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FFLO state driven by quasiperiodic Zeeman field and its transition to localized states
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We numerically study the ground-state properties of a one-dimensional lattice model in the presence of a
quasiperiodic Zeeman field, by means of the density matrix renormalization group algorithm. We map out
a global phase diagram, which encloses a Bardeen-Cooper-Schrieffer (BCS) phase, a Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) phase where the Cooper pairs obtain a finite center-of-mass momentum, and a localized
phase. The FFLO phase is promoted by the quasiperiodic Zeeman field, which demonstrates a power-law
pairing correlation with a critical exponent ηFFLO < 1 decaying much slower than the charge density and spin
density correlations. By tuning the interaction and the filling factor, we find the FFLO phase is suppressed
in the strong interaction and low filling regions. A large Zeeman field destroys the FFLO state and drives a
superconductor-insulator transition. Furthermore, we propose this FFLO phase and the superconductor-insulator
transition could be observed in the optical lattice experiment.
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I. INTRODUCTION

For conventional Bardeen-Cooper-Schrieffer (BCS) su-
perconductors [1], the external magnetic field tends to
destroy superconductivity owing to the Pauli paramagnetic
depairing effect. Therefore, in general magnetism suppresses
superconductivity in BCS superconductors. Interestingly,
different from BCS homogeneous superconductors, the spin-
imbalanced fermions induced by the uniform magnetic field
allow exotic superconducting pairing states such as the Sarma
state [2] and the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
state [3,4]. The FFLO state encloses the Cooper pairs with a fi-
nite center-of-mass momentum and spatially dependent order
parameters �(r) = �eiq·r for FF states and �(r) = �(eiq·r +
e−iq·r )/2 = � cos(q · r) for LO states [5–7]. Especially, the
recently identified “pair-density-wave” superconductors cor-
respond to a special class of LO states [8]. In the past several
decades, many efforts have been made to search for the FFLO
phase, and many signatures have been observed in the layered
organic superconductors [9–12] and heavy-fermion super-
conductors [13,14]. However, limited by the complexity of
strongly correlated materials, so far unambiguous and direct
experimental evidence for the FFLO phase remains limited.
Thus, to design new experimental platforms is a possible way
out for the detection of the FFLO phase.

In addition to the external magnetic field, another factor
that could suppress BCS superconductors is randomness or
disorder. Superconductors with disordered impurities are also
known as dirty superconductors [15,16]. Intuitively, disor-
der increases resistance, whereas superconductivity has zero
resistance, thus there is a competition between them. The
original description of dirty superconductors is based on the
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Anderson theorem [15], which shows that superconductiv-
ity is insensitive to nonmagnetic impurities. However, later
it has been realized that this theorem is flawed due to the
unjustified assumption of homogeneous BCS pairing func-
tion near the metal-insulator transition [17]. Therefore, a
superconductor-insulator transition is expected in dirty super-
conductors [18–20]. Interestingly, under certain conditions,
one also finds disorder could enhance superconductivity
[21–23]. Moreover, disorder may produce many interesting
phenomena, e.g., disorder raises the critical temperature of the
superconductor [23–26] and disorder results in the formation
of superconducting islands [27].

In comparison to the uniform magnetic field and disor-
der, the random Zeeman field is more interesting since it
has both magnetic and disordered properties. To our best
knowledge, the influence of the uniform Zeeman field and
the single magnetic impurity on exotic superconducting states
have been studied before [28,29], but that of the random
Zeeman field has not been addressed. In this paper, we study
the effect of a quasiperiodic Zeeman field, a special type
of random field accessible in the optical lattice, on super-
conductivity. The quasiperiodic Zeeman field has the feature
of the random Zeeman field. When it is strong enough, the
quasiperiodic Zeeman field is expected to induce localization
[30–32]. Meanwhile, since the quasiperiodic Zeeman field has
an approximate period, it can also induce the characteristics of
the commensurate field. Due to this reason, the quasiperiodic
Zeeman field should escape from Imry-Ma argument [33],
which predicts that the superconducting order is fragile in the
one-dimensional system with a random independent Zeeman
field [34]. To clarify the relationship between the quasiperi-
odic Zeeman field and superconductivity is the motivation of
this work.

The main result is that we map out a global phase dia-
gram as shown in Fig. 1. We confirm that a quasiperiodic
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FIG. 1. (a) The schematic plot of a spin-dependent ladder with a
quasiperiodic Zeeman field. The opposite spin parts interact via an
attractive on-site interaction U . V is the amplitude of the quasiperi-
odic Zeeman field. (b) A U − V phase diagram by setting the filling
factor n = 5/12. (c) A V − n phase diagram for U = −1. The error
bars are from variances of 10 samples.

Zeeman field tends to destroy the BCS-type superconductor,
and results in localization. Crucially, in the condition of small
interaction regimes and near the half-filling case, there is an
intermediate phase in between the BCS-type superconduc-
tor and the localized phase. This intermediate phase exhibits
quasi-long-ranged pairing correlation, with a finite center-of-
mass momentum. Thus we determine this intermediate phase
as a FFLO state. We also study the phase transition between
different phases.

