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Critical behavior of the Anderson model on the Bethe lattice
via a large-deviation approach
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We present a new, large-deviation approach to investigate the critical properties of the Anderson model on
the Bethe lattice close to the localization transition in the thermodynamic limit. Our method allows us to study
accurately the distribution of the local density of states (LDoS) down to very small probability tails as small as
10−50, which are completely out of reach for standard numerical techniques. We perform a thorough analysis
of the functional form of the tails of the probability distributions of the LDoS, which turn out to be very well
described by the functional form predicted by the supersymmetric formalism and yields a direct and transparent
estimation of the correlation volume very close to the Anderson transition. Such a correlation volume is found
to diverge exponentially when the localization is approached from the delocalized regime, in a singular way that
is compatible with the analytic predictions of the supersymmetric treatment.
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I. INTRODUCTION

After more than a half century, the subject of Anderson
localization [1] is still very much alive [2–4], as proved by
the recent observations of Anderson localization of of cold
atomic gases in 1D [5–7] and 3D [8–10], of kicked rotors in
3D [11], and of classical sound elastic waves in 3D [12]. On
the theoretical side, several questions remain open: Although
there is by now a good understanding of the localization tran-
sition in low-dimensional systems, culminating in a functional
renormalization group analysis by a 2 + ε expansion [13], the
behavior in high dimensions [14], in particular, the existence
of an upper critical dimension and the relationship with Bethe
lattice analysis [15], is still an issue. Recently, there has been a
renewal of interest on this problem because of its relationship
with many-body localization (MBL) [16]. This is a fascinat-
ing new kind of phase transition between a low-temperature
nonergodic phase—a purely quantum glass—and a high-
temperature ergodic phase [17–22]. This phenomenon has
been argued to take place for several disordered isolated inter-
acting quantum systems, and can be thought of as localization
in the Fock space of Slater determinants, which play the role
of lattice sites in a disordered Anderson tight-binding model.
A paradigmatic representation of this transition [16,23–28] is
indeed (single-particle) Anderson localization on a very high-
dimensional hierarchical lattice, which for spinless electrons
consists in an N-dimensional hypercube (where N � 1 is the
number of sites of the lattice system). Although the analogy
between MBL and Anderson localization on the Bethe lattice
involves several drastic simplifications (e.g., the correlation
between random energies is neglected as well as the specific
structure of the Hilbert space), it is very useful to obtain a
qualitative understanding of the problem [28–31].

Localization had an impact on several fields, in particular
random matrices and quantum chaos. As a matter of fact, in
the delocalized phase the level statistics is described by ran-
dom matrix theory and generally corresponds to the Gaussian
orthogonal ensemble (GOE), whereas instead in the localized
phase is determined by Poissonian statistics because wave
functions close in energy are exponentially localized on very
distant sites and hence do not overlap; thus, contrary to the
GOE case, there is no level repulsion and eigenenergies are
distributed similarly to random points thrown on a line.

The relationship with quantum chaos goes back to the
Bohigas-Giannoni-Schmidt conjecture, which states that the
level statistics of chaotic (or ergodic) systems is given by
random matrix theory, whereas integrable systems instead are
characterized by Poissonian statistics [32]. This result can
be fully worked out and understood in the semi-classical
limit [33,34]: for a quantum chaotic system, in the h̄ → 0
limit, wave functions at a given energy become uniformly
spread over the microcanonical hypersurface of the config-
uration space. They are fully delocalized as expected for
an ergodic classical system that covers regions with the
same energy uniformly. Instead, quantum nonergodic models,
such as integrable systems, are characterized by Poissonian
statistics and localized wave functions. All those results
support a general relationship between delocalization–GOE
statistics–ergodicity (similarly between localization–Poisson
statistics–lack of ergodicity).

However, in the last decade several numerical studies
[35–42] were performed for the Anderson model on the Bethe
lattice, in fact, on random-regular Graphs (RRG), with N
nodes and a parameter W controlling the strength of the local
disorder. This is a class of random lattices that have locally a

2469-9950/2022/105(9)/094202(11) 094202-1 ©2022 American Physical Society

https://orcid.org/0000-0001-8113-7049
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.094202&domain=pdf&date_stamp=2022-03-11
https://doi.org/10.1103/PhysRevB.105.094202


BIROLI, HARTMANN, AND TARZIA PHYSICAL REVIEW B 105, 094202 (2022)

tree-like structure but do not have boundaries [43], see below
for a precise definition. The results suggested the possibility
of the existence of an intermediate delocalized but nonergodic
phase characterized by multifractal eigenfunctions in a broad
disorder range preceding the localization transition, as first
suggested in Ref. [24]. The arguments in favor of this scenario
rely mostly on numerical extrapolations of results obtained
from exact diagonalization (ED) of large but finite samples,
and the existence of such a phase in the thermodynamic limit
has been strongly questioned during recent years [28,44–49].

Although the possibility of such multifractal delocalized
phase is clearly very intriguing, especially due to its rela-
tionship with MBL [24], it appears to be in explicit conflict
with the analytical predictions based on the supersymmetric
approach for the Anderson model on sparse random graphs
[50–55]. Moreover, recent numerical investigations based on
the finite-size scaling of the spectral and the wave functions’s
statistics on the delocalized side of the Anderson model on
RRG [44,47,48] and similar sparse random lattices [45,46]
provided strong indications against the existence of a truly
intermediate nonergodic extended phase. These investigations
highlighted a nonmonotonous behavior of the observables as
a function of the system size on the delocalized side of the
transition, which can be explained in terms of (i) the presence
of a characteristic scale which diverges exponentially fast
approaching the transition and is already very large far from it
[44–48] and (ii) the localized nature of the critical point in the
limit of an infinite dimension [14,51,53–55]. The combination
of these two elements produce dramatic and highly nontrivial
finite-size effects even very far from the critical point and
give rise to a strong nonergodic behavior in a crossover re-
gion where the correlation volume Nc(W ) is larger than the
accessible system sizes. (On the contrary, there is by now
a general consensus on the fact that the delocalized phase
of the Anderson model on the loop-less Cayley is genuinely
multifractal [30,56,57]).

