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We numerically study random-hopping fermions (the Cruetz ladder) with repulsion and investigate how the
interactions deform localized eigenstates by means of the one-particle-density matrix (OPDM). The ground state
exhibits resurgence of localization from the compact localized state to strong-repulsion-induced localization.
On the other hand, excited states in the middle of the spectrum tend to extend by the repulsion. The transition
property obtained by numerical calculations of the OPDM is deeply understood by studying a solvable model
in which local integrals of motion (LIOMs) are obtained explicitly. The present paper clarifies the utility of the
OPDM and also how compact-support LIOMs in the noninteracting limit are deformed by the repulsion.
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I. INTRODUCTION

Understanding universal mechanism of localization
phenomena [1,2] is an important topic in condensed matter
physics [3,4]. Localization breaks the eigenstate-
thermalization hypothesis (ETH) [5,6], that is, the
prescriptions of conventional statistical mechanics cannot
be applied to localized systems. Also, certain interacting
many-body systems exhibit exotic behaviors of localization
and entanglement properties, which are called many-body
localization (MBL) [7–12]. Although the presence of
localized phenomena have been reported in various interacting
many-body systems [13–15], universal understanding of
the origin and detailed mechanism of MBL has not been
obtained yet. Especially, how interactions affect localization
phenomena in various many-body systems remains an open
question.

In this paper, we investigate effects of interactions in
a localized model with disorders, namely, random-hopping
Creutz ladders [16–22]. This model has short-range entangled
clusters, i.e., compact-localized states (CLSs), which often
appear in flat-band systems [23]. There are many works on
localization in various models with the CLS, including the
cluster spin, diamond chain, etc. [20,22,24–29], and they give
important insight into localization. The present paper belongs
to the category of these studies and intends to clarify specific
aspects of localization, i.e., deformation of localized states
by interactions. That is, we introduce interactions, which can
deform and destroy the CLS since the operators of the CLSs
no longer commute the full interacting Hamiltonian, thus the
many-body states constructed by the CLSs are no longer exact
many-body eigenstates in the interacting system. In particu-
lar, as we increase the strength of the interactions, how the
CLS-based localized states deform and what states, including
an extended (ETH) state, emerge as an alternative to them is
an important and interesting problem. In this paper, we shall
focus on these issues and obtain clear understanding.

In general, studying such a quantum many-body system
is not an easy task. However, one-particle density matrix
(OPDM) [30–33] is a useful and promising tool, in particular,
it reveals certain important aspects of localization emerging in
disorder systems. In this paper, we make extensive use of the
OPDM and analyze the random-hopping Creutz ladder.

The rest of this paper is organized as follows. In Sec. II,
we shall introduce the random-hopping Creutz ladder with
interactions. The basic properties of the noninteracting system
is explained. We then introduce the OPDM and its relation
to the Fock-state view point of localization. In Sec. III, we
present results of the numerical study by means of the exact
diagonalization. Not only the distribution of eigenvalues of the
OPDM, but also various quantities derived from the OPDM,
e.g., the distribution of the diagonal elements of the OPDM,
the real part of the OPDM elements in the real-space and
single-particle bases, etc., are obtained. These results clar-
ify how the ground state (GS) and spectrum-middle states
change as the strength of the interactions is increased and
how the CLS picture breaks down. In Sec. IV, we examine
the observations obtained by the numerical methods by con-
sidering solvable models. Details of the transition of the states
are clarified there. Section V is devoted for discussion and
conclusion.

II. RANDOM-HOPPING CREUTZ LADDER AND OPDM

We first introduce the target model; random-hopping
Creutz ladder, whose Hamiltonian is given as

HT = Hrh + HI,

Hrh = −
L∑

j=1

t j[ia
†
j+1a j − ib†

j+1b j+a†
j+1b j+b†

j+1a j] + H.c.,

(1)
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where t j = 1 + δ j is the amplitude of the random hopping and
we set δ j ∈ [−0.3. + 0.3] (uniform distribution), and na

j =
a†

j a j , etc. The parameter V (> 0) is the strength of the repul-
sion and a varying parameter. In this paper, we mostly study
the GS and states in the middle of the spectrum at half filling.
The reason why we take some specific hopping amplitudes
in Hrh [Eq. (1)] gets clear by introducing two new fermionic
operators defined on each plaquette,

