone works of Yu, Shiba, and Rusinov [1–3]. The
general J dependence of the bound state (in-gap) energies
is given by Eq. (1). Similar behavior is observed also in the
presence of several atoms, e.g., monoatomic chains [48,49],
where in-gap states cross the Fermi level a few times. More-
over, this type of behavior of the in-gap state energies was
observed experimentally in the case of a magnetic molecule
of manganese phthalocyanine (MnPc) on a Pb(111) surface
[23].

Another aspect of the Shiba states is strongly associated
with the Fermi surface of the studied system [50]. Inter-
estingly, the pattern of the localized state induced by the
magnetic impurity reflects some properties of the Fermi sur-
face of the system [51]. This is well visible in the star-shaped
localization of the Shiba states around the magnetic impurity
on a NbSe2 [7] or La [8] surface, which is associated with a
sixfold symmetry of the Fermi surface of these systems.

In this paper we study the role of DOS singularities on
the YSR states using exact lattice models [Figs. 1(b)–1(d)].
These techniques allow us to study not only VHS [realized,
e.g., in the honeycomb lattice [Fig. 1(b)], but also the role
of flat bands [realized, e.g., in a kagome or Lieb lattice [52],
presented in Figs. 1(c) and 1(d), respectively]. The flat bands
can play an important role in the context of the recently dis-
covered superconducting kagome systems (such as AV3Sb5

[53] or LaRu3Si2 [54]), artificial structures (like twisted bi-
layer graphene [55,56], or some type of heterostructures and
interfaces [57]). Also, recent progress in the realization of
artificial lattices [58] opens up a new opportunity to study the
YSR states in the flat-band systems.

However, the DOS does not contain full information about
the lattice, which can be important in the context of correct
description of the Shiba states in real systems. As an example,
this can be important in the context of the recent study of the
Shiba states based on the Green’s function approach [45,50].
In our study we analyze this problem, based on the real space
tight-binding formulation. Our finding shows the important
role played by the sublattices present in the system. Depend-
ing on the position of the magnetic impurity, the Shiba states
can exhibit “extreme” behaviors, even within one specific
lattice.

The paper is organized as follows. The theoretical back-
ground is presented in Sec. II. In Sec. III we present the
numerical results and discussions. We conclude our study in
Sec. IV.

II. THEORETICAL BACKGROUND

The system is described by the Hamiltonian

H = H0 + HSC + Himp. (2)

The first term describes the tight-binding model of the lattice
(cf. Fig. 1):

H0 = −t
∑
〈i j〉σ

ĉ†
iσ ĉ jσ − μ

∑
iσ

ĉ†
iσ ĉiσ , (3)

where ĉ†
iσ (ĉiσ ) denotes the creation (annihilation) operator an

electron with spin σ at site i, t is the hopping integral between
nearest neighbors 〈i, j〉, and μ is the chemical potential. The
second term is responsible for superconductivity:

HSC =
∑

i

(�ĉ†
i↑ĉ†

i↓ + H.c.), (4)

where � is the superconducting gap. The third term describes
coupling of the magnetic impurity with the underlying lattice.
In our investigation, we describe the magnetic impurity cap-
tured by Himp as a classical spin aligned out of plane and only
present on site [i.e., term proportional to δ(r0 − ri), where
the subscript “0” denotes the impurity site]. In this case, the
scattering potential at the position of the impurity is given as

Himp = K (ĉ†
0↑ĉ0↑ + ĉ†

0↓ĉ0↓) − J (ĉ†
0↑ĉ0↑ − ĉ†

0↓ĉ0↓), (5)

where K denotes the nonmagnetic scattering potential, while
J denotes the coupling strength between the electrons and
the magnetic impurity. The classical magnetic impurity limit
is technically achieved by taking S → ∞ (large spin), while
simultaneously letting J → 0 so that JS = const [6]. Effec-
tively, the classical magnetic impurity acts on the system in
two ways: (i) by shifting the chemical potential (K term),
which effectively leads to a modification of the number of
electrons at site “0”; and (ii) by an on-site Zeeman-like mag-
netic field (J ≡ JS term, where S is magnetic moment) [6].