Note that the thorough characterization of such crossover
regime has not only an academic interest, but has also some
important practical implications. In fact, the crossover scale
turns out to be so large even far below the localizaiton transi-
tion that the multifractal exponents associated to the spectral
statistics appear to be independent on the system size N in
a broad range of sizes smaller than Nc, producing an effec-
tive nonergodic behavior on several decades of length and
timescales [29,30,39,40]. Yet, a precise characterization of
the correlation volume, in particular from the numerical point
of view, remains elusive. Direct numerical simulations would
need to focus on intractably large system sizes. The Anderson
transition on tree-like lattices offers, however, an alternative
route since it allows for an exact solution [15,47–55,58–62].
This can be obtained in terms of the exact self-consistent
equations for the Green’s functions (in the thermodynamic
limit), which allow to establish the transition point and the
corresponding critical behavior. However, even this approach
suffers from the dramatic increase of the correlation volume,
which controls the cutoff of the probability distribution of the
imaginary part of the Green’s function [i.e., the local density
of states (LDoS)] [47,50–52,61]. Since Nc(W ) is so large even
far away from the transition, the cutoff occurs in the far tails
of the distribution, which cannot be properly sampled with

standard numerical techniques such as the population dynam-
ics algorithm even using huge populations [61]. Here, we
solve this problem by putting forward a novel large-deviation
technique which allows one to sample very accurately the
tails of the probability distribution of the LDoS down to ex-
tremely small probabilities, and highlight with great accuracy
the crossover scale and its critical behavior.

The outcomes of this analysis are in agreement with the
predictions of the supersymmetric approach [47,50–53] and
are compatible with a correlation volume which diverges ex-
ponentially fast as the Anderson localization is approached, as
Nc(W ) ≈ A ec/(WL−W )ν , with ν = 1/2 and WL being the critical
disorder strength.

The paper is organized as follows. In the next section we
introduce the model and briefly review previous results and
studies. In Sec. III we present some recent numerical results
of the spectral statistics obtained from ED of the Anderson
model on the RRG of finite size. In Sec. IV we describe
the new large deviation approach to sample efficiently the
tails of the distributions of the Green’s functions and directly
estimate the correlation volume close to WL. Finally, in Sec. VI
we discuss the physical implications of our results, providing
some concluding remarks and perspectives for future work.

II. MODEL AND STATE OF THE ART

The model we focus on consists in noninteracting spinless
electrons in a disordered potential

H = −t
∑
〈i, j〉

(c†
i c j + c†

j ci ) −
N∑

i=1

εi c†
i ci, (1)

where the first sum runs over all the nearest-neighbors sites
of the lattice, the second sum runs over all N sites; c†

i , ci

are fermionic creation and annihilation operators, and t is
the hopping kinetic energy scale, which we take equal to 1.
The on-site energies εi are i.i.d. random variables uniformly
distributed in the interval [−W/2,W/2]:

p(ε) = U

(
−W

2
,

W

2

)
≡ 1

W
θ

(
W

2
− |ε|

)
. (2)

As anticipated in the Introduction, the lattice that we con-
sider is a (k + 1)-RRG, i.e., a lattice chosen uniformly at
random among all graphs of N sites where each of the sites
has connectivity k + 1. The properties of such random graphs
were extensively studied (see Ref. [43] for a review). A RRG
can be essentially viewed as a finite portion of a tree wrapped
onto itself. It is known in particular that for large number
of sites any finite portion of such a graph is a tree with a
probability going to 1 as N → ∞, and that the RRG has large
loops of typical length of order ln N [43].

The model (1) is then a sum of two random matrices, H =
C + D: C is the connectivity matrix of the RRG, Ci j = −t
if sites i and j are connected and zero otherwise. D is the
diagonal matrix corresponding to the on-site random energies
Di j = εiδi j . It is known from previous studies that the first
ensemble of sparse random matrices belongs to the GOE uni-
versality class (with fully delocalized eigenvectors) [63,64],
while the second is described by definition by Poissonian
statistics (with fully localized eigenvectors).
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Localization on the RRG was first studied by Abou-
Chacra, Anderson, and Thouless [15] and then later by many
others, see Refs. [35–42,44,46–55,58–62] and references
therein. Many similarities, but also few important differences,
with the three dimensional behavior have been found. The
differences mainly concern the critical properties. Contrary
to the finite-dimensional case, the critical behavior is not
power-law-like but instead exponential, i.e., one finds essen-
tial singularities approaching the localization transition from
the delocalized regime [47,50–55]. Moreover, the inverse par-
ticipation ratio (IPR), defined as 〈∑N