W +
j = 1

2
(−ia j+1 + b j+1 + a j − ib j ),

W −
j = 1

2
(−ia j+1 + b j+1 − a j + ib j ). (3)

Then, in terms of {W ±
j }, the free Hamiltonian Hrh is

expressed as

Hrh = −
L∑

j=1

2t j[W
+†
j W +

j − W −†
j W −

j ]. (4)

As {W ±
j }’s are fermion operators satisfying canonical an-

ticommutators such as {W +†
i ,W +

j } = δi j , etc., exact energy
eigenstates of the noninteracting system, Hrh, are given by
the Fock states of {W ±

j }, i.e.,
∏L

j=1[(W +
j )†]mj [(W −

j )†]� j |0〉,
where mj = 0, 1 � j = 0, 1, and

∑L
j=1(mj + � j ) = N for

N-particle states. In particular, for the GS at half filling, the
many-body state is given by |GS0〉 = ∏L

j=1[W +†
j ]|0〉. On the

other hand, in the middle of the spectrum (zero energy),
|ψ〉 ∼ ∏

j[W
+†
j W −†

j ]|0〉, where { j}’s are rather arbitrary sites.
We rename the fermion operators at site in such a way;

(a1, b1, a2, · · · , bL ) = (c1, c2, c3, · · · , c2L ), and then OPDM,
ρ̂ = {ρ�m}, is defined as follows for a general (interacting)
many-body state |ψ〉 using operators {c�}2L

�=1, which we call
OPDM in the real-space basis:

ρ�m = 〈ψ |c†
�cm|ψ〉, �, m = 1, 2, · · · , 2L. (5)

By diagonalizing ρ̂, non-negative eigenvalues {nα} (α =
1, · · · , 2L) and eigenfunctions {φα} of ρ̂ are obtained. For the
system of total particle number N , one can show

∑2L
α=1 nα =

N . In MBL regimes, nα ∼ 1 or 0, and the eigenfunctions
(orbitals) corresponding to nα ∼ 1 are regarded as occupied
single-particle states and those for nα ∼ 0 empty states. In this
case, the state, |ψ〉, is well-described by a Slater determinant
(SD) of {φα} for nα ∼ 1.

In the subsequent sections, we shall numerically study how
the states in Hrh changes by introducing the interactions HI by
observing the OPDM. To this end, we define W representation
of OPDM such as 〈W †

� Wm〉, explicit form of which is defined
later. In previous studies, the properties of the OPDM, in
particular, its eigenvalues, were employed for the study of
localization. In the present paper, we shall make full use of the
OPDM to clarify how states change under the increase in the

strength of the interactions. This is one of the main highlights
of the present paper, as we explained in Introduction.

It is quite instructive and useful to examine the OPDM
from the viewpoint of Fock-space localization [33–36]. The
elements of the OPDM are nothing but correlations on the
Fock space for an eigenstate. To express many-body states
with L sites, we introduce suitable orbitals {d j}, where index
j does not necessarily represent lattice sites, although we use
the same notation. Then, the basis of the Fock space is given
by |I〉 = ∏L

j=1[d†
j ]mj |0〉, where mj = 0, 1 and

∑L
j=1 mj =

N . The many-body state is generally expressed as |E〉 =∑
I AI |I〉, where

∑
I |AI |2 = 1.

Here, we introduce Hamming distance between two Fock
states |I〉 and |K〉, defined as rIK = 1

2

∑L
j=1(mj,I − mj,K )2,

with Nj ≡ d†
j d j , Nj |I〉 = mj,I |I〉, Nj |K〉 = mj,K |K〉. Then,

correlation function on the Fock-space is defined as

F (r) =
∑

I,K :,rIK =r

|AI |2|AK |2. (6)

The correlation function can quantify the localization ten-
dency of the state. In a localized state |E〉, there are N orbitals
(eigenvectors of the OPDM) with eigenvalue nα ∼ 1 (α =
1, · · · , N ), and there is a dominant Fock state |M0〉, which
is close to the SD of these φα (α = 1, · · · , N ). Then, an
eigenstate |E〉 is given as

|E〉 = AM |M0〉 + AK |K〉 + · · · .