The paper is organized as follows. In Sec. II, we intro-
duce the one-dimensional Fermi model with a quasiperiodic
Zeeman field. In Sec. III, we present our core phase dia-
grams and analyze the differences between different phases.
In Sec. IV, we study the correlation exponent and the local
spin polarization of FFLO states. In Sec. V, we study the
phase transitions by tuning the Zeeman field amplitude for
weak and strong interactions. To contact with experiments, we
study the effect of the harmonic trap in Sec. VI. Finally, we
present the conclusion and discuss several interesting topics
for future study in Sec. VII.

II. MODEL AND METHOD

We consider a lattice chain with L sites filled with N
fermions. The Hamiltonian is given by

Ĥ = − t
∑

i,σ=↑,↓
(ĉ†

i,σ ĉi+1,σ + H.c.) + U
∑

i

n̂i,↑n̂i,↓

+
∑

i

V cos(2παi + φ)(n̂i,↑ − n̂i,↓), (1)

where ĉ†
i,σ (ĉi,σ ) creates (eliminates) a spin-σ fermion at

the site i. n̂i,σ = ĉ†
i,σ ĉi,σ is the occupation number operator.

The hopping strength t ≡ 1.0 is set to be the energy unit.
U < 0 represents the on-site attractive interaction. V is the

TABLE I. The differences among BCS, FFLO, and GL phases.
Correlations follow the power-law decay r−η or the exponential
decay e−r/ξ , respectively, where η and ξ are decay indexes. ηBCS and
ηFFLO represent the decay indexes of BCS and FFLO, respectively.

BCS BCS+NP FFLO GL

mj = nj↑ − nj↓ =0 �= 0 �= 0 �= 0
G(j, j + r) r−ηBCS r−ηBCS r−ηFFLO e−r/ξ

q = k↑ − k↓ =0 = 0 �= 0 /

amplitude of the quasiperiodic Zeeman field and the param-
eter α controls the incommensurate period of the Zeeman
field. Typically, we choose typical values α = (

√
5 − 1)/2

and α = 1/e in this work. In Appendix B, we demonstrate
that this quasiperiodic Zeeman field is special to the FFLO
state as discussed below. φ ∈ [0, 2π ) is an arbitrary phase
factor, and in this study we use 10 different configurations
of different φ to get averaged results. We denote the filling
factor as n = N/2L = (N↑ + N↓)/2L = (n↑ + n↓)/2, where
Nσ is the number of spin-σ fermions and nσ is the total
occupation number. Without loss of generality, we set the
total spin polarization P = (N↑ − N↓)/(N↑ + N↓) = 0.0 and
use open boundary conditions (OBCs).

The Hamiltonian in Eq. (1) without the interaction (U/t =
0.0) for α = (

√
5 − 1)/2 is known as the Aubry-André (AA)

model and there is a transition from extended states for V/t <

2.0 to Anderson localized states for V/t > 2.0 [30]. Com-
pared with the spin-↑ and spin-↓ fermions being subjected to
the same potential, resulting in the fact that the interaction en-
hances the localization effect [35], the Zeeman field provides
opposite potentials to different spin fermions, and one may
expect that the interaction destroys localization. Furthermore,
the effect of the periodic Zeeman field has been studied in
Ref. [36], which reveals π phases in Fermionic superfluids. In
our study, we focus on the impact of the quasiperiodic Zeeman
field on superconductivity.

We study the ground state of Eq. (1) by the DMRG method
[37–39]. The DMRG as a common method has been used to
study superconductivity of one-dimensional systems in lots
of work [40–49]. In our numerical calculations, we find that
when the size is large enough, the transition point is not
sensitive to the size, thus we choose a suitable size L = 120.
Furthermore, we keep 800 states and use 80 sweeps resulting
in the fact that the truncation error is about 10−9. To avoid
being trapping in local minima, we use the two-site optimiza-
tion. The DMRG calculations are performed using the ALPS
libraries. More tests on the possible finite-size effect are given
in Appendixes D and E.

III. QUANTUM PHASE DIAGRAM

In Fig. 1(b), we show the phase diagram at a fixed charge
density n = 5/12, which encloses three different phases:
a BCS-type superconducting phase, a FFLO phase, and a
ground-state localized (GL) phase. The GL phase refers to the
localization in the ground state, whose typical characteristic
is that the correlation function decays exponentially as shown
in Table I. As V/t increases, the system undergoes a transition
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from superconducting states to the GL phase. In the limit of
the noninteracting case, the localization transition occurs at
V/t = 2.0 [30]. Figure 1(b) shows that the interaction U/t
gradually expands the nonlocalized regime, and drives non-
localized states to form superconductivity. Interestingly, in
the weak interaction case, there exist two different supercon-
ducting states: the BCS phase and the FFLO phase, i.e., the
FFLO phase is sandwiched between BCS and GL. When the
interaction is strong, a direct transition from the BCS to GL
occurs without the FFLO in-between.