i=1 |ψα (i)|4〉, is found
to have a discontinuous jump at the transition from a O(1)
toward a 1/N scaling [50], instead of being continuous at the
transition. Arguments based on supersymmetric field theory
indicate that the level statistics should display a transition
from GOE to Poissonian statistics concomitant with the lo-
calization transition [50,51] (see also Ref. [49]). However,
the first numerical studies did not fully support this claim
[35,65]. Moreover, the arguments of the authors of Ref. [24]
indicated that the two transitions might actually not coincide.
As discussed above, the possibility of the existence of an inter-
mediate phase, which is delocalized and yet still not ergodic,
were first suggested in Ref. [35]. These findings triggered a
lot of activity. In Ref. [36], based on the numerical extrap-
olation of the spectrum of fractal dimensions of finite-size
systems, it was conjectured that the eigenstates were mul-
tifractal in the entire delocalized phase. More recently, the
authors of Refs. [37,38,42] combined EDs and semi-analytical
calculations to claim the existence of the intermediate non-
ergodic but delocalized phase in a broad disorder strength
WE < W < WL. These claims have been questioned by the
numerical investigations of Refs. [44–49], which analyzed the
level and eigenfunction statistics on the delocalized side of the
Anderson transition on the RRG and similar sparse random
lattices, and unveiled the existence of very strong finite-size
effects with a characteristic crossover scale Nc(W ) associated
to a pronounced nonmonotonous behavior of the observables
as a function of N , and which diverges exponentially fast
as the localization transition is approached. The origin of
the nonmonotonicity has been traced back to the localized
nature of the Anderson critical point in the limit of infinite
dimensions [14,51,53–55]: For N 	 Nc the system flows to-
wards the Anderson transition fixed point whose properties
on the RRG are analogous to the localized phase, whereas for
N � Nc the system approaches the N → ∞ ergodic behav-
ior. The conclusions of these investigations are thus that the
system is ergodic in the entire delocalized phase, but is char-
acterized by dramatic and nontrivial finite-size effects even
very far from the critical point, giving rise to an apparent non-
ergodic behavior in a crossover region where the correlation
volume is larger than the accessible system sizes. Nonetheless,
as explained in the Introduction, a precise characterization of
the correlation volume Nc is still missing.

In the following, without loss of generality, we focus on
the k = 2 case (i.e., total connectivity k + 1 = 3) and on
the middle of the spectrum E = 0. Previous studies of the
transmission properties and dissipation propagation attempted
to determine the critical value of the disorder at which the
localization transition takes place [15,57,58,61,62]. The most
accurate and precise estimation of WL in the thermodynamic

limit has been performed in Ref. [61], based on a direct high-
precision numerical diagonalization of the integral operator
governing the linear stability of the recursive cavity equa-
tions for the Green’s functions, yielding WL 
 18.17 ± 0.01.
Previous analysis of the spectral properties instead suggested
the presence of the nonergodic delocalized phase in the range
10 ≈ WE < W < WL [35,37,38].

III. EXACT DIAGONALIZATION ON THE RRG

The purpose of this section is to set the stage and show
the known results from the recent literature that support the
presence of the correlation volume Nc(W ) and its very fast
increase [44–48]. These results are obtained from EDs of the
Hamiltonian (1) on the RRG for several system sizes N = 2n,
from n = 6 to n = 15, and for several values of the disorder
strength W on the delocalized side of the Anderson transition
in the disorder range where previous studies suggested the
possibility of the existence of a multifractal delocalized phase
[35,37,38,42] WE < W < WL. For each value of N and W ,
we average over both the on-site quenched disorder and on
RRG realizations, taking (at least) 222−n different samples.
Since we are interested in E = 0, we also average over 1/8
of the eigenstates centered around the middle of the band (we
checked that taking 1/16 or 1/32 of the states does not alter
the results, but yields a poorer statistics).

We start by focusing on numerical results for the level
statistics of the Anderson model on the RRG which un-
veil the nonmonotonic behavior of the relevant observables
[44,45,48]. We study the statistics of level spacing of neigh-
boring eigenvalues: sα = Eα+1 − Eα � 0, where Eα is the
energy of the αth eigenstate in the sample. In the delocalized
regime level crossings are forbidden. Hence the eigenvalues
are strongly correlated and the level statistics is expected
to be described by random matrix theory (more precisely,
several results support a general relationship between delo-
calization and the Wigner’s surmise of the GOE). Conversely,
in the localized phase wave functions close in energy are
exponentially localized on very distant sites and do not over-
lap. Thus there is no level repulsion and eigenvalues should
be distributed similarly to random points thrown on a line
(Poissonian statistics). To avoid the difficulties related to the
unfolding of the spectrum, we follow the authors of Ref. [66]
and measure the ratio of adjacent gaps

rα = min{sα, sα+1}
max{sα, sα+1} ,

and obtain the probability distribution which displays a uni-
versal form depending on the level statistics [66]. In particular,
〈r〉 is expected to converge to its GOE and Poissonian coun-
terpart in the extended and localized regime [67], allowing
to discriminate between the two phases as 〈r〉 changes from
〈r〉GOE 
 0.53 to 〈r〉P 
 0.39, respectively.

The GOE-Poisson transition can also be captured by corre-
lations between nearby eigenstates such as the mutual overlap
between two subsequent eigenvectors, defined as

qm =
N∑

i=1

|ψα (i)||ψα+1(i)|.
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FIG. 1. 〈r〉 (upper panel) and ln(qtyp/qGOE ) (lower panel) as a
function of the disorder W for several system sizes N = 2n with n
from 6 to 15. The horizontal dashed lines correspond to the refer-
ence GOE and Poissonian asymptotic values. The vertical orange
dashed line spots the position of the Anderson localization transition,
WL 
 18.17 [61].

In the GOE regime the wave functions’s amplitudes are i.i.d.
Gaussian random variables of zero mean and variance 1/N
[68], hence 〈q〉 converges to 〈q〉GOE = 2/π . Conversely, in
the localized phase two successive eigenvector are typically
peaked around very distant sites and do not overlap, and there-
fore 〈q〉P → 0 for N → ∞. At first sight this quantity seems
to be related to the statistics of wave functions’s coefficients
rather than to energy gaps. Nonetheless, in all the random
matrix models that have been considered in the literature so
far, one empirically finds that 〈q〉 is directly associated to the
statistics of gaps between neighboring energy levels [69].

In Fig. 1 we show the behavior of the average value of the
ratio of adjacent gaps 〈r〉 and of (the logarithm of) the typical
value of the mutual overlap between subsequent eigenvectors
qtyp = e〈ln q〉 as a function of the disorder W , for several system
sizes N = 2n, with n from 6 to 15. As expected, for small
(or large) enough disorder we recover the universal values
〈r〉GOE 
 0.53 and qtyp

GOE = 2/π (or 〈r〉P 
 0.39 and qtyp
P →

0) corresponding to GOE (or Poissonian) statistics. However,
as pointed out in Ref. [35] the different curves corresponding
to different values of N cross much before the localization
transition, occurring at WL 
 18.17 (indicated by the vertical
dashed line in the plot). This behavior was interpreted in terms
of an intermediate delocalized but nonergodic phase [35].
Nevertheless, by carefully analyzing the data, we realized that
the crossing point is, in fact, slowly but systematically drifting
towards larger values of W as N is increased (see inset of
Fig. 3), as also observed [44,45,48].