Let us assume d†
i d j |M0〉 = |K〉 (i �= j), and then the off-

diagonal (i �= j) element of the OPDM, ρi j = 〈E |d†
i d j |E〉 is

given by

[〈M0|A∗
M + 〈K|A∗

K + · · · ]d†
i d j[AM |M0〉 + AK |K〉 + · · · ]

∼ A∗
K AM . (7)

Equation (7) shows that the distance between |M0〉 and |K〉 is
rM0K = 2, and therefore, |ρi j |2 = |AMAK |2 measures mixing
amplitude of the leading state |M0〉 and the states with distance
rM0K = 2. One may expect that the off-diagonal elements of
the OPDM are getting large at a phase transition of MBL as
the localized state dominated by the SD, |M0〉, is destroyed
by the growing subleading states such as |K〉. A detailed
discussion on this point will be given later by studying the
Creutz ladder.

III. NUMERICAL STUDIES

We move on the numerical study of the Creutz ladder.
We mostly set the system size 2L = 16 and particle number
N = 8 [37].

In Fig. 1, we first show how the eigenvalues of the OPDM,
{nα}, vary as the repulsion, V , increases. In the case of small
V , for both the GS and band center, nα ∼ 1 for 1 � α � N =
L, and nα ∼ 0 for N < α, indicating localization takes place
there. As V increases, the GS keeps this behavior of {nα} until
the stepwise shape gets weaker at intermediate V ’s and, for
further increase of V , {nα} resume the behavior for small V .
On the other hand, in the band center, almost all eigenvalues
{nα} ∼ 0.5 for V � 0.50, indicating breakdown of the states
composed of |ψ〉 ∼ ∏

j[W
+†
j W −†

j ]|0〉.
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FIG. 1. Eigenvalues of the OPDM for the GS (a) and the band
center (b). α is the number of eigenstate of the OPDM of Eq. (5)
in ascendant energy order. Results are averages 5000 samples of the
eigenstates.

To clarify the above observed behavior of the states, we
calculate the real part of the OPDM of the GS in the real space
of (a1, b1, a2, b2, · · · , aL, bL ) [{ρ�m} of Eq. (5)] and obtain the
results as in Figs. 2(a)–2(c). In these data, as V increases, it
is obvious that the GS changes from the W ±-dominant state
to the real space ab-dominant one. For large V , the GS has
a density-wave order as shown in Fig. 2(c). Additional data
of the OPDM for in critical regime (V ∼ 10) and its density
distribution are displayed in Appendix A.

We also calculate OPDM in the W -state basis (W -basis
OPDM): |ψSP

± j〉 = (W ±
j )†|0〉 ( j = 1, 2, · · · , L), where |ψSP

± j〉
is obtained from the definition of W ±

j as a linear combination

of the Fock-state basis {c†
�|0〉}. Then, the W -basis OPDM is

defined by
〈
ψSP

±i

∣∣(ρ̂)∗
∣∣ψSP

± j

〉 ≡
∑
�,m

〈
ψSP

±i

∣∣c†
�|0

〉
ρ∗

�m〈0|cm

∣∣ψSP
± j

〉
,

where the matrix (ρ̂)∗ is the complex conjugate of ρ̂. (The
necessity of taking the complex conjugate is clarified by the
practical calculation.) Furthermore, we simplify the state
notation of |ψSP

± j〉 as [(+, 1), (+, 2), (+, 3), · · · , (+, L),

(a) (b) (c)

(f)(e)(d)

V=0.01

V=0.01

V=5.0

V=5.0 V=30.0

V=30.0

FIG. 2. (a)–(c) Real part of the OPDM of the GS for V =
0.01, 5.00, and 30.0. Figures represent the OPDM of Eq. (5) in
the real space such as (c1, c2, c3, · · · , c2L ). (d)–(f) Real part of
〈ψSP

s |(ρ̂)∗|ψSP
t 〉. The state labels s and t are in the ascendant energy

order. Each result is obtained from single shot for single disorder
realization.

FIG. 3. O� = 〈Tr[ρ̂2]〉 of the GS at half fillings. For 2L = 8, 12,
and 16, O� first exhibits a sharp decrease and then it returns to the
original value quite rapidly as V increases. This behavior indicates
that a GS transition to a novel localized state takes place. On the
other hand, for 2L = 10 and 14, this recurrence of O� does not occur.
These results indicate that a state with the rung density wave emerges
at the commensurate fillings for V > Vc, as Fig. 2(c) implies.

