
PHYSICAL REVIEW B 105, 094116 (2022)

Structural phase transition of monochalcogenides investigated with machine learning
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As machine learning becomes increasingly important in science and engineering, it holds the promise to
provide a universal approach applicable to various systems to investigate their crystalline phase transitions.
Here, we build and train accurate artificial neural networks that can distinguish tiny energy difference, which
is crucial to predict the crystalline phase transitions. Employing the trained artificial neural networks in Monte
Carlo simulations as the surrogate energy function, we apply this approach to monochalcogenides, including
bulk and two-dimensional monolayer SnTe and GeTe, investigating their crystalline phase transitions. The
machine-learning approach, when viewed as providing a universal mathematical structure, can be transferred to
the investigation of other materials when the training data set generated with ab initio methods are available.
Moreover, the machine-learning approach resolves the difficulties associated with constructing the effective
Hamiltonian for monochalcogenides, showing great potential with its accuracy and efficiency.
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I. INTRODUCTION

When atoms in a crystal are displaced globally, a structural
phase transition occurs, which changes its crystallographic
structure. Since it is usually accompanied by a change in some
macroscopic properties such as the dielectric susceptibility,
the structural phase transition is an important phenomenon
[1]. A particular class of material, that is, the ferroelectric ma-
terials, are well known for their crystalline phase transitions
that are often associated with the change from the paraelectric
to the ferroelectric phase where ion displacements play a
crucial role [2]. Since ferroelectric materials have spontaneous
polarization that can be reversed by an external electric field,
they are important functional materials for many applica-
tions, e.g., ultrafast switches, phased-array radar, and dynamic
random-access memories [3]. Interestingly, it has been dis-
covered that many monochalcogenides, including SnTe, SnSe,
GeTe, are also ferroelectric materials [4,5] with structural
changes accompanying their phase transitions. In this work,
we propose to apply the machine-learning (ML) approach
to investigate the structural phase transition of monochalco-
genides.

The crystalline phase transitions are usually described by
a phenomenological theory, most notably the Landau-type

*dawei.wang@xjtu.edu.cn

theory, which have been used for more than 50 years for
ferroelectric materials [6]. With the advent of first-principles
calculation, microscopic theory was proposed. For ferroelec-
tric materials, it was the effective Hamiltonian approach
proposed in the late 1990s [7–9] which critically depends
on the concept of soft mode [10,11]. For ferroelectric per-
ovskites, the effective Hamiltonian has been a popular method
to investigate their static and dynamic properties and achieved
great successes [12–18]. In practice, the effective Hamiltonian
approach needed to identify the most important degrees of
freedom in a system, and then construct the internal energy
of the system as a function of these degrees of freedom and
their interactions based on symmetry arguments. The coeffi-
cients entering the effective Hamiltonian energy are typically
obtained by first-principles computations [9].

Since the effective Hamiltonians were mostly designed for
ferroelectric perovskites, for other types of materials with
structural phase transition, it may need to be constructed again
from scratch. When it involves many degrees of freedom, the
construction process can be difficult since all the dynamic
variables need to be specified and proper formulas, along with
the coefficients, need to be proposed, neither of which is triv-
ial. In addition, for this first-principles-based approach, it is
hard to achieve a transferability since each system may require
a different formula to describe the energy. We note that, while
the effective Hamiltonian is popular for perovskites, there is
no such a thing for ferroelectric pyrochlore (A2B2O7). A more
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universal approach, not limited to perovskites, is therefore
desired. For instance, in recent years, some new force fields,
e.g., the ReaxFF, have been applied to ferroelectrics, even for
defective systems [19–21].

The need to have a more unified approach was also demon-
strated in recent years with monochalcogenides. In 2016, it
was reported that SnTe thin films with a thickness of 1 unit
cell (UC, with two layers of atoms) can have stable spon-
taneous polarization up to 270 K, and 2-UC to 4-UC SnTe
films also have strong ferroelectric properties at room tem-
perature [22,23]. The ferroelectricity of this two-dimensional
(2D) material makes it a promising candidate for applications
in devices such as high-density memory nanosensors [24,25].
Monochalcogenides have also been used for their photovoltaic
effect at room temperature [26,27] or as phase change materi-
als [28]. Its phase-transition sequence and the corresponding
phase-transition temperatures are also important information
as tuning the phase transition to room temperature may en-
hance its performance [22]. Since accurately predicting the
phase-transition temperature requires simulating large sys-
tems with hundreds of atoms, it is usually not possible with a
pure ab initio approach, such as the density functional theory
(DFT) [29], which is computationally intensive [30]. To over-
come this limitation, empirical formulas need to be proposed
to fit the interatomic potential energy (or force) with DFT
results using small systems. As one example, the effective
Hamiltonian approach was adopted for the investigation of
SnTe thin films recently [31].