In Fig. 1(c), we study the effect of the filling factor on
superconducting states for U/t = −1.0. The phase diagram
is symmetric about n = 1/2 because of the particle-hole
symmetry, thus we only show the phase diagram for n <

1/2. The minimum filling factor we calculate is n = 2/L, at
which the critical point of the GL transition is at V/t ≈ 2.2.
Around the half-filling (n = 1/2), the FFLO phase is favored.
As the filling factor decreases, the GL and BCS phases grad-
ually encroach on the parameter space and FFLO states are
suppressed. A direct transition from the BCS phase to GL
appears in low filling regions.

Next we turn to clarify how we determine the differ-
ent phases in the phase diagrams as described above. First
of all, the superconducting phases are characterized by
the quasi-long-ranged pair-pair correlation function, G(j, j +
r) = 〈ĉ†

j↑ĉ†
j↓ĉj+r↓ĉj+r↑〉 in the spatial space. That is, a su-

perconducting phase in one dimension should exhibit a
quasi-long-ranged correlation G(j, j + r) ∼ 1/rη [50]. Espe-
cially, the Fourier spectrum G(q) = 1

2L

∑
j,r G(j, j + r)eiqr

can distinguish the center-of-mass momentum of Cooper pairs
[40,41]. The condensation with a nonzero finite momen-
tum, usually with the sign change in the spatial oscillation
of G(j, j + r), is an important indicator for the FFLO state
[40–49].

In Table I, we show the differences between various phases
and corresponding details are shown in Fig. 2. For the BCS
states for V/t = 0, the local spin polarization mj = nj↑ −
nj↓ = 0 [blue triangle in Fig. 2(a)] and the pair-pair corre-
lation function has a power-law decay G(j, j + r) ∝ 1/rηBCS

[blue triangle in Fig. 2(c)], where ηBCS < 1 is an interaction-
dependent Luttinger-liquid dimensionless parameter [50–52].
After applying the Fourier transform, G(q) only has a peak at
q/π = 0 in Fig. 2(d), indicating that the center-of-mass mo-
mentum is zero. As V/t increases, the quasiperiodic Zeeman
field induces the local spin polarization mj �= 0 and partial
Cooper pairs are broken. Although the balanced population
is destroyed at all sites for V/t = 0.3 in Fig. 2(a), |G(j, j + r)|
still decays algebraically as shown in Fig. 2(c), which mani-
fests that it is still a superconducting state. Figure 2(d) shows
that G(q) only has a peak at q/π = 0 for V/t = 0.3, indi-
cating that the superconducting state is still a BCS state. We
define such a phase as the coexistence of BCS and normal po-
larization (NP), in which Cooper pairs and unpaired fermions
coexist [53]. Its typical characteristics are shown in Table I.

Similar to the BCS phase, the FFLO phase also ex-
hibits the correlation with a power-law decay G(j, j + r) ∝
cos(qr)/rηFFLO [52], where ηFFLO is an exponent related to
the total spin polarization P. Typically, the correlation of the
FFLO state for V/t = 2.0 is shown in Fig. 2(b), in which
G(j, j + r) fluctuates around zero. The corresponding G(q)

FIG. 2. (a) The local spin polarization mj = nj↑ − nj↓ for dif-
ferent V/t = 0.0 (blue triangular), 0.3 (brown circles), 2.0 (green
squares), and 5.0 (red pentagons). (b) and (c) The spatial space
distributions of the pair-pair function G(j, j + r) with j = 60 in the
linear scale and in the logarithmic scale, respectively. (d) The Fourier
spectrum of the pair-pair function. Here we set L = 120, n = 5/12,
U/t = −1.0, α = (

√
5 − 1)/2, and φ = 0.0.

has two peaks at q/π ≈ 0.29 and q/π ≈ 0.76 in Fig. 2(d),
suggesting that Fermi surfaces are deformed and there are
multiple effective center-of-mass momenta. Since the center-
of-mass momentum q = |k↑ − k↓| = |n↑ − n↓|π [42,54–56]
depends on the Fermi momentum of each species k↑ and
k↓, one also expects that mj fluctuates around mj ≈ ±0.29
and mj ≈ ±0.76, as shown in Fig. 2(a). In Fig. 1(b), FFLO
states disappear in low filling regions since the reduction of
the particle number leads to a decrease in the amplitude of
mj, which reflects that the deformation of the Fermi surface
decreases.