(−, L), · · · , (−, 2), (−, 1)] → (1, 2, · · · , 2L) → (s = 1,

2, · · · , 2L) and then write the matrix element as
〈ψSP

s |(ρ̂)∗|ψSP
t 〉 (s, t = 1, 2, · · · , 2L). In Figs. 2(d)–2(f),

the real part of each element of the W -basis OPDM is shown.
In these data, while for small V , each orbital is identical to the
state (W ±

j )†|0〉, that is, the GS is a many-body state mainly
described by a product of the W basis, (W +

j )†|0〉. As V
increases, this picture fades away and for large V , a different
type of orbitals emerge, which are mixing states of (W +

j )†|0〉
and (W −

j )†|0〉, as we discuss later on. Thus, in the GS, the
W ±

j picture is significantly deformed by the interactions.
To further quantify the above change of the OPDM, we

introduce a quantity O� = 〈Tr[ρ̂2]〉, where 〈· · · 〉 denotes the
average over the disorder realization and O� measures the
magnitude of the diagonal elements. The numerical result of
O� for the GS is displayed in Fig. 3, indicating that a phase
transition takes place at Vc ∼ 7, and a novel state emerges for
V > Vc. Interestingly enough, O� behaves quite differently
for the commensurate (2L = 8, 12, 16) and the incommensu-
rate (2L = 10, 14) fillings for V > Vc. At the commensurate
fillings, O� first exhibits a sharp decrease and then returns
to the original value quite rapidly as V increases. On the
other hand, at incommensurate fillings, this recurrence of O�

does not occur. These results mean that the GS evolves into a
localized state at commensurate filling, whereas at the incom-
mensurate fillings, the GS moves to an extended state. This
observation is obviously in good agreement with the OPDM
in Fig. 2.

The system-size dependence is also displayed in Fig. 3. For
the case with tiny off-diagonal elements of the OPDM, the
lower bound of O� is estimated as ∼N2/2L, and therefore
O�/2L ∼ (N/2L)2 = 1/4 in the half-filling case. Calcula-
tions show a slightly larger value than 1/4, indicating the
existence of nonvanishing off-diagonal elements in the OPDM
even in the vicinity of the transition as can be seen in Fig. 2
for V = 5. As the system size is getting larger, the range of
V for the sharp decrease of O� is getting smaller, indicating
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(a) (b)

(c) (d)

V=0.01

V=0.01 V=25.0

V=25.0

FIG. 4. (a), (b) Real part of OPDM of an eigenstate in the middle
of the spectrum for V = 0.01 and 25.0. The OPDM is featureless for
large V . (c), (d) Real part of 〈ψSP

s |(ρ̂)∗|ψSP
t 〉. The state labels s and t

are in the ascendant energy order. Each result is obtained from single
shot for single disorder realization.

the possibility that this behavior persists in the limit L → ∞.
(Increase of the minimum of O� as L increases comes from
the fact that the dimension of the OPDM gets larger for larger
L, and it does not imply that the transition gets weak for
larger L.)

Figures 4(a) and 4(b) show the real part of the OPDM of an
eigenstate in the middle of the spectrum (nearly zero energy).
For small V , the state is mainly described by a product of a
pair of (W ±

j )†|0〉 Fock state. As V is getting large, almost all
states in the Fock space take part in many-body states. Also,
the real part of the OPDM in the W basis is shown in Figs. 4(c)
and 4(d). The all off-diagonal elements of the real-space
OPDM are almost vanishing, and from the perspective of the
Fock space, this means that the coefficients of the expansion
such as |E〉 = ∑

I AI |I〉 take random variables and, as a result,
ρ�m ∼ 0 (� �= m). This explains the result that the real part of
the off-diagonal elements of 〈ψSP

s |(ρ̂)∗|ψSP
t 〉 are also small.

In addition, O� for the middle of the spectrum is shown in
Fig. 5(a), and it decreases rapidly as V increases and keeps
very small values for larger V in contrast to the GS. The above
observation ρ�m ∼ 0 (� �= m) is supported by the calculation
of O� showing O�/2L ∼ 1/4 for V > 1. The localized states
in the middle of the energy spectrum are destroyed by the
repulsion.