The Hamiltonian (2) describing the inhomogeneous prob-
lem, can be diagonalized via the following unitary transfor-
mation:

ĉiσ =
∑

n

(uinσ γ̂nσ − σv∗
inσ γ̂

†
nσ̄ ), (6)

where γ̂n and γ̂ †
n are quasiparticle fermionic operators, and

uinσ and vinσ are the eigenvector coefficients. This leads to the
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FIG. 2. Critical value of the magnetic coupling J , denoting phase transition, for different size lattices (as labeled). Results are shown for
(a) hexagonal, (b) kagome, and (c),(d) Lieb lattices. For the Lieb lattice, the impurity is located at (c) the corner site or at (d) the edge site
[i.e., blue and green/red sites in Fig. 1(d), respectively]. The chemical potentials for flat bands, van Hove singularities, and Dirac points, are
marked as FB, VHS, and DP, respectively. Ranges of chemical potential which are out of range of the bands for given lattices are marked by
green areas.

Bogoliubov–de Gennes (BdG) equations [59]:

Enσ

(
uinσ

vinσ̄

)
=

∑
j

(
Hi jσ Di j

D∗
i j −H∗

i jσ̄

)(
uinσ

vinσ̄

)
, (7)

where Hi jσ = −tδ〈i, j〉 − [μ + (K − σ J )δi0]δi j and Di j =
�iδi j denotes the kinetic and superconducting part of the
Hamiltonian, respectively [60–62].

From the solution of the BdG equation (7) we can extract
the local density of states (LDOS) for specified parameters of
the system as [63]

ρi(ω) =
∑
nσ

[|uinσ |2δ(ω − Enσ ) + |vinσ |2δ(ω + Enσ̄ )
]
, (8)

while the total DOS is given as N (ω) = ∑
i ρi(ω). The LDOS

for ω = ±EYSR denotes the localization of the YSR state in
real space [64], and can be useful in coherence length study. In
this case 〈ρi(EYSR)〉 ∝ exp(−r/ζc) denotes the wave function
of the YSR states and can be used to estimate the coherence
length ζc for a given lattice and Fermi level.

Numerical computations have been done at zero tempera-
ture T = 0 for the lattices with the periodic boundary condi-
tions, containing Na × Nb = 30 × 30 primitive unit cells. In
the case of the honeycomb lattice this corresponds to 1800
sites, while for the kagome and Lieb lattices, we have 2700
sites. For simplicity and without loss of generality, we as-
sume a constant value of �/t = 0.2. Additionally, to study
only the role of the DOS of the underlying system on the
YSR states, we take K = 0. In numerical determination, we
have replaced the Dirac δ function by the Lorentzian δ(ω) =
η/[π (ω2 + η2)] with a small broadening η = 0.05t .

III. NUMERICAL RESULTS AND DISCUSSION

In our analysis, we consider honeycomb, kagome, and Lieb
lattices. Each of them is formed by the unit cells containing
more than one site, and as a consequence in the DOS a few
bands can be distinguished. The honeycomb (kagome) lattice
is formed by unit cells containing two (three) equivalent sites
(in Fig. 1 represented by dots with different colors). In this
case, one of the sublattices can be transformed to another by
the combination of a few translation, rotation, or reflection

operations. Contrary to this, the Lieb lattice is formed by unit
cells containing two different types of sites. Two edge sites
[green/red dots in Fig. 1(c)] are equivalent to each other, but
nonequivalent to the corner site (blue dots). As a result, the
Lieb lattice is characterized by two nonequivalent sublattices;
the sublattice of the edge site cannot be transformed to the
corner site sublattice, and vice versa. We will show that this
characteristic feature of the Lieb lattice plays an important
role in the realization of the Shiba states.

Depending on the lattice, in the DOS we can find a few
interesting features. For example, honeycomb and kagome
lattices contain Dirac points (DPs) at band touching points.
Similarly, in the DOS of the kagome and Lieb lattices the
flat-band (FB) feature can be distinguished. Additionally, the
VHSs in the form of characteristic peaks in the DOS are
visible for all lattices. As we can see, the DOSs exhibit similar
behaviors regardless of the chosen lattice. However, the DOS
do not contain the full information about the lattice (e.g.,
symmetry of the system, number of neighboring sites, exis-
tence of eventual sublattices, etc.). Despite the similarities in
DOSs, the strong differences are well visible in the chemi-
cal potential dependence of the critical magnetic coupling Jc

(Fig. 2) and the Shiba state energies ±EYSR (Fig. 3).
First, we notice that the Jc vs μ plot follows the same

symmetry as the DOS (cf. Fig. 2 and Fig. 1). For honeycomb
and Lieb lattices, the DOS is symmetric with respect to the
center of the bandwidth (related to μ/t = 0) and the same
character is reflected in Jc(μ). Similarly, the asymmetric DOS
of the kagome lattice is reflected in Fig. 2(b).