When the amplitude of the quasiperiodic Zeeman field is
large enough, the quasi-long-ranged superconducting order
is totally suppressed and the GL arises. In the localization
region, |G(j, j + r)| for V/t = 5.0 has an exponential de-
cay as shown in Fig. 2(c). Meanwhile, the correlations of
two fermionic species Gσ (j, j + r) = 〈ĉ†

jσ ĉj+rσ 〉 also decay
exponentially. Both G(j, j + r) and Gσ (j, j + r) indicate the
same critical point in Fig. 4, which illustrates that there is no
intermediate metallic “pseudogap” phase [35]. Fermions are
localized by the quasiperiodic Zeeman field immediately after
Cooper pairs are destroyed. This is due to the fact that the
localization transition point V/t ≈ 2.8 is larger than that of the
AA model. V/t ≈ 2.8 is strong enough to localize un-paired
fermions; therefore there is no intermediate metallic phase.

IV. THE FFLO PHASE

In this section, we discuss some features of the FFLO
phase in detail. First, we investigate the critical exponents
of various correlation functions in the FFLO phase. The
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FIG. 3. (a) Comparison of the critical exponents of correlation
functions. (b) The fitting of the pair-pair correlation in (a). (c) G(q)
for different irrational numbers α. (d) F (q) for different irrational
numbers α. The peaks in G(q) have one-to-one correspondence with
the most obvious peaks in F (q): q/π = −2α + 2 ≈ 0.7639(3) for
α = (

√
5 − 1)/2 and q/π = 2α ≈ 0.7357(6) for α = 1/e. Here we

set L = 120, n = 5/12, φ = 0.0, and U/t = −1.0. In (a) and (b),
V/t = 2.0, α = (

√
5 − 1)/2, and j = 19.

correlation functions we study are the pair-pair correla-
tion, the charge-density-wave (CDW) correlation 〈n̂jn̂j+r〉 −
〈n̂j〉〈n̂j+r〉, and the spin-density-wave (SDW) correlation
〈m̂jm̂j+r〉 − 〈m̂j〉〈m̂j+r〉. In Fig. 3(a), we find that all three
correlation functions are site dependent, and have power-law
decay. Crucially, their correlation exponents satisfy ηSDW >

ηCDW > ηFFLO, indicating that superconductivity dominates
over the other two orders. And in Fig. 3(b), we fit the
pair-pair correlation and obtain the |G| ∝ | cos(0.76π ∗ r) +
0.3 cos(0.29πr)|/r0.85, giving the superconducting correla-
tion exponent ηFFLO ≈ 0.85. The observations of ηFFLO < 1,
ηCDW > 1, and ηSDW > 1 indicate that the superconducting
correlation dominates over the others [50–52]. We also no-
tice that the product of ηCDW and ηFFLO exceeds unity in
Fig. 3(a), deviation from the normal Luttinger liquid descrip-
tion [44,57–60]. As a comparison, it is worth stressing that
for the FFLO state induced by the uniform Zeeman field, the
FFLO state shows ηFFLO > 1.0 [44], which is much weaker
than the present work. Thus, we conclude that the quasiperi-
odic Zeeman field tends to enhance the FFLO behavior.

Second, the local spin polarization of the FFLO state in-
duced by uniform Zeeman fields has a characteristic wave
vector 2π (n↑ − n↓) = 2q [61,62]. In contrast, when fermions
are subjected to the quasiperiodic Zeeman field, the local spin
polarization is modulated. In the ground state, fermions tend
to occupy positions with low field energies when the Zeeman
field dominates, thus we obtain mj ≈ cos(2παj). Applying
the Fourier transform F (q) = | 1

L

∑
j mjeiq·j|, one can easily

obtain the frequency of the local spin polarization at q/π =
±2α + 2n, where n is an integer. In Fig. 3(d), q corresponding
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FIG. 4. The behaviors of different quantities as a function of V/t
for the weak interaction U/t = −1.0. (a) Scan of G(q) as a function
of V/t . (b) ξpair as a function of V/t . (c) ξ↑ as a function of V/t .
(d) Entanglement entropy S as a function of V/t . Here we set L =
120, n = 5/12, α = (

√
5 − 1)/2, and φ = 0.0. The color represents

the value of G(q) and the red dotted line marks V/t ≈ 2.8 in (a).
The color in (b)–(d) indicates different phases and the BCS phase is
marked by the green shade.

to the most obvious peaks are instructed well. Furthermore,
we find that the center-of-mass momentum of the FFLO
state is consistent with the frequency of the local spin
polarization. This consistency means that the local spin po-
larization induced by the Zeeman field is highly related to the
center-of-mass momentum of the FFLO state. We confirm the
above features by studying different αs, as shown in Figs. 3(c)
and 3(d).