While the effective Hamiltonian approach was initially de-
veloped for perovskites, its variations, including the Landau-
theory-based and the patched effective Hamiltonian [31,32],
have been applied to the investigation of SnTe, GeTe, and
SnSe [5,31,33,34]. Given the abundance of perovskites and
monochalcogenides, a more unified approach, which is ap-
plicable to diversified systems, is sought after. However,
considerable challenges remain as the electronic properties of
monochalcogenides are unique [35] and different from most
perovskites. The difficulties of constructing such approach
and the underlying reason will be discussed in Sec. IV C.

Recent advances in ML have provided the opportunity to
construct, in a unified fashion, the energy function of a given
system using artificial neural networks (ANNs) [36,37]. After
training with a data set obtained from electronic structure cal-
culations with DFT [38,39], the ANNs can accurately predict
the potential-energy surface (PES) of a given system. The
well-trained ANN has the advantage that it can be employed
for the simulation of different systems with minimal modifica-
tion because it is a universal mathematical structure [40]. With
such an approach, there is no need to reconstruct the formulas
for different systems, while the accuracy of the ANNs and
the generated PES remain satisfactory. We note that, for the
effective Hamiltonian approach, while the parameters depend
on DFT calculations, the energy terms (in other words the
model) need to be built beforehand. In contrast, the use of
ANNs will combine the advantages of both approaches, i.e.,
the accuracy of DFT and the efficiency of explicit formulas in
obtaining the PES [41].

While ML approaches have been applied to many interest-
ing systems [42–45], the crystalline phase transitions induced
by atomic displacements, which are important in ferroelec-
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FIG. 1. (a) The 2D monolayer SnTe shows alternating Sn and
Te atoms along the x and y axes. The blue (red) ring indicates the
chemical environments encircling the Sn (Te) atom at the center.
(b) The topology of the whole structure is built to predict the total
energy, which contains the ANNs that are schematically shown in (c).

tric materials, have not been dealt with. One difficulty could
be that the crystalline phase transitions are often associated
with tiny energy difference [<1 meV/atom, see Fig. 4(a)],
therefore requiring the ANNs to be accurate. In this work, we
develop an accurate neural-network-based approach to treat
the crystalline phase transitions [30,46,47], focusing on the
structural phase transitions in crystals induced by ion dis-
placement whereas most previous studies have focused on
discovering new structures in liquid and amorphous phases
[48–53]. In particular, highly accurate energy prediction in the
vicinity of the double potential well, which is crucial for crys-
talline phase transitions, has not been thoroughly investigated
using ML, particularly, no such studies on SnTe.

In this work, using the ML approach, we investigate both
SnTe and GeTe, including monolayer systems and bulks. Prac-
tically, we build ANNs suitable for two different types of
atoms (Sn/Ge and Te), and take DFT results as training data
for the supervised learning of the ANNs. In this way, we have
successfully constructed the necessary PES (with respect to
the displacement of atoms) and employed it in Monte Carlo
(MC) simulations to find their crystalline phase transitions.
We demonstrate that the setup employing ANN (see Fig. 1) is
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quite general that it can be transferred to investigate different
systems. Particularly, we show that a monolayer SnTe has a
phase transition when all the atoms are confined to 2D and the
structural phase transition occurring at ∼200 K.

This paper is organized as follows. In Sec. II, we provide
details about the approach adopted in this work. In Sec. III, we
present the results for SnTe and GeTe, showing the quality of
the ANNs and their crystalline phase transitions. In Sec. IV,
we discuss the results and the potentials of using ANNs as
the surrogate energy function. Finally, in Sec. V, we briefly
summarize this work.

II. METHOD

The key ingredient in constructing the PES is to build
and train an ANN that can efficiently and accurately predict
the energy of a given atomic configuration, similar to what
an effective Hamiltonian does. As an example, a monolayer
SnTe has the structure as shown in Fig. 1(a) where Sn and Te
atoms alternate with each other along both the [100] and [010]
directions. When an Sn or Te atom moves, the ANNs shall be
able to predict the corresponding energy change.