This is clearly unveiled by Fig. 2, where we plot the
behavior of qtyp and 〈r〉 as a function of n = log2 N , for
several values of the disorder belonging to the range where
the curves of 〈r〉 and qtyp for different n cross, i.e., 10 �
W � 16. One indeed observes that, in this region, qtyp and
〈r〉 become nonmonotonic functions of n. The position of the
minimum of qtyp (highlighted by dashed vertical lines in the
left panel of Fig. 2) naturally defines a characteristic system
size Nc(W ) = 2nc (W ) governing the crossover from Poissonian
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FIG. 2. ln(qtyp/qGOE ) (left panel) and 〈r〉 (right panel) as a
function of n = log2 N for W = 10, 11, . . . , 16. The data show the
nonmonotonic behavior of qtyp and 〈r〉. The position of the mini-
mum nc(W ) extracted from qtyp(W ), corresponding to the volume
Nc(W ) = 2nc (W ), is represented by the vertical dotted lines.

to GOE statistics (on the scale of the mean level spacing): For
N < Nc(W ) one has indeed that qtyp decreases as the system
size is increased, as expected for localized wave functions,
whereas for N > Nc(W ) it is an increasing function of n and
eventually converges to the GOE universal value. The same
nonmonotonic behavior as a function of the system size is
found for 〈r〉 (right panel of Fig. 2).

The finite-size scaling behavior of the statistics of the wave
functions’s amplitudes can be analyzed in a similar way, as
was recently shown in Refs. [44,45,48]. This can be done by
computing the moments

ϒq(N ) =
〈

log

(
N∑

i=1

|ψα (i)|2q

)〉
,

ϒ1(N ) = −
〈

N∑
i=1

|ψα (i)|2 log |ψα (i)|2
〉
, (3)

from which the flowing fractal dimensions Dq are obtained as
logarithmic derivatives with respect to log N [70]:

Dq(N ) = 1

1 − q

∂ϒq(N )

∂ log N
, D1(N ) = ∂ϒ1(N )

∂ log N
. (4)

As discussed at length in Refs. [44,45,48], the anomalous
dimensions D1 and D2 exhibit a behavior very much anal-
ogous to that observed for the level statistics in Fig. 1. For
moderate disorder W � 10, they approach their ergodic value
1. For stronger disorder 10 � W � 16, one observes a non-
monotonous behavior as a function of the system size: They
first flow toward 0 for small enough N (corresponding to a
localized behavior) and then start to increase at larger N . The
characteristic size governing the crossover from the localized
behavior to the extended behavior turns out to be very similar
(within the numerical accuracy) to the one governing the
crossover for the level statistics.

From the moments of the wave functions’s amplitudes
ϒq one can also compute the entire spectrum of fractal
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FIG. 3. Main panel: Characteristic crossover scales nc(W ) =
log2 Nc(W ) extracted from different observables related to the level
statistics (〈r〉, squares and qtyp, circles) and to the statistics of the
wave functions’s amplitude, i.e., the fractal dimensions D2 (dia-
monds) and D1 (up triangles), the lower edge α− of the support
of the multifractal spectrum f (α) (down triangles), and the point
α1 where f (α1) = α1 and f ′(α1) = 1 (stars). See Refs. [44,48] for
more details. The black dotted curve is a fit of the form nc(W ) ∝
c/(WL − W )ν with c ≈ 20 and ν ≈ 0.6, where we used the value
WL = 18.17 [61]. Inset: Evolution with n of the crossing point of
the curves of qtyp(W ) of Fig. 1 for two subsequent system sizes.

dimensions f (α), i.e., its Legendre transform (see, e.g.,
Refs. [36,48] for more details). The shape of f (α) can be
characterized, for instance, by the left edge of its support α−
and by the point where f (α1) = α1 and f ′(α1) = 1. As was
shown in Ref. [48], the evolution of f (α) with the system
size is also nonmonotonic: For small enough sizes the support
of f (α) gets broader (corresponding to more localized states)
and α− and α1 decrease upon increasing N . Conversely, for
larger sizes the support of f (α) shrinks back (corresponding
to more extended states), and α− and α1 increase with N .
This kind of behavior is observed in the entire region 10 �
W � 16. The crossover scale governing the nonmonotonic
evolution of the multifractal spectrum is once again very close
(within the numerical accuracy) with the one characterizing
the nonmonotonicity of the level statistics and of the anoma-
lous dimensions.

This is clearly illustrated by the main panel of Fig. 3, where
we plot the characteristic crossover scales nc(W ) extracted
from the different probes described above showing that,
within the numerical accuracy, they all yield a very similar de-
pendence on the disorder strength W (see Refs. [44,45,48] for
more details). These results support the existence of a unique
characteristic scale which controls the finite-size behavior of
the statistics of the energy levels and of the wave functions’s
amplitudes, and is in agreement with the supersymmetric ap-
proach [47,50–55], which predicts a unique transition from a
phase characterized by Poissonian statistics, localization, and
lack-of-ergodicity to one displaying GOE statistics, delocal-
ization, and full ergodicity.

As anticipated above, the nonmonotonic behavior can be
explained in terms of the nature of the Anderson critical point
on the RRG [44], which has properties similar to that of the
localized phase [14,51,53,54,54,55], with critical level statis-
tics of Poissonian form and strongly localized critical wave
functions. The observables of systems of size N 	 Nc(W )
would then first flow upon increasing N towards the critical
values, which tend, for d → ∞, to the ones of the localized
phase. Then, when N becomes larger than the correlation
volume Nc, the observables flow towards their standard values
in the delocalized, fully ergodic phase.