V. PHASE TRANSITIONS

In this section, we study the phase transitions by tuning the
Zeeman field amplitude. We first introduce multiple physical
quantities. The first one is the center-of-mass momentum q,
which relates to the peak location of G(q). The second one is
the effective correlation length ξeff [31,63], which is defined
as

ξeff =
√∑

r2|g(j, j + r)|
2

∑ |g(j, j + r)| , (2)

where g(j, j + r) denotes the correlation function. In our
study, we focus on two typical effective correlation lengths:
ξpair and ξσ . ξpair is the effective correlation length of the
pair-pair correlation function g(j, j + r) = G(j, j + r) and ξσ

represents the effective correlation length of two fermionic
species g(j, j + r) = Gσ (j, j + r) = 〈ĉ†

jσ ĉj+rσ 〉. In the GL
phase, the pair-pair correlation function G(j, j + r) ∝ e−r/ξ ,
whereas for superconducting states G(j, j + r) ∝ r−η. There-
fore, one may find the transition point of GL by ξpair

effectively. Furthermore, we find it also indicates the tran-
sition from BCS-NP to FFLO well as shown in Fig. 4. In
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FIG. 5. The behaviors of different quantities as a function of V/t
for the strong interaction U/t = −7.0. Here we set L = 120, n =
5/12, α = (

√
5 − 1)/2, and φ = 0.0. The quantities are the same as

those in Fig. 4.

addition to the effective correlation length of the pair-pair cor-
relation function ξpair, we also analyze ξσ . Since the behaviors
of ξσ of different spin fermions are similar, we only show
the result of spin-↑. To reduce the influence of the boundary,
we only sum over two-thirds part of sites in the center of
the chain. The last physical quantity is entanglement entropy
S = −ρA log(ρA) [43], where ρA = TrB[ρAB] is the reduced
density matrix of the subsystem A. We calculate the mean
entanglement entropy S̄ = 〈S〉, which averages all cut points
from 1 to L − 1.

In Fig. 4, we discuss the effect of the weak interaction.
In Fig. 4(a), G(q) has a peak at q/π = 0.0 for BCS states,
whereas that for FFLO states has a finite center-of-mass mo-
mentum. The most obvious peaks of G(q) of FFLO states are
at q/π = 2 − 2α ≈ 0.764. After entering GL, peaks of G(q)
at q/π �= 0 are suppressed. In Figs. 4(b)–4(d), the trends of
ξ↑ and S̄ are similar, since they both characterize the property
of nonpaired fermions. On the contrary, ξpair has an opposite
behavior because it indicates the property of pairs. In the BCS-
NP phase, ξpair reduces as V/t increases while ξ↑ and S̄ grow,
which indicates that pairs are destroyed by the quasiperiodic
Zeeman field. When the amplitude V exceeds the critical
value V/t ≈ 0.7, ξpair increases, whereas ξ↑ and S̄ reduces, the
quasiperiodic Zeeman field instead promotes the formation of
pairs, which suggests that the local spin polarization induced
by the quasiperiodic Zeeman field promotes the formation of
a new quasi-long-ranged order. For V/t > 2.8, the system en-
ters GL, three physical quantities all have obvious reductions
near the transition point.

In the strong interaction case, we find a transition from
BCS-NP to GL appears and there is no FFLO in Fig. 5. In
the process of the superconductor-insulator transition, there
is no obvious peak formed at q/π �= 0 in Fig. 5(a). A sim-
ple understanding is that the interaction competes with the
quasiperiodic Zeeman field and a large interaction would

FIG. 6. (a) G(q) for different W/ts. (b) Densities for W/t =
0.0015. (c) The decay behaviors of |G(j, j + r)| for different W/ts.
(d) G(q) for different W/ts and ns. L = 120, U/t = −1.0, V/t = 2,
α = (

√
5 − 1)/2, and φ = 0.0. n = 5/12 in (a)–(c).

suppress the FFLO state and favor the normal BCS state. This
is evidenced by the reduction of the amplitude of mj in the
strong interaction regime. The strong interaction makes the
Cooper pairs more stable, therefore ξpair in Fig. 5(b) is much
larger than that in Fig. 4(b). Meanwhile, ξ↑ is inhibited in
Fig. 5(c), suggesting that Gσ (j, j + r) = 〈ĉ†

jσ ĉj+rσ 〉 has a fast
decay. The strong interaction also results in the fact that the
effective correlation length ξpair and ξσ have slower changes
with V/t than those in the case of the weak interaction. In
Fig. 5(d), S̄ increases with V/t in the BCS-NP phase, whereas
it reduces as V/t strengthens in the GL phase. This is consis-
tent with the result of the weak interaction in Fig. 4(d).

VI. EXPERIMENTAL REALIZATION

The advantage of the current model is that it is accessible
by ultracold Fermi gases with high controllability and tunabil-
ity, which could be a new platform to search for the FFLO
phase. Typically, the FFLO state can be realized by polarized
6Li Fermi gas in one dimension and the phase diagram is con-
sistent with the theoretical prediction [64]. The quasiperiodic
Zeeman field can be regarded as spin-dependent potentials
[65,66], which can be realized in optical lattices with ladder
potentials as shown in Fig. 1(a). The quasiperiodic potentials
can also be modulated, which are used to investigate the
Anderson localization and many-body localization [67,68]. To
make contact with experiments [64], we confine the Fermi gas
in a harmonic trap,