Jc(μ) exhibits a strong dependence on the position of the
Fermi level which is related to μ (Fig. 2). However, the de-
pendence of Jc on N (EF) is highly unexpected. In the case of
honeycomb and kagome lattices [presented in Figs. 2(a) and
2(b), respectively], the presence of the DP with N (EF) = 0
leads to the occurrence of a peak in Jc. Contrary to this, the
presence of VHS leads to a relatively small reduction of Jc.
The most important modification of Jc is introduced by the
FB (theoretically with infinite DOS) in the kagome lattice. In
this case, Jc decreases dramatically to its minimum value with
respect to rest of the plot. Nevertheless, the most surprising
results can be found in the Lieb lattice [Figs. 2(c) and 2(d)].
When impurity is located at the corner site, Jc(μ) exhibits
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FIG. 3. In-gap spectrum of the Shiba states for different values of the chemical potential (as labeled) in the case of (a) hexagonal,
(b) kagome, and (c),(d) Lieb lattices. For the Lieb lattice, the impurity was located in (c) the corner site or (d) the edge site [i.e., blue
and green/red sites in Fig. 1(c), respectively]. The chemical potentials for flat bands, van Hove singularities, and Dirac points are marked as
FB, VHS, and DP, respectively. Additionally, the green areas mark the ranges of energies for (out-gap) continuum states.

features similar to the honeycomb lattice [cf. Fig. 2(a) and
Fig. 2(c)]. Jc reaches the maximum value when μ is located
at the FB. Contrary to this, the impurity located at the edge
site leads to opposite (expected) behaviors, i.e., a dramatic
decrease of Jc for μ/t = 0 (corresponding to the FB).

The results presented here are sensitive to the number of
sites of the discussed system (cf. lines with different color
in Fig. 2). Nevertheless, Jc(μ) has the same (qualitative) be-
havior independent of the size of the system, and describes
the thermodynamic limit (Na × Nb → ∞) relatively well for
lattice with 30 × 30 unit cells. Similar effects can be observed
with decreasing �, when the emergence of the superconduct-
ing phase (i.e., when � is comparable to the gap between
states) strongly modifies states in the system.

The value of Jc(μ) is related to the Shiba state energy
±EYSR (Fig. 3). The reduced value of Jc induced by VHS or
FB leads to a nearly linear dependence of EYSR on coupling
strength J . Similar features of the Shiba states in the presence
of VHS were discussed by Uldemolins et al. in Ref. [45].
The authors found a strong reduction of Jc when the Fermi
level was located at the VHS. In this case, the linearity of
EYSR(J ) was also reported around Jc. In our case, the presence
of a FB allows the existence of the Shiba state with exactly
linear EYSR(J ) dependence [cf. Fig. 3(b) or Fig. 3(d)]. For a
system with small DOS (e.g., μ corresponding to the DP) or
approximately constant value of DOS, the Shiba state energy
has expected features, given by the general formula (1).

Extraordinary properties of the Shiba states in the Lieb lat-
tice can be directly connected with the presence of two sublat-
tices, formed by the corner sites or the edge sites. The partial
DOS projected on the corner or edge sites, which clearly show
the impact of each sublattice [58,65,66] could be a proof of
this hypothesis. In particular, the whole spectral weight of
the FB peak in the DOS corresponds to the edge site sub-
lattice [giving vanishing PDOS for the corner site sublattice
and opposite Jc tuning for μ/t = 0; cf. Figs. 2(c) and 2(d)].
Contrary to the FB peak, the DOS at the VHS has contri-
butions from both sublattices [66]. This very well explains
the Jc(μ) dependence the for corner site sublattice [Fig. 2(c)]
and the edge site sublattice [Fig. 2(d)]. A second direct proof
can be given by the LDOS of the Shiba states induced by the
magnetic impurities located at a given sublattice (Fig. 4). As
we can see, the pattern of the LDOS corresponding to the