The black dotted curve of Fig. 3 shows a fit of the data
of the form nc ∝ c/(WL − W )ν , implying an exponential di-
vergence of the correlation volume at the transition point.
However, the numerical data are clearly too far from WL (and
perhaps too noisy) to obtain an accurate estimation of ν. Yet
the value of the exponent is not too far from the one predicted
by the supersymmetric analysis ν = 1/2 [50–55]. In the next
section we put forward a new large-deviation approach which
allows one to access the crossover scale from the solution of
the self-consistent equations for the Green’s functions in the
thermodynamic limit, providing a much more stringent test of
the analytic predictions.

IV. SELF-CONSISTENT ITERATION EQUATIONS
FOR THE GREEN’S FUNCTIONS AND LARGE

DEVIATION METHOD

As discussed in the Introduction, the Anderson model on
tree-like structures allows for an exact solution in the limit
of infinite lattices [15,47,49–55,58–61], which yield the prob-
ability distribution function of the diagonal elements of the
resolvent matrix, defined as G(z) = (H − zI )−1.

To obtain the recursive equations, the key objects are
the so-called cavity Green’s functions, Gi→ j (z) = [(Hi↔ j −
zI )−1]ii, i.e., the diagonal elements on site i of the resolvent
matrix of the modified Hamiltonian Hi↔ j where the edge
between the site i and one of its neighbors j has been removed.

Take a given site i and its neighbors {l1, . . . , lk+1} living on
an infinite tree. If one removes the site i from the graph, then
the sites {l1, . . . , lk+1} are uncorrelated since the lattice would
break in k + 1 semi-infinite disconnected branches. One then
obtains (e.g., by direct Gaussian integration or using the block
matrix inversion formula) the following iteration relations for
the cavity Green’s functions [15]:

G−1
i→lm

(z) = −εi − z − t2
∑

l j∈∂i/lm

Gl j→i(z), (5)

where lm with m = 1, . . . , k + 1 denote the excluded neighbor
of i, z = E + iη, η is an infinitesimal imaginary regulator
which smoothens out the pole-like singularities in the right-
hand sides, εi is the on-site random energy taken from the
distribution (2), and ∂i/l denotes the set of all k + 1 neighbors
of i except l . (Note that for each site with k + 1 neighbors one
can define k + 1 cavity Green’s functions and k + 1 recursion
relations of this kind.) After that the solution of Eq. (5) has
been found, one can finally obtain the diagonal elements of the
resolvent matrix of the original problem on a given site i as a
function of the cavity Green’s functions for all the neighboring

094202-5



BIROLI, HARTMANN, AND TARZIA PHYSICAL REVIEW B 105, 094202 (2022)

sites [58]

G−1
i (z) = −εi − z − t2

∑
l j∈∂i

Gl j→i(z). (6)

In the following we will focus on the middle of the spectrum
(E = 0) and set t = 1.

The statistics of the diagonal elements of the resolvent
gives—in the η → 0+ limit—the spectral properties of H. In
particular, the probability distribution of the LDoS at energy
E is given by

ρi =
∑

α

|ψα (i)|2 δ(E − Eα ) = lim
η→0+

1

π
ImGi(z), (7)

from which the average density of states (DoS) is simply given
by ρ = (1/N )

∑
i ρi = 1/(Nπ )Tr ImG.

Note that, however, on finite RRGs when site i is removed
from the graph, the neighbors {l1, . . . , lk+1} are not truly
decoupled since they are still connected by some (typically
large) loop present somewhere in the system. Since the aver-
age size of the loops scales as ln N [43], it is reasonable to
expect that Eqs. (5) and (6) become asymptotically exact in
the thermodynamic limit as the cavity Green’s functions on
sites {l1, . . . , lk+1} become uncorrelated in absence of site i if
the typical length of the loops, which connect them is larger
than the correlation length. This has been, in fact, proven
rigorously in Ref. [71] using the local convergence of RRGs
to Cayley trees.

Since the Green’s functions Gi→ j and Gi are random
variables, Eqs. (5) and (6) naturally lead to functional equa-
tions on their probability distribution Q(G) and P(G). From
Eq. (5) one first gets the self-consistent functional equation for
the probability distributions of the cavity Green’s functions in
the N → ∞ limit (averaged over the on-site disorder and on
different realizations of the random lattice)

Q(G) =
∫

d p(ε)
k∏

l=1

dQ(Gl ) δ

(
G−1 + ε + z +

k∑
i=1

Gl

)
,

(8)

where p(ε) is the probability distribution of the on-site ran-
dom energy, Eq. (2). Once the fixed point of Eq. (8) is
obtained, using Eq. (6) one can compute the probability dis-
tribution of the diagonal elements of the resolvent

P(G) =
∫

d p(ε)
k+1∏
l=1

dQ(Gl ) δ

(
G−1 + ε + z +

k+1∑
l=1

Gl

)
.

(9)

This set of functional equations can be solved numerically
with an arbitrary degree of precision using a population dy-
namics algorithm [15,37,38,46,58,61,72].

For a population with M elements, the statistics of his-
tograms obtained from the population yields directly an
accuracy O(M−1). Nevertheless, for any such a population-
dynamics approach, one not only has the population itself
available, but still the equations used to iterate the popula-
tion, here Eq. (8). This can be exploited to yield information
about the desired distribution far beyond the straightforward
accuracy O(M−1). This we will show below by introducing a
new type of advanced large-deviation algorithm which allows

us to sample the distribution Q(G) of cavity Green’s function
with a very high precision in the tails.