Htrap = W
L−1∑
i=0

(
i − L − 1

2

)2

ni, (3)

where W is the strength of the trap. Figure 6(a) shows that
peaks at q/π = 0.76 gradually disappear as W/t increases.
This is due to the harmonic trap increasing the effective
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filling factor as shown in Fig. 6(b). As W/t increases, the
short-distance decay behavior of |G(j, j + r)| changes from a
power-low decay to an exponential decay in Fig. 6(c), indicat-
ing that the deep trap promotes the occurrence of localization.
The long-distance decay behaviors for different W s all show
exponential decays since the Fermi gas is bound in the center
of the chain. To observe FFLO states experimentally, one
may reduce the filling factor as W/t increases as shown in
Fig. 6(d). This center-of-mass momentum of FFLO states can
be directly probed by using the time-of-flight imaging in the
experiments [20,69].

VII. DISCUSSION AND CONCLUSION

To summarize, we have studied the effect of the quasiperi-
odic Zeeman field on a one-dimensional lattice model. We
demonstrate that a FFLO phase survives in the process of
the superconductor-insulator transition. We find that both the
strong interaction and low filling factor suppress the FFLO
state. Unlike the FFLO states with a total spin polarization
P �= 0 induced by a uniform Zeeman field [40–49], the FFLO
phase in the present work has P = 0. Furthermore, it is found
that the correlation exponent of the FFLO state induced by
the quasiperiodic Zeeman field exhibits ηFFLO < 1.0, which is
much stronger than that in the previous work [44]. Although
the pairing occurs in momentum space, the center-of-mass
momentum of FFLO can be modulated by the Zeeman field. A
direct evidence is that the center-of-mass momentum of FFLO
is the same as the frequency of the local spin polarization.
In this study, we have used multiple physical quantities to
characterize different phases. These physical quantities em-
body the competitive relationship among un-paired fermions,
Cooper pairs, and the localization of both. Finally, we propose
to realize the current lattice model using optical lattices in the
experiment.

In this work, we have investigated the ground-state prop-
erties at zero temperature in the one-dimensional system.
Regarding it as a starting point, many interesting topics can
be derived, e.g., the competition between superconductiv-
ity and the quasiperiodic Zeeman field at finite temperature,
the superconductivity in high-dimensional systems. In addi-
tion, superconducting properties of highly excited states and
dynamic properties of superconductors are also interesting
directions.
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APPENDIX A: EFFECT OF THE PERIODIC
ZEEMAN FIELD

In Fig. 7, we study the effect of the periodic Zeeman field
on superconductivity. Figures 7(a) and 7(b) show G(q) as
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FIG. 7. G(q) as a function of V/t for U/t = −1.0 and U/t =
−7.0 in (a) and (b), respectively. The mean entanglement entropy as
a function of V/t for U/t = −1.0 and U/t = −7.0 in (c) and (d),
respectively. L = 120, n = 5/12, α = 1/4, and φ = 0.0. The green
shade indicates the BCS phase in (c) and (d). The color represents
the value of G(q) in (a) and (b). The red dotted lines mark V/t ≈ 1.3
and V/t ≈ 3.8 in (a) and (b), respectively.

a function of V/t for U/t = −1.0 and U/t = −7.0, respec-
tively. In the case of the weak interaction for U/t = −1.0,
the transition from BCS-NP to FFLO appears at V/t ≈ 1.3,
whereas it occurs at V/t ≈ 3.8 for U/t = −7.0. A simple
understanding is that the attractive interaction strengthens the
Cooper pairs, so that a larger amplitude is needed to destroy
Cooper pairs. The center-of-mass momentum of FFLO states
is at q/π = 2α = 1/2, which is consistent with the wave
vector of the periodic Zeeman field. Figures 7(c) and 7(d)
show the mean entanglement entropy as a function of V/t for
U/t = −1.0 and U/t = −7.0, respectively. In a weak periodic
Zeeman field, BCS is destroyed to unpaired fermions and S̄
grows as V/t increases. When the strength of the periodic
Zeeman field exceeds the critical point, the Zeeman field
promotes the generation of a new superconducting order. The
Cooper pairs are re-formed and S̄ decreases.

In Fig. 8, we show more details of FFLO states for U/t =
−1.0. In Fig. 8(a), the fluctuation of G(j, j + r) increases with
V/t , manifesting that the periodic Zeeman field promotes the
formation of FFLO states. Figure 8(b) shows that the correla-
tion exponent reduces as V/t increases, which indicates that
the strong periodic Zeeman field slows down the decay of the
FFLO order. Moreover, the correlation exponent ηFFLO < 1 is
found for a large V/t . In Figs. 8(c) and 8(d), we study the
Fourier transform of G(j, j + r) and mj, respectively. They
both display peaks at q/π = 2α = 0.5, which is consistent
with the conclusion that FFLO states have the same frequency
as those of the local spin polarization in the text.