In Fig. 5(a), we also show the system-size dependence of
O� for the spectrum-middle states. The calculation indicates
that the change from the localized phase to the extended state
is a second-order transition as O� exhibits clear system-size
dependence. The result also implies that the correlations of the
rung density waves play some role in the instability of local-
ization as in the GS in Fig. 3. Discussion on solvable models
in Sec. IV will shed light on this behavior. It is also useful to
measure the variance of O� , vO� ≡ 1

2L 〈(Tr[ρ̂2] − O� )2〉, the

(a)

FIG. 5. (a)O� = 〈Tr[ρ̂2]〉 of energy-spectrum-middle states. O�

decreases in all cases, but exhibits a difference behavior in the com-
mensurate (2L = 12, 16) and incommensurate (2L = 10, 14) fillings
as in the GS shown in Fig. 3. This implies that the correlations of the
rung density wave play some role in the instability of localization.
(b) Variance of O� , vO� , for various system sizes. The results
indicate a second-order transition of energy-spectrum-middle states.

calculation of which is displayed in Fig. 5(b). The system-size
dependence of vO� obviously supports the above conclusion
of the state transition of the spectrum-middle regime.

The above observation of the OPDM indicates the impor-
tance of the magnitude of the off-diagonal elements to search
the state transition induced by the interactions. To quantify the
behavior of the GS as a function of V , we measure quantities
such as [38]

C ≡
√

Tr[[ρ̂0, ρ̂][ρ̂, ρ̂0]] =
√

2Tr[(ρ̂0)2(ρ̂)2 − (ρ̂0ρ̂ )2],

where ρ̂ = {〈ψSP
s |(ρ̂)∗|ψSP

t 〉} is the W -basis OPDM for finite
V and ρ̂0 is the W -basis OPDM for V = 0, and we also
measure

Q ≡
∑

|off-diagonal elements of ρ̂|4.
The quantity C is called Frobenius norm and it quantifies the
distance between ρ̂0 and ρ̂. In Fig. 6, we display the numerical
results of these quantities for the GS. Both C and Q exhibit a
stepwise change at V � 7, indicating the existence of a state
transition. In particular, the Frobenius norm can be used as an
order parameter for observing that the GS enters into another
localized state described by the SD composed of eigenstates
of the OPDM in Fig. 2(c). To investigate the physical picture
of the newly emergent state, a study on a solvable model is
quite useful, as we see in the subsequent section.
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FIG. 6. (a) Frobenius norm C of the GS. We also plot
Tr[(ρ̂0)2(ρ̂ )2], and Tr(ρ̂0ρ̂)2. (b) Q is a smoothly increasing function
of V till V � 7. Stepwise increase indicates a phase transition to an-
other localized state. Averaged over 5000 samples of the eigenstates.

IV. STUDY BY SOLVABLE MODELS

In the preceding section, we investigated the phase transi-
tion of HT at half filling by using the numerical calculation. In
this section, we shall study a related interacting model, which
is exactly solvable due to the existence of local integrals of
motion (LIOMs) [39]. The Hamiltonian of the target model is
given as follows: HP = Hrh + HN,

HN = g
L∑

j=1

Nj−1[W +†
j W −

j + W −†
j W +

j ], (8)

where Nj ≡ N+
j + N−

j , N±
j = W ±†

j W ±
j , and g is a coupling

constant. HP is a projective Hamiltonian. To show this, we
display the following LIOMs, K±

j ( j = 1, · · · , L),

K+
j ≡ N+

j − g

4t j
O j, K−

j ≡ N−
j + g

4t j
O j .

where Oj = Nj−1[W +†
j W −

j + W −†
j W +

j ]. It is verified that
{K±

j }’s commute with each other, and HP is expressed as

HP = ∑L
j=1 2t j (−K+

j + K−
j ).