To fulfill this mission, the whole architecture for training
the ANNs has the topology shown in Fig. 1(b), which is
created by Behler and Parrinello [38,54]. The total energy E
of the system is the sum of atomic contributions Ei [55]. The
mapping of atomic energy E = ∑

i Ei proved to be feasible
[56], where Ei is the energy imposed on the ith atom by
its neighboring environment, which will be determined by
the ANN we build. It is realized that the interatomic poten-
tial energy decays rapidly with distance (which is termed
the “nearsightedness” [57,58]), therefore, a cutoff function
is usually used to limit the interaction between atoms to an
appropriate range. We have found that, considering the in-
teraction up to the second nearest neighbors (NNs) and the
correlation up to the fifth NNs [see Fig. 1(a)] will produce
satisfactory results. The input to each ANN in Fig. 1(b) is
determined by the coordinates of the ith atom and its eight
neighboring atoms, which are encircled in Fig. 1(a) where
two situations (Sn in the center and Te in the center) are
indicated. For a 2D structure, the cutoff radius contains a total
of 9 atoms up to the second NNs with each atom moving in
two directions, resulting in a vector with 18 elements as the
input.

To properly and adequately represent the local chemical
environment around an atom, we use atom-centered symmetry
functions G as descriptors, which are a series of functions of
atom positions [38]. As indicated in Ref. [38], the number
of symmetry functions describing a given structure should be
greater than the degrees of freedom of the described system
so that all information is fully recorded. In Fig. 1(b), the
column named “atomic NNs” contains identical ANNs that
take the chemical environment of an atom, which are encoded
in G as shown by the column named “symmetry functions,”
as inputs and outputs the energy Ei indicated by the column
named “atomic energies.” Finally, Ei is summed to give the
total energy E .

The core components of the whole structure are the ANNs
as shown schematically in Fig. 1(c), which can be built with

much freedom. For instance, we can use a simple neural
network with back-propagation [59,60] or some deep neural
networks [61]. Here, given the relatively simple chemical en-
vironments, we constructed an ANN with three hidden layers,
each layer containing 40 nodes. In addition, since there are
two types of atoms (Sn and Te) in the system, two separate
ANNs, which have the same structure but different weights
inside its nodes, were established to calculate the two types of
energies ESn and ETe imposing on Sn and Te atoms, respec-
tively.

We use the supervised learning as implemented in PY-
TORCH [62] to train the ANNs, where the DFT calculations
are employed to obtain the training data set. For 2D SnTe,
it has the lattice constant a0 = 6.165 Å and a vacuum layer
of 20 Å along the z direction as shown in Fig. 1(a). Ab ini-
tio molecular dynamics (MD) simulations with GPAW [63]
are performed to simulate a 2 × 2 system (16 atoms) from
500 to 1 K to generate training samples. Additional config-
urations with random displacements of atoms are also used
to train the model so that it can cope with more complex
situations. In these calculations, GPAW uses plane waves with
a cutoff energy of 900 eV, different Brillouin-zone sampling
grid (for 2D SnTe, for 2 × 2 unit cell with a 4 × 4 × 1k
mesh) [64] and different exchange-correlation functionals re-
spectively (e.g., the Perdew-Burke-Ernzerhof (PBE) [65]),
depending on the system. Because the metavalent character-
istics of monochalcogenides (see Sec. IV B), we have also
tested and used more advanced corrections, including DFT-D3
[66,67] and strongly constrained and appropriately normed
semilocal density functional (SCAN) [68,69], to obtain the
training samples (see the Appendix).

In order to train the ANNs, a sufficiently large number of
configurations need to be calculated, and the number depends
on the actual material. For instance, 2D SnTe used 4000
samples, of which 3900 were used to optimize the ANN, and
100 were used as a preliminary test of the predictive ability
of the ANNs. For each of the configurations, its energy is
calculated and the energy of the original configuration EO,
where none of the atoms are displaced, is used as the en-
ergy reference. Figure 2 compares the values predicted by
the ANNs and calculated by GPAW, which shows a good
agreement where the maximum difference is within 8 meV per
atom.