To state the large-deviation algorithm, we need to spec-
ify explicitly the population dynamics approach [61,72]: We
store a population {Gl} of M complex-valued elements Gl =
al + ibl (l = 1, . . . ,M), i.e., al = Re(Gl ) and bl = Im(Gl ).
For each iteration step, we pick k randomly chosen elements
Glj = al j + ibl j from the population and draw a uniformly
distributed random number ε for the local energy according
to Eq. (2). This allows us to calculate a new element from
Eq. (5). Since below we will access the imaginary part of G
separately, we use Eq. (5) in the following explicit form:

a + ib =
(−ε − E − ∑k

j=1 al j

) + i
(∑k

j=1 bl j + η
)

(−ε − E − ∑k
j=1 al j

)2 + (∑k
j=1 bl j + η

)2

≡ fE+∑k
j=1 al j ,

∑k
j=1 bl j +η

(ε), (10)

which implies the definition of fA,B(ε),

fA,B(ε) = (−ε − A) + iB

(−ε − A)2 + B2
(11)

for convenience. The iteration step is completed by replacing
one randomly chosen element by the new one. This iteration
is always performed until approximate convergence of the
population, as established by monitoring the mean, variance,
and few very small quantiles as well as the full shape of
the distribution. Naturally, the resolution of the approximated
distribution, represented by the population, is determined by
the number of elements M in the population, as was deeply
investigated in Ref. [61]. M should not be confused with
the system size. The population dynamics approach implicitly
assumes an infinite system size. Still, the finite population size
plays a somewhat similar role as far as the critical properties
are concerned. In particular, one observes that the critical
point WL systematically drifts to larger values as the pool size
is increased, similarly to what observed in the inset of Fig. 3
increasing N .

Previous studies [15,58,61] showed that, in the localized
phase, W > WL the iteration equations are unstable with re-
spect to the imaginary regulator η: Q(G) and P(G) are singular
and the average DoS vanishes in the η → 0+ limit. Con-
versely, in the metallic phase the probability distributions
converge to stable nonsingular η-independent distribution
functions, provided that η is sufficiently small.

For the distribution Q(b) of the imaginary part b ≡ ImG
we aim at obtaining the distribution to a high precision,
i.e., deep in the tails. For this purpose, we implemented a
large-deviation approach, which is explained next. Standard
large-deviation algorithms rely on the sampling of biased dis-
tributions and unbiasing the obtained data in the end. Such
approaches have been widely used, e.g., to study the large-
deviation properties of random graphs [73,74], biological
sequence alignments [75], protein folding [76], random walks
[77,78], models of transport [79,80], the Kardar-Parisi-Zhang
equation [81], nonequilibrium work processes [82], and many
more. We tried such an approach based on a bias here, but
were not able to see convergence of the used Markov chains
deep enough in the tails. For this reason, we developed a very
different approach here.
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To convey the main idea, we notice that for any given set
of randomly selected elements {Glj }, the next (and only) step
is to sample random energy values according to the uniform
distribution to obtain the probability of the imaginary part
b conditioned to this set. This means, for the given set and
given values of E and η, corresponding to A = E + ∑k

j=1 al j

and B = ∑k
j=1 bl j + η, we have, by using a standard property

of the delta function δ(x) and by using that the probability
density for the local energies is simply 1/W ,

QA,B(b) =
∫ W/2

−W/2
δ(b − f̃A,B(ε̃))

1

W
d ε̃

= 1

W

∫ W/2

−W/2

∑
l: f̃A,B (ε̃l )=b

1

| f̃ ′
A,B(ε̃l )|

δ(ε̃ − ε̃l )d ε̃, (12)

where f̃A,B = Im fA,B and ε̃l are those real-valued zeros of b −
f̃A,B(ε̃) which are located in the interval [−W/2,W/2], and
f̃ ′
A,B(ε) is the derivative of f̃A,B with respect to ε. The zeros of

the function b − f̃A,B(ε̃) are easy to find because we only have
to solve a quadratic equation, leading to ε̃l = A ±

√
B/b − B2.

Let us now assume that a arbitrary value b is given (fixed),
where we want to evaluate Q(b). The requirement that we
only have to consider real-valued roots leads immediately to
b � 1/B, i.e., QA,B(b) = 0 for b > 1/B.1 This, on the other
hand, means that to evaluate Q(b), we could sample from the
population such that only values are considered which follow
this condition, i.e., where B � 1/b, i.e.,

∑k
j=1 bl j + η � 1/b

holds. A simple way to achieve this restricted sampling is
to sample values with bl j � 1/b − η > 0 since larger values
will immediately lead to Q(b) = 0. Still, because a sum B =∑k

j=1 bl j + η is calculated, sometimes the combined sample
values will not meet the condition B � 1/b, hence this gives
rise no contribution to Q(b) as well. But this rejection happens
much less frequently compared to the sampling from the full
distribution.2 Thus, we restrict the sampling of all k-tuples to
the region �1/b − η and include a bias [

∫ 1/b−η

0 Q̂(b̃)db̃]k (Q̂
is the approximation of the true probability as given by the
finite population) to all values of QA,B(b) as calculated from
Eq. (12). We technically achieved the restricted sampling by
once sorting the population obtained in the standard popula-
tion dynamics according to the value of the imaginary part bl

and subsequently drawing uniformly inside the desired range.
Note that if the lmaxth element of the sorted population is the
largest element which is inside the desired range, the bias is
simply (lmax/M)k . For each value of b we were interested
in, we performed Nest times this step of estimating Q(b) and

1This also follows directly from Eq. (10) because the imagi-
nary part can be bounded from above by the value obtained for
(ε − A)2 = 0.

2This could be improved even more by sampling the first element
such that bl1 � 1/b − η, then by sampling the second one such that
bl2 � 1/b − η − bl1 and so on, but this would increase the efficiency
only by an factor of, at most, k (here k = 2), which we neglected
because the final sampling is very fast anyway, the order of few
seconds on a standard PC, as compared to the equilibration of the
population, which takes more than one day.