As shown in the above, HP is a projective Hamiltonian and
all eigenstates of HP are given by eigenstates of {K±

j }’s. To
see how eigenstates look, let us focus on states at plaquette j
and study eigenstates and eigenvalues for the case of 〈Nj−1〉 =
1. We put λ j = g〈Nj−1〉/(4t j ), then after some manipulation,
we obtain eigenstates, ψ1 and ψ2 as

ψ1 ∝ (x1 jW
+†
j − λ jW

−†
j )|0〉,

ψ2 ∝ (λ jW
+†
j + x1 jW

−†
j )|0〉. (9)

These eigenstates satisfy the following:

K+
j ψ1 = x1 jψ1, K+

j ψ2 = x2 jψ2,

K−
j ψ1 = x2 jψ1, K−

j ψ2 = x1 jψ2,

where x1 j = 1
2 (1 +

√
1 + 4λ2

j ) and x2 j = 1
2 (1 −

√
1 + 4λ2

j ).

The GS of HP at half-filling is given by |GS〉 = ∏L
j=1 ψ1 j

with 〈Nj〉 = 1 for all j, and energy, EGS = −2
∑

j t j (1 +
4λ2

j )
1/2. Deformation of the state by the interactions is easily

seen as it changes W +†
j |0〉 → ψ1 j , i.e., uniformly distributed

fermion density is deformed by the interactions, HN. More
precisely, the element at the j rung, (aj − ib j ), gets larger
amplitude than that at the ( j + 1) rung, (aj+1 + ib j+1) [40].

FIG. 7. Density of eigenvectors of the real-space OPDM for
V = 30. α labels eigenvectors and � lattice sites (for the original
fermion c†

� , � = 1, 2, · · · , 2L). {cα
� } are expansion coefficients. Each

eigenvector resides on a rung, as expected by the analytical study on
the solvable model, HP .

The OPDM of the GS has diagonal elements ρ̃ j j = x2
1 j/(x2

1 j +
λ2

j ) for i � N and ρ̃ j j = λ2
j/(x2

1 j + λ2
j ) for i > N . The an-

tidiagonal elements are also nonvanishing as 〈W +†
j W −

j 〉 =
−λ jx1 j/(x2

1 j + λ2
j ).

We recognize similar behavior to the above analytical re-
sults in the numerical calculations of the OPDM for HT .
[Please see Figs. 2(e) and 2(f), and recognize that the mixing
amplitudes, 〈W +†

j W −
j 〉, take both positive and negative val-

ues.] In fact, this is not pure coincidence.
It was discussed and verified by the practical calculations

that the leading terms of uniform interactions such as HI in
Eq. (2) are those described solely in terms of the LIOMs of the
system without the interactions [41], and in the system HT ,
these LIOMs are nothing but density operators {N±

j }. These
leading terms do not deform the wave functions of the energy
eigenstates, as they are simultaneous eigenstates of {N±

j }. The
next-leading terms out of HI, HI

N , include flipping terms of
W ±

j besides the LIOMs, and are obtained by the practical
calculation as follows:

HI
N = V

2

L∑
j=1

[Nj+2 + Nj+1 − Nj−2 − Nj−1]

×[W +†
j W −

j + W −†
j W +

j ], (10)

which have similar structure to HN in Eq. (8) and they con-
struct a projective Hamiltonian. Therefore, we expect that
the leading-order repulsion described solely by {N±

j } induces
interplaquette density fluctuations and HI

N [Eq. (10)] induces
the (W + − W −) mixing and as a result, intraplaquette den-
sity fluctuations emerge. To verify this observation, we show
eigenvectors of the real-space OPDM, ρ̂, for V = 30 [dis-
played in Fig. 2(c)] in Fig. 7. Each eigenvector resides on
a rung, as predicted by the analytical study on the solvable
model, HP . By the above consideration, we can write down
the (approximate) wave function of the GS of the Hamiltonian

HT for the strong interactions: |GS∞〉 = ∏ L
2 −1
j=0 [ψ−

2 j+1ψ
+
2 j+2],

where ψ
+(−)
j = ψ1 j |g→±∞. (Please note that the GS has the

rung-density-wave order [42].)
One may wonder if binary LIOMs can be constructed

from {K±
j }, whose eigenvalues are 1 or 0. We com-

ment on this point. In fact, it is feasible, and they are
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explicitly given by nγ j = ψ
†
γ jψγ j (γ = 1, 2) with quasipar-

ticle operators; ψ̂
†
1 j = 1√

x̂2
j +λ̂2

j

(x̂ jW
+†
j − λ̂ jW

−†
j ) and ψ̂

†
2 j =

1√
x̂2

j +λ̂2
j

(λ̂ jW
+†
j + x̂ jW

−†
j ), where we have defined operators

λ̂ j = gN̂j−1/(4t j ), etc. Details of these operators are scruti-
nized in Appendix B. In the text, we shall explain essential
aspects of these operators. We can prove {ψ̂†

γ j, ψ̂γ ′ j} = δγ γ ′ .