The use of the ANNs depends on its ability to reproduce
the PES with the accuracy of DFT. We note that the energies
of the chosen configurations used in Fig. 2 are all higher
than the reference energy EO where no atom moves. It has
been pointed that while achieving good prediction for random
samples is relatively easy, the energies of the ground state
or low-energy states are more difficult to accurately predict
[70]. In order to assess the PES generated with the ANNs, we
generated special configurations where all the Sn or Ge atoms
are synchronously displaced along a particular direction to a
distance d as shown in Fig. 3(a). Since the configurations are
independent of the training data set, they constitute further
independent tests to the accuracy of the trained ANNs. In the
following sections, we have verified that the prediction by the
ANNs for the low-in-energy configurations agrees well with
GPAW [e.g., see Figs. 3(c) and 3(d)].
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FIG. 2. Comparison of the energy predicted by the trained ANN
and generated by DFT (using GPAW) where for each data point,
its x-axis value is from GPAW while its y-axis value is the ANN
prediction.

FIG. 3. (a) All the Sn atoms in a unit cell move synchronously to
a distance d . (b) The PES is generated by the ANN, showing multiple
energy minima. (c), (d) Compare the values predicted by the ANN
along the 〈100〉 and the 〈110〉 directions to the GPAW results. (e)
Average relative displacement �d between Sn and Te atoms versus
temperature [see Eq. (1)]. (f) Averaged displacement components
�dx and �dy versus temperature.

III. RESULTS

With the trained ANNs acting as the energy function, the
phase transition of SnTe can be investigated now. We first
check how accurate the ANNs are, and then use it in MC
simulations to find the atom displacements with respect to
temperature, which discloses information regarding the phase
transition of SnTe.

A. 2D monolayer SnTe

For the 2D SnTe, we use the DFT-D3 to compute the
training samples, the applicability of which is discussed in
the Appendix, Sec. A 2. In order to check the PES generated
with the ANNs, we generated special configurations where all
the Sn atoms are displaced as shown in Fig. 3(a). Figure 3(b)
shows the predicted energies of these configurations and the
generated PES. It is interesting to see that the ANNs have
generated a smooth PES with multiple local-energy minima.
To quantitatively check the predictions of the ANNs, we have
sampled along the 〈100〉 and the 〈110〉 directions and com-
pared the energy predicted by the ANN to those calculated
with GPAW results in Figs. 3(c) and 3(d). For the region of in-
terest (d � 0.4 Å), the accuracy provided by the ANN is very
high. Moreover, the ANN has successfully reproduced the
double-well potential that is a critical indication of possible
crystalline phase transitions [71]. We note that the soft mode,
which is critical to understand the behavior of a ferroelectric,
can be correctly predicted with the ANN since its (imaginary)
frequency is associated with the curvature of double-well po-
tential curve at �d = 0. This is remarkable when one recalls
that the ANN has a universal internal structure and is trained
using configurations with essentially random atom displace-
ments.

Having constructed and trained the ANNs, we now em-
ploy them in MC simulations as the energy calculator. While
Figs. 3(c) and 3(d) show that the ANN can fit the PES very
well along the 〈100〉 and the 〈110〉 directions, one needs to
keep in mind that the power of the ANNs lies in their ability
to predict the energy of any configuration, and Figs. 3(b)–3(d)
just show some special cases. Such power enables it to be
used for MC simulation. In MC simulations, the ANNs are
used to predict how much energy change arises when an atom
is displaced. To find the phase-transition temperature, we set
up a 2D 12 × 12 supercell (576 atoms), and gradually cool
down the system from 400 to 10 K with a step of 10 K.
At each temperature, we sweep the system 80 000 times, in
each sweep all atoms are displaced randomly and such moves
are accepted or rejected depending on the incurred change of
energy. We have also tried different number of steps and found
that using 80 000 steps for each temperature already ensures
the convergence.

Figure 3(e) shows the temperature evolution of the aver-
age relative displacement �d , which is determined by the
displacements of Sn and Te within the same unit cell, i.e.,

�d = 1

N

N∑

i=1

〈|dTe − dSn|〉, (1)

where 〈. . . 〉 indicates the supercell average, and N is the
number of MC sweeps used for the final average. As we can
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see from Fig. 3(e), a phase transition occurs at around 200 K,
where the average displacement starts to increase with the
decreasing temperature, gradually reaching a value around
0.244 Å. Figure 3(f) shows that the averaged displacement
component �dx and �dy separately, indicating that the rela-
tive displacements are along the 〈110〉 direction. These results
are consistent with the energy minimum at �d = 0.244 Å as
shown in Fig. 3(d). Interestingly, Fig. 3(f) also indicates the
existence of a second phase in a narrow temperature range
(∼160–210 K), which will be discussed in Sec. IV B.