APPENDIX B: EFFECT OF THE WHITE-NOISE-TYPE
ZEEMAN FIELD

In the main text and previous section, we show that the
most obvious center-of-mass momentum of the FFLO state
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FIG. 8. (a) G(j, j + r) as a function of r with j = 19.
(b) |G(j, j + r)| as a function of r with j = 19. (c) The Fourier
transform of G(j, j + r). (d) The Fourier transform of the local spin
polarization. L = 120, n = 5/12, α = 1/4, U/t = −1, and φ = 0.0.

is at q/π = ±2α + 2n, which is related to the wave vector
of the Zeeman field. A simple question that arises from this
point is whether FFLO still exists when the Zeeman field is
a white-noise-type Zeeman field. To address this question,
we calculate the case of the random Zeeman field with a
white noise distribution in Fig. 9. In Fig. 9(a), we show that
G(j, j + r) fluctuates around zero, which indicates that the

FIG. 9. (a) G(j, j + r) as a function of r with j = 19.
(b) |G(j, j + r)| as a function of r with j = 19. (c) The Fourier
transform of G(j, j + r). (d) The Fourier transform of the local spin
polarization. L = 120, n = 5/12, U/t = −1, and the white-noise-
type Zeeman field Vi ∈ [−2, 2].

order parameter has sign changes. In Fig. 9(b), we find that
|G(j, j + r)| deviates from the power-low decay for large r,
which is consistent with the Imry-Ma-type argument [33].
The Fourier transform of G(j, j + r) has no obvious peak in
Fig. 9(c). On the one hand, it is because the superconducting
behavior is relatively weak, which can be evidenced by the de-
cay behavior and superconducting correlation exponent, and
on the other hand, it is because the order is random and there
is no clear center-of-mass momentum. Figure 9(d) shows that
F (q) also has no obvious peak. This is due to the fact that the
local spin polarization caused by the random Zeeman field is
also random. In a word, here we show the white-noise-type
Zeeman field leads to distinct physics, compared to the quasi-
long-ranged Zeeman field as shown in the main text. This
demonstrates that the quasiperiodic Zeeman field is important
for FFLO states.

APPENDIX C: MEAN-FIELD RESULTS

In the main text, we use DMRG to study the effect of
the quasiperiodic Zeeman field on superconductivity. Here we
also use the mean-field approximation to study FFLO states.
We do the mean-field approximation to the interaction term as

U
∑

i

n̂i↑n̂i↓ =
∑

i

[
�∗ĉi↓ĉi↑ + ĉ†

i↑ĉ†
i↓� − �∗�

U

]
, (C1)

where � = U 〈ĉi↓ĉi↑〉. When the order parameter � is real, the
Hamiltonian reads

Ĥ = − t
∑

i,σ=↑,↓

(
ĉ†

i,σ ĉi+1,σ + H.c.
)

+
∑

i

V cos(2παi + φ)(n̂i,↑ − n̂i,↓)

+
∑

i

[
�ĉi↓ĉi↑ + �ĉ†

i↑ĉ†
i↓ − �2

U

]
+

∑
i

μ(n̂i,↑ + n̂i,↓), (C2)

where μ is the chemical potential to control the filling factor.
Next we will use a self-consistent method to solve

Eq. (C2). We diagonalize the mean-field Hubbard Hamilto-
nian by a Bogoliubov transformation,

ĉ↑(i) =
∑

n

un↑(i)ηn − v∗
n↑(i)η†

n,

ĉ†
↑(i) =

∑
n

u∗
n↑(i)η†

n − vn↑(i)ηn,

ĉ↓(i) =
∑

n

un↓(i)ηn + v∗
n↓(i)η†

n,

ĉ†
↓(i) =

∑
n

u∗
n↓(i)η†

n + vn↓(i)ηn,

(C3)

where η†
n and ηn are quasiparticle operators. unσ (i) and vnσ (i)

satisfy ∑
i

unσ (i)2 + vnσ (i)2 = 1, (C4)
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FIG. 10. �(i) and mi as a function of i in (a) and (b), respectively.
The Fourier transform of �(i) and mi in (c) and (d), respectively. The
black and red dotted lines mark q/π = 0.29 and q/π = 0.76, respec-
tively. L = 120, μ = −0.183077595020778 to make n = 5/12, α =
(
√

5 − 1)/2, U/t = 1, V/t = 2, and φ = 0.0. Here we use OBCs.

which is from {η†
n, ηn} = 1. This yields the well-known

Bogoliubov-de Gennes (BdG) equation,

∑
j

⎛⎜⎜⎝
hi j↑ 0 0 δi j

0 hi j↓ δi j 0
0 δ∗

i j −hi j↑ 0
δ∗

i j 0 0 −hi j↓

⎞⎟⎟⎠
⎛⎜⎝un↑( j)

un↓( j)
vn↑( j)
vn↓( j)

⎞⎟⎠ = En

⎛⎜⎝un↑(i)
un↓(i)
vn↑(i)
vn↓(i)