However, as the operation of ψ̂1(2) j changes the number of
fermions residing in plaquette j, they do not anticommute
with ψ̂γ j+1 (ψ̂†

γ j+1), and therefore cautious manipulation with
them is required. However, their number operators, nγ j , com-
mute with Nj = N+

j + N−
j and, therefore, in the sector of the

Hilbert space with fixed value of Nj , the operators x̂ j and
λ̂ j can be treated as a c number. The Hamiltonian, HP , is
expressed as

H̃P = −
L∑

j=1

2t j

√
1 + 4λ̂2

j [ψ†
1 jψ1 j − ψ

†
2 jψ2 j], (11)

and, for each sector, by substituting corresponding c number
for x̂ j = x1 j and λ̂ j = λ j , energy eigenvalues and eigenfunc-
tions are obtained by solving the system H̃P . If we expand H̃P
in Eq. (11) in the power of g, we obtain a reminiscence of the
effective Hamiltonian of localization expressed in terms of the
LIOMs.

V. DISCUSSION AND CONCLUSION

In this paper, we studied effects of the repulsion to the
random-hopping Creutz ladder. We mostly employed the
OPDM for clarifying the phase diagram, localization tran-
sition, and structure of the GS and spectrum-middle states.
The OPDM elucidates how interactions deform many-body
states composed of compact localized states. The OPDMs
expressed by the real-space basis as well as the compact-
localized state basis are complementary with each other and
various quantities are extracted from them by using the numer-
ical calculations. Study of a solvable model with the explicit
LIOMs also gives useful insights to understand the detailed
structure of numerically obtained many-body states in the
random-hopping Creutz ladder. We obtained clear pictures of
the phases concerning the GS and states in the middle of the
spectrum. We showed that the OPDM contains rich informa-
tion about localized states and localization transition. It is a
future work to apply the obtained utilities to other models.

Finally, we comment on the properties of the GS transition
observed by the various quantities. Eigenvalues of the OPDM
in Fig. 1, as well as O� , C, and Q exhibit a stepwise discon-
tinuity at the transition point Vc � 7, indicating that the GS
transition is of first order. At the first-order phase transition,
the correlation length (of the rung density wave) can be finite
and not diverge. This observation does not contradict the re-
cent study [43] indicating the existence of an intervening ETH
phase between two distinct MBL states, as we are studying the
GS. In general, to extract the trustworthy localization length in
MBL is not an easy task, but a method to use the participation
ratio obtained by the OPDM was proposed and it seems to
work successively [30]. For the present system, however, the

(a) (b)

FIG. 8. (a) OPDM for ground state in the representation in the
real space basis. Rung density wave with small W ±-type fluctuations
is observed. (b) Density of eigenvectors of the real-space OPDM, ρ

[Eq. (5) in the main text] for V = 10. Each eigenvector resides on a
rung, as expected by the analytical study on the solvable model, HP .

method is difficult to be applied because of the degeneracy of
the many-body states. Therefore, a definite answer to the ques-
tion of the localization length diverging or not at the critical
point cannot be obtained, even though the correlation length
might be finite by the properties of the first-order transition.
However, qualitative argument may be possible. That is, we
understand that at the transition point, the GS changes from
the state of the plaquette order to the rung order. For this
transition to take place, emergence of an extended state is
not needed as the change of the GS occurs locally. Anyway,
to answer the above question is definitely an important and
interesting future problem.