Shiba state strongly depends on the position of the impurity
(cf. top and bottom panels in Fig. 4). Similarly, the coherence
length depends on the parameters of the systems (cf. left
and right panels in Fig. 4). From these numerical studies we
can find that the Shiba state is mostly localized at the same
sublattice as the magnetic impurity site (marked by a black
circle). Only in the sites which are neighbors to the impurity’s
location, is some modification of LDOS observed. Interest-
ingly, similar behavior was observed experimentally within
the STM measurements of the Zn impurity in the copper-
dioxide Lieb lattice of the high temperature superconductor
Bi2Sr2CaCu2O8+δ [67]. In this case, for the impurity located
at the corner site, the LDOS of bound states was observed

FIG. 4. Local density of states (LDOS) for the Lieb lattice. The
position of the impurity is marked by a black circle. In panels (a) and
(b) the impurity is located at the corner site [blue site in Fig. 1(d)],
while in (c) and (d) it is located at the edge site [green or red site in
Fig. 1(d)]. Results are shown for the following values of parameters
(μ/t ; J/t ): (2.0; 0.5), (0.5; 7.5), (2.0; 5.0), and (0.5; 0.5) for panel
(a), (b), (c), and (d), respectively.
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FIG. 5. Coherence length ζc as a function of chemical potential
μ and magnetic coupling J for the Lieb lattice when the impurity
is located at (a) the corner site or (b) the edge site [i.e., blue and
green/red site in Fig. 1(c), respectively]. Dashed black line denotes
the value of critical J for a given μ (cf. Fig. 2). Results are presented
for Shiba states with energies |EYSR| < 0.95�. a is the distance
between neighboring sites (i.e., distance between the corner and edge
state), taken as a unit of distance.

in diagonal directions (rotated 45◦ to the x-y axis), i.e., a
situation similar to Fig. 4(a).

Exponential decay of the Shiba states as a function of
distance from the impurity gives information about the coher-
ence length ζc (Fig. 5). Similar to Jc for the Lieb lattice, the
coherence length depends on the sublattice in which the mag-
netic impurity is located. Moreover, around Jc(μ) (represented
by the black dashed line) the coherence length is relatively
small (in range ∼2a or ∼1a for impurity in the corner site or
edge site, respectively). For J  Jc the coherence length can
be much bigger—this behavior is also visible in the LDOS
discussed earlier (Fig. 4).

IV. SUMMARY

In this paper we discuss the effect of density of states
singularities on the Shiba states. In particular, we investigated
the role of Dirac point, van Hove singularity, and flat band in

honeycomb, kagome, and Lieb lattices. In its simplest form,
the energy of the Shiba states strongly depends on the density
of states at the Fermi level. For example, the presence of a
flat band leads to strong suppression of the critical magnetic
coupling Jc, while the existence of the Dirac point leads to an
enhanced Jc. We examined the tuning of the parameters (e.g.,
energy or critical magnetic coupling) describing the Shiba
states in the aforementioned lattices.

The Shiba states realized in the honeycomb and the
kagome lattices exhibit typical behaviors. For the Fermi level
at the Dirac point we observed a maximum of Jc, while
the flat band strongly suppresses Jc. Similarly, the van Hove
singularity leads to a decrease in Jc. Contrary to this, the
Lieb lattice containing two sublattices (of the corner and edge
sites), exhibits extraordinary behavior. In this case, the prop-
erties of the Shiba states strongly depend on the position of
the magnetic impurity (in a specific sublattice). The atypical
behavior is observed in Jc, the local density of states, and
coherence length studies. (i) The magnetic coupling exhibits
dependence similar to the density of states projected on the
specific sublattice. (ii) The majority of the spectral weight
in the local density of states of the Shiba states is observed
in the sublattice containing the magnetic impurity. (iii) The
coherence length strongly depends on the sublattice in which
the magnetic impurity is located. These findings should be
generic for systems with a few sublattices, and can explain
some experimental data observed in systems where a Lieb
lattice is realized (like high temperature superconductors).
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