⎞⎟⎠,

(C5)

where

hσ unσ (i) = − t (unσ (i + 1) + unσ (i − 1))

+
∑
i,σ

[Vσ cos(2παi + φ) + μ]unσ (i), (C6)

and similarly for vnσ (i). In Eq. (C6), Vσ = V for σ =↑ and
Vσ = −V for σ =↓. The self-consistency conditions of spin-↑
densities expressed as

〈ni↑〉 = 〈c†
i↑ci↑〉

= 1

2

∑
n

〈[u∗
n↑(i)η†

n − vn↑(i)ηn][un↑(i)ηn − v∗
n↑(i)η†

n]〉

= 1

2

∑
n

[|un↑(i)|2〈η†
nηn〉 + |vn↑(i)|2〈ηnη

†
n〉]

= 1

2

∑
n

[|un↑(i)|2 f (En) + |vn↑(i)|2 f (−En)], (C7)

where f (E ) = 1/[1 + exp(E/kBT )]. The solutions of the
BdG equations contain both positive and negative energies.
Thus, we use the factor of 1/2 to avoid double counting. Cor-
respondingly, we can obtain the self-consistency conditions of

spin-↓ densities

〈ni↓〉 = 〈c†
i↓ci↓〉

= 1

2

∑
n

[|un↓(i)|2 f (En) + |vn↓(i)|2 f (−En)], (C8)

and those of the order parameter,

�(i) = U 〈ĉi↓ĉi↑〉

= U

2

∑
n

〈[un↓(i)ηn + v∗
n↓(i)η†

n][un↑(i)ηn − v∗
n↑(i)η†

n]〉

= U

2

∑
n

[v∗
n↓un↑ f (En) − un↓v∗

n↑ f (−En)]. (C9)

We notice that if (un↑, un↓, vn↑vn↓) is the solu-
tion to the BdG equation with eigenvalue En, then
(−v∗

n↑, v∗
n↓,−u∗

n↑, u∗
n↓) is the solution to the same

equation with eigenvalue −En. Using this symmetry, we
can simplify the BdG equation as

∑
j

(
hi j↑ δi j

δ∗
i j −hi j↓

)(
un↑( j)
vn↓( j)

)
= En

(
un↑(i)
vn↓(i)

)
. (C10)

Accordingly, we can get self-consistent conditions,

〈ni↑〉 =
∑

n

|un↑(i)|2 f (En),

〈ni↓〉 =
∑

n

|vn↓(i)|2 f (−En),

�(i) = U
∑

n

v∗
n↓un↑ f (En),

(C11)

In Fig. 10, we use mean-field approximation to study
FFLO states. In Fig. 10(a), �(i) fluctuates around �(i) = 0,
indicating it is a FFLO state. The corresponding local spin
polarization mi is shown in Fig. 10(b), which is similar to the
DMRG results in the main text. The Fourier transform of �(i)
and mi in Figs. 10(c) and 10(d) have two peaks at q/π = 0.29
and q/π = 0.76, which is also consistent with the results in
the main text.

FIG. 11. Ground-state energy for different states and sweeps in
(a). Truncation error for different states and sweeps in (b). L = 120,
n = 5/12, U/t = 1.0, V/t = 2.0, α = (

√
5 − 1)/2, and φ = 0.0.
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APPENDIX D: TRUNCATION ERROR
IN THE DMRG CALCULATIONS

In order to illustrate that 800 states (bond dimension) and
80 sweeps are large enough to meet the accuracy require-
ments in the DMRG calculations, we show the ground-state
energy and truncation error for different states and sweeps in
Figs. 11(a) and 11(b). Obviously, when sweep = 80 and bond
dimension M = 800, the ground-state energy converges and
the truncation error is less than 10−9.

APPENDIX E: FINITE-SIZE EFFECT

In order to illustrate that the size effect is small for L =
120, we show S as a function of V/t for different Ls in
Fig. 12(a) and the transition points as a function of 1/L in
Fig. 12(b). When L = 48, the size effect is obvious, but the
system is large enough for L = 120 and the critical points
indicated by S for L = 120 are approximately equal to those
for larger sizes L = 180 and L = 240, indicating that the
size effect can be ignored for L = 120. Furthermore, we
also show ηFFLO and ηCDW · ηFFLO as a function of 1/L in
Figs. 12(c) and 12(d), which shows that the exponents largely
converge when L > 80. It is worth noting that this is not
contrary to the Imry-Ma-type argument [33], since we adopt a
quasiperiodic Zeeman field and the Imry-Ma-type argument is
circumvented [34].
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FIG. 12. Entanglement entropy S as a function of V/t for dif-
ferent Ls in (a) and the transition points as a function of 1/L in (b).
The exponent of the pair-pair correlation function ηFFLO as a function
of 1/L in (c). ηCDW · ηFFLO as a function of 1/L in (d). n = 5/12,
U/t = 1.0, α = (

√
5 − 1)/2, and φ = 0.0. V/t = 2 in (c) and (d).
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