There are a few interesting works studying a transition
between MBL states in disordered spin chains [44,45]. These
studies showed that the MBL regime is divided into two
MBL phases, i.e., paramagnetic and spin-glass MBL phases.
Behavior of domain walls is different in the two phases, i.e.,
localized domain walls are created and removed in pairs in
the paramagnetic MBL state, whereas they are stable without
overlapping each other in the spin-glass MBL state. For the
GS of the system studied in this paper, we also observed
that the spatial characteristics in each of two phases, i.e., the
plaquette and rung-order density and also phase-coherence
pattern, change. This observation of the similarity might be
useful for future investigation of phase transitions between
multiple MBL phases.
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APPENDIX A: OPDM IN CRITICAL REGIME

In the main text, we showed the OPDM for small, inter-
mediate, and large values of V . In this Appendix, we display
similar data for the GS of the system just after the phase
transition, i.e., V = 10. In the OPDM in the real-space basis
[Fig. 8(a)], a rung density wave with small W ±-type fluctua-
tions is observed. In Fig. 8(b), eigenvectors of the OPDM are
displayed and almost all of them seem to reside on a rung
forming rung density wave, although there are fluctuations
from the exact density wave. The above results for the V = 10
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system are in good agreement with data of O� , Q, and C
indicating, the phase-transition value Vc � 7.

APPENDIX B: QUASIPARTICLE OPERATORS

In this appendix, we shall discuss the solvable model, HP ,
a bit more, in particular, quasiparticle operators. In the main
text, we obtained eigenstates of the LIOMs, K±

j , as follows:

ψ1 j ∝ (x1 jW
+†
j − λ jW

−†
j )|0〉,

ψ2 j ∝ (λ jW
+†
j + x1 jW

−†
j )|0〉. (B1)

Equations (B1) indicate that one may obtain quasiparticle
operators as

ψ̂
†
1 j = 1√

x̂2
j + λ̂2

j

(x̂ jW
+†
j − λ̂ jW

−†
j ),

ψ̂
†
2 j = 1√

x̂2
j + λ̂2

j

(λ̂ jW
+†
j + x̂ jW

−†
j ). (B2)

In fact, the operators ψ̂
†
1 j and ψ̂

†
2 j produce the states in

Eq. (B1) correctly when they are applied to the empty state
at plaquette j, i.e., ψ̂

†
1 j |0〉 = ψ1 j/|ψ1 j |. However, ψ̂

†
γ j (γ =

1, 2) does not anticommute with ψ̂
†
γ ′, j−1 nor ψ̂γ ′, j−1 as x̂ j and

λ̂ j contain the number operator at ( j − 1), N̂j−1. Therefore,
ψ̂

†
1 j and ψ̂

†
2 j are not quasiparticle operators.

However, their number operators, nγ j = ψ̂
†
γ jψ̂γ j commute

with N̂j−1 and themselves. Practical calculation shows

ψ
†
1 jψ1 j = 1

x2
j + λ2

j

[
x2

jW
+†
j W +

j + λ2
jW

−†W −
j

−x jλ j (W
+†
j W −

j + W −†
j W −

j )
]
,

ψ
†
2 jψ2 j = 1

x2
j + λ2

j

[
λ2

jW
+†
j W +

j + x2
jW

−†W −
j

+x jλ j (W
+†
j W −

j + W −†
j W −

j )
]
, (B3)

where we have set x̂ j (λ̂ j ) → x j ( λ j ) as they commute with
Nj′ . From Eq. (B3), we have

ψ
†
1 jψ1 j − ψ

†
2 jψ2 j = − x j

x2
j + λ2

j

[−W +†
j W +

j + W −†
j W −

j

+gNj−1

2t j
(W +†

j W −
j + W −†

j W +
j )]

= − x j

x2
j + λ2

j

[−K+
j + K−

j ], (B4)

(ψ†
1 jψ1 j + ψ

†
2 jψ2 j = W +†

j W +
j + W −†

j W −
j ,

ψ
†
1 jψ

†
2 j = W +†

j W −†
j ). (B5)

Therefore, Hamiltonian HP is expressed as

H̃P = −
L∑

j=1

2t j

√
1 + 4λ̂2

j [ψ†
1 jψ1 j − ψ

†
2 jψ2 j]. (B6)

It should be emphasized that there exist interactions between
the number operators, nγ j , in H̃P [Eq. (B6)] as {λ̂ j} con-
tain {nγ , j−1}. One may expect that the usual logarithmic
increase in entanglement entropy (EE) takes place in a global
quench of this system. However, the system’s Hamiltonian is
expressed as

HP =
L∑

j=1

2t j (−K+
j + K−

j )

by the LIOMs, K±
j , and therefore EE may exhibit more stable

behavior in a global quench. In fact, our recent work on a
related spin model [46] shows that it exhibits stable EE similar
to that in Anderson localization.
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