FIG. 4. Summary of the large-deviation sampling algorithm for
the distribution of the imaginary part of the cavity Green’s function
(see text).

averaged over these estimates. In Fig. 4 the algorithm is sum-
marized.

V. RESULTS

We applied the large-deviation approach described above
within computer simulations [83] to obtain the distribution of
the cavity Green’s function for the Anderson model for the
Bethe lattice with degree k + 1 = 3 with E = 0 and η = 0
for values of the disorder parameter W ∈ [13, 17.3]. For the
population dynamics approach, we used a population size
M = 107. As discussed in Ref. [61] in great detail and men-
tioned above, the transition point was expected to be shifted
to a slightly smaller value of the disorder compared to the
exact asymptotic estimation obtained by diagonalizing explic-
itly the integral operator that governed the linear stability of
the cavity equations in the localized phase in the M → ∞
limit, WL 
 18.17 ± 0.01. Below we indeed found a critical
disorder of about WL ≈ 17.77.

To speed up convergence, since the imaginary parts bl of
the elements Gl are typically small with increasing value of
G, we initialized the elements with random values uniformly
distributed for the real parts as al ∼ U (−1, 1) and for the
imaginary parts as bl ∼ 10−δU (0.5, 1.5). We used δ = 0 (no
special scaling) for W � 16 and δ = 9 for 16 < W � 17.4.
For all values of W , we observed convergence when iterating
the population 104 times [i.e., 104 × M times Eq. (10) is
evaluated]. For the final estimate of Q(b) we used Nest = 104

and considered logarithmically spaced values of b � 1.
The resulting distributions Q(b) for the imaginary part b =

ImG is shown in Fig. 5. Note that using the large-deviation ap-
proach, probability densities as small as 10−50 can be accessed
with a very high precision, well below any probability reached
by a standard population dynamics approach. To extract the
correlation volume, we assumed that the distribution follows
the heuristic shape

f (b) = f0b−λ exp[−(b/Nc)α], (13)

where the behavior for small values of ImG is governed by
a power decay with exponent λ and the tail behavior by a
stretched exponent with exponent α and scale Nc.
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FIG. 5. Distribution Q(ImG) of the ImG of cavity Green’s func-
tion for some values W ∈ [13, 17.3]. The line shows the result of a fit
according to Eq. (13) to determine the correlation volume, see text.

Note that we also tried the fitting form given in Eq. (57)
of Ref. [52], corresponding of the analytic prediction of the
supersymmetric treatment for the asymptotic behavior of the
tails of the probability distribution close to WL. Such a func-
tion fits equally well the data of Fig. 5. However, it contains
trade-off parameters for the correlation volume, i.e., it is pos-
sible to obtain good fits to the tail of the distributions over
broader ranges of Nc for suitably chosen combinations of the
values of the other parameters. Therefore, to obtain a more
informative estimation of the correlation volume, we finally
only considered Eq. (13). In any case, a key result of this
analysis is that the functional form predicted by Ref. [52] fits
remarkably well the tails of the distributions of the imaginary
part of the Green’s function over dozens of decades down
to very small probability density, thereby providing a very
stringent test for the validity of the supersymmetric approach.

By fitting the (log of the) distributions using the heuristic
function (13) for the different values of W , we obtained the
cutoff scale as a function of disorder strength W . Note that for
λ we obtained values near 1.5, compatible with the prediction
of the authors or Refs. [47,52]. We thus fixed λ = 1.5 for
all values of W , resulting in less noisy data for Nc for the
final fits. Note that the error bars obtained for W , also used
practically below for fits, are purely statistical, i.e., rather
small. For the exponent α, we obtained values in the range
α ∈ [0.163(2), 0.208(2)] with a decreasing trend for growing
values of λ. The results for Nc are shown in Fig. 6. We also
show on the same plot the estimation of the correlation volume
extracted from the nonmonotonic behavior of qtyp obtained via
EDs (circles of Fig. 3, see also Fig. 2). This comparison is very
insightful for two reasons. (i) The largest correlation volume
obtained using the large-deviation approach for W = 17.3 is
about 5.8 × 1013 which is almost 246. Thus, to observe such
correlation volumes directly using EDs, one would have to
treat RRGs of at least this size, which is, compared to the
results shown in Sec. III, clearly not feasible with the cur-
rent methods. (ii) The estimations of Nc obtained from the
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FIG. 6. Log of the correlation volume Nc as a function of the
distance of the disorder parameter W from the critical point WL . Nc

is obtained from the cutoff of the tails of Q(ImG) using the large-
deviation approach (crosses) and from the nonmonotonic behavior of
qtyp using EDs (circles, corresponding to the circles of Fig. 3). The
lines show the result of fits which model the divergence of the scale
at WL according to Eq. (14). The lower line is when fitting the large-
deviation data only, while the upper line is for all data combined.
Since we show all data and the fits as a function of WL − W , and since
the data points for the large deviation data are used for two different
fits, we have to use for the plot a single value of WL . Since the match
between fit and data was better, we took the value of WL as obtained
from the fit for the combined data, which resulted in WL = 17.61(3).
Thus, for the other shown fit using just the large deviation data, we
fixed WL to this value. Note that when, for testing purposes, WL is
allowed to adjust as well when fitting just the large-deviation data, a
similar value WL = 17.76(8) results, but with better agreement, see
inset.

nonmonotonic behavior of the spectral statistics and from the
cutoff of the tails of the probability distribution of the LDoS
can have a different prefactor A appearing in Eq. (14), and
asymptotically coincide only close enough to the Anderson
transition. Far from the transition the two estimations can
lead to quite different results. Yet, Fig. 6 shows that the two
estimations of Nc are in surprisingly good agreement, even far
below WL.