B. Bulk SnTe

For bulk SnTe, there was considerable discussion about the
best way to perform the DFT calculation as we discuss in
Sec. IV B. Practically, we follow the work of Ye et al. [31]
and choose to use the SCAN exchange-correlation functional
which has been shown to be capable of predicting accurate
properties for diversely bonded systems [72]. We find that
a 6 × 6 × 6 k mesh can achieve satisfactory results. For in-
stance, the relaxed cubic lattice constant was found to be 6.34
Å, agreeing with experiments [22]. Further details will be
shown in the Appendix, Sec. A 2. Using a 1 × 1 × 2 supercell,
6000 different configurations are generated as the training set
by randomly displacing the atoms. The sample energies were
calculated by Vienna ab initio simulation package (VASP) [73]
with an cutoff energy of 900 eV, a 6 × 6 × 3 Brillouin-zone
sampling grid, and the SCAN exchange-correlation func-
tional.

After obtaining the samples, the ANN-based approach can
be used to treat bulk SnTe without additional setup. Using the
same ANN structure as in 2D, we retrained the neural net-
work using three-dimensional (3D) samples, and show the test
against the potential well in Fig. 4(a), where the red, green,
and blue curves represent the potential well corresponding
to shifting the Sn atoms in the supercell along the 〈100〉,
〈110〉, and 〈111〉 directions. As the energy difference between
different displacement directions is as small as 0.3 meV (close
to the energy minimum), the bulk SnTe poses a big challenge
to ANNs’ accuracy. Figure 4(a) shows that the ANNs can
indeed distinguish such small energy differences.

After obtaining the neural network potential, it is used as
the energy calculator for the subsequent MC simulation with
a 12 × 12 × 12 supercell (13 824 atoms), where the tempera-
ture was cooled from 100 to 5 K at a 5 K intervals, and each
temperature was scanned 80 000 times. Figure 4(b) show that
the phase-transition temperature of 3D SnTe is around 35 K,
which is lower than the reported phase-transition temperature
of 98 K [22]. The reason and possible solution will be dis-
cussed in Sec. IV D.

C. GeTe

The approach we have used in Secs. III A and III B can
be easily transferred to another system. To demonstrate this
advantage, we first apply it to 2D monolayer GeTe. For this
purpose, the DFT calculation with GPAW adopts a cutoff
energy of 900 eV, a 4 × 4 × 1 k mesh, and PBE. The system
has the in-plane lattice constant a0 = 5.74 Å, and for the first-
principle calculations we use a vacuum layer of 20 Å along

FIG. 4. (a) The potential well of bulk SnTe with atom dis-
placed in different high-symmetry directions. (b) Average relative
displacement (�d) and displacement component (�dx , �dy, and
�dz) between Sn and Te atoms versus temperature.

the z direction similar to SnTe. As atoms only move inside the
plane, a total of 8000 random samples are obtained and used
for training the ANNs.

With the same procedure as that for SnTe, the trained
ANNs for GeTe show excellent agreement with DFT results
[Figs. 5(a) and 5(b)] and that the double-well potential is
deeper than that of 2D SnTe. We again conducted MC sim-
ulations, also using a 2D 12 × 12 supercell (576 atoms), and
gradually cooled down the system from 600 to 20 K with a
step of 20 K with 80 000 MC sweeps at each temperature. It
was found that GeTe, similar to SnTe, also has a structural
phase transition with TC ∼ 300 K as shown in Figs. 5(c) and
5(d). The phase-transition temperature is higher than that of
SnTe, consistent with the deeper potential well of GeTe.

In addition, we also apply the same procedure to bulk
GeTe, which was first investigated using the effective
Hamiltonian approach [9]. Using a 1 × 1 × 2 supercell of
bulk GeTe, 10 000 different structures are generated as the
training set. The samples are calculated with GPAW using a
8 × 8 × 4 k mesh and PBE. As shown in Fig. 6(a), the ANN is
adequate to predict the DFT energies. MC simulation results
in Fig. 6(b) show that the phase-transition temperature of
bulk GeTe is ∼250 K, which is lower than the experimentally

094116-5



J. ZHANG et al. PHYSICAL REVIEW B 105, 094116 (2022)

DFT
ANN

E
ne

rg
y

(m
eV

/a
to

m
)

Δd<110> (Å)

(a)

DFT
ANN

E
ne

rg
y

(m
eV

/a
to

m
)

Δd<100> (Å)

(b)

Δd
 (Å

)