We fitted the resulting scale values to the function

Nc(W ) = A ec/(WL−W )ν (14)

[actually by fitting log Nc(W ) = log A + c(W − WL )ν to
log of the measured scale]. We set the exponent ν to the
value predicted by the supersymmetric formalism ν = 0.5
[47,50–55,61]. When allowing WL to adjust freely, we ob-
tained
estimates WL = 17.77(8) and c = 21(3) (just statistical
error bars), with a χ2-score per degree of freedom equal to
5.1. This is of medium quality, but can be explained by the
rather small purely statistical error bars for Nc(W ). The actual
fit to the data looks rather good, as is visible in the inset of
Fig. 6.

Although, as explained above, the correlation volume es-
timated from the cutoff of the tails using the large-deviation
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method and from the nonmonotonicity of the observables
related to the spectral statistics obtained from EDs might have
different prefactors, for the sake of completeness it might be
instructive to try to mix these data and fit them with the same
function. More precisely, we combined the large deviation
data and the data for Nc extracted from the nonmonotonic be-
havior of qtyp when using ED shown in Sec. III. Setting again
ν = 0.5 and letting WL free to vary, we got WL = 17.61(3) and
c = 15(1). Since the data for Nc does not carry error bars, we
cannot state a χ2-score here.

We also tried a fit to the combined data with ν allowing to
adjust freely. Here we obtained a value of ν = 0.26(15) which
is compatible within 2 sigma with the predicted value ν = 0.5.
Since the error bar of the fit value is rather large, we prefer to
use the fixed predicted value. Furthermore, the fact that one
finds a value of ν smaller than 1/2 is not surprising: As was
recently discussed thoroughly in Ref. [61], obtaining the theo-
retical value ν = 0.5 is indeed extremely difficult numerically.
In this paper the authors found that the estimated value of the
exponent obtained by fitting the divergence of the typical DoS
using the standard pool method was affected by strong cor-
rections due to the finite size of the pool and was significantly
smaller than 1/2 even when using huge populations. Upon
increasing M the value of ν systematically increases and gets
closer and closer to 1/2. We argue that a similar effect is
likely to be at play also within our large-deviation approach
and that to get the correct value of the exponent one should
carefully repeat the analysis increasing the size of the pool
used to describe the bulk part of the probability distribution.

Finally, for another comparison, we also performed a fit of
Eq. (14) to just the large-deviation-based data obtained here,
but with the value WL = 17.61 fixed, resulting in c = 15.4(8)
and a lower χ2-score per degree of freedom of 6.1. As is
visible in the main plot of Fig. 6, the match between the fitted
function and data is less good here than for the other two fits.

VI. CONCLUSION AND PERSPECTIVES

In this paper we introduced a new large-deviation approach
to investigate the critical behavior of the Anderson model on
the RRG. This approach allows us to study the distribution
of the imaginary part of the cavity Green’s function down to
very small probability tails, which is completely out of reach
for standard numerical techniques.

In fact, as shown in Sec. III and previously discussed
in Refs. [44,45,48], EDs clearly indicate the existence of a
characteristic crossover scale Nc(W ) governing the finite-size
effects of several observables and probes associated to the
statistics of the gaps and of the eigenfunctions’ amplitudes:
For small sizes N 	 Nc these observables seem first to flow
towards towards the critical value upon increasing N (which
on the RRG correspond to the ones of the localized phase
[14,51,53–55]), and then for N � Nc eventually approach the
values corresponding to a standard delocalized, fully ergodic,
phase. Although the ED estimation of Nc(W ) is compatible
with an exponential divergence of the correlation volume upon
approaching the Anderson transition, the numerical data are
limited to relatively small sizes, N � 215, and thus can only
access a disorder range too far from the transition to allow for
an accurate determination of its critical behavior.

On the contrary, the large-deviation extension of the pop-
ulation dynamics approach allowed us to obtain accurately
the distribution of the imaginary part of the cavity Green’s
function to very small probability densities as 10−50 (to obtain
them by ED one would need a system size at least as large as
N = 246 sites). The main idea is to first perform a standard
population dynamics till convergence. In a second step, a
biased sampling of the such-obtained histogram is made. This
works out, because for given values of ImG, only a restricted
range of the histograms contributes, and the magnitude of this
range determines the bias used.

The functional form predicted by the supersymmetric for-
malism [52] fits remarkably well the distributions over dozens
of decades and down to very low values of the probability
density, thereby providing a very stringent test of the the-
oretical approach. These fits also yield a direct numerical
estimation of the correlation volume Nc close to the critical
disorder. Our data are compatible with a divergence of the
logarithm of the correlation volume with a power of ν = 0.5
[46,47,50–55,61]. The corresponding transition value that we
find is WL ≈ 17.77.

All in all these results provide another transparent and co-
herent argument supporting the idea that the Anderson model
on the RRG becomes fully ergodic in the entire delocalized
phase, in agreement with the recent results of the authors
of Refs. [44–46,48] and with the predictions of the authors
of Refs. [47,50–55] based on supersymmetric field theory.
Nonetheless, ergodicity establishes on a system size which
becomes exponentially large as the localization transition is
approached, and exceeds the system sizes accessible via ED
well before the localization transition, resulting in a very wide
crossover region in which the system looks as if it were in
a mixed (delocalized but nonergodic) phase for all practi-
cal purposes, i.e., on finite but large length and timescales
[volumes smaller than Nc(W ) and times smaller than
h̄/N−1

c (W )].
In light of the analogy between Anderson localization on

Bethe lattices and many-body localization [16,23–29], the
results presented above might help us understand the highly
nontrivial properties of the delocalized phase of many-body
interacting disordered systems exhibiting MBL.

On the methodological side, our approach might present
a new type of large-deviation approach. It could be helpful
also for other models, where similar self-consistent equations,
like for field distributions, are obtained. The key property is
Eq. (12), which gives the contribution to an arbitrary location
b of the desired distribution Q as a function of any given
sample of the previously obtained population and as a function
of the underlying disorder distribution. In the case where the
sampling of the population can be effectively restricted to the
relevant values, depending on b, and if the zeros of the delta
function can be obtained efficiently, our proposed approach
should be useful.
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