Temperature (K)

(c)

Δdx

Δdy

d 
(Å

)

Temperature (K)

(d)

FIG. 5. (a), (b) The ANN’s prediction results for 2D GeTe.
(c) Average relative displacement �d between Ge and Te atoms
versus temperature. (d) Averaged displacement component �dx and
�dy versus temperature.

reported 600–700 K. In addition, Fig. 5(d) also indicates that
there exists a second phase (atoms shifting along the 〈100〉
direction) in a narrow temperature range between 220 and
250 K, similar to 2D SnTe and GeTe, but does not appear in
bulk SnTe. The discrepancy in the transition temperature and
the second phase will be discussed in Sec. IV D.

IV. DISCUSSION

In this work, we have reached several goals, successfully
applying the ML approach to the investigation of ferroelectric
phase transitions, which was mostly the arena of effective
Hamiltonians. Using this approach, we have constructed 2D
and 3D potential surface functions for SnTe and GeTe with
ANNs, achieving an accuracy that is capable even for 3D
SnTe where the depth of the potential well can be as small
as 2 meV/atom. While such accuracy is necessary [Fig. 4(a)
shows how challenging the requirement could be], it has not
been achieved for the crystalline ferroelectric phase transition.
In addition, as SnTe has attracted much interest in the past few
years [31–33], this work with the ANNs provides an alterna-
tive method to explore its ferroelectric phase transitions.

In this section, we discuss some important aspects of this
ML approach that can address crystalline phase transitions,
including the unique features of SnTe and GeTe and the ad-
vantages of the ML techniques. With its unique electronic
properties, SnTe has posed particular challenges that can be
resolved by ML which can be adapted to more systems with
minimal modification. We will also address the limitations
of the current approach that need further investigation in the
future.

FIG. 6. (a) The potential well of bulk GeTe with atom dis-
placed in different high-symmetry directions. (b) Average relative
displacement (�d) and displacement component (�dx , �dy, and
�dz) between Ge and Te atoms versus temperature.

A. Machine learning

This work has heavily depended on ML techniques to in-
vestigate the structural phase transition of monochalcogenides
using SnTe and GeTe as examples. While the overall pro-
cedure is based on supervised learning, each stage (e.g., the
training of ANNs and the descriptors) warrants its individual
investigation to ensure the accuracy and efficiency of the
training and later simulations. Practically, we use the ANN
as a unified surrogate energy function, the success of which
crucially depends on two factors: (i) The power of ANNs to
decompose the total energy of a given configuration into the
contribution from each atom [55,56] and (ii) the construction
of the symmetric function G as good descriptors as they ex-
hibit the invariance of translation, rotation, and rearrangement
of the same elements, as well as the smooth decay of the
contribution for atoms away from the center [74].

In practice, ML requires building a sample set to train the
ANNs. For 2D SnTe and GeTe, about 4000 and 8000 samples
are generated respectively, each containing a configuration
of 16 atoms (2 × 2 supercell) and the corresponding energy.
There are many investigations on how to generate the samples
in an efficient way [75,76]. The actual number of samples
needed could be even smaller if the samples are properly
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chosen, e.g., focusing on the low-energy configurations. How-
ever, we have found that using MD to generate all the samples
may not have the best effects. In this work we used the com-
bination of MD simulation and random sampling to obtain the
training set. In the random sampling part, in order to cover a
large sample space, we have fixed the positions of some atoms
and randomly shifted the remaining atoms.

Regarding sample generation, it is also worth noting that
3D SnTe and GeTe require about 6000 and 10 000 samples,
respectively, with their energies calculated, each sample em-
ploying a configuration of 16 atoms (1 × 1 × 2 supercell).
While the number of samples seems large, the computational
cost of the samples is insignificant comparing to that of direct
DFT computations needed to find the phase transitions. For
instance, for the 12 × 12 × 12 (13 824 atoms) supercell, in the
MC simulations for each temperature, we use 80 000 sweeps,
in each sweep every atom is displaced, which means that a
total of 1.1 × 109 DFT calculations for a supercell with 13 824
atoms need to be done, just for one temperature among the
several tens needed for the phase transition. This magnitude
of computation required by direct DFT is clearly inaccessible,
explaining why the ML approach is more advantageous.

In the training of the ANNs, the loss function is the mean-
square error (MSE), comparing the predicted values and true
values (provided by DFT calculations). For random samples,
the energy difference could be as large as a few eV. However,
the energy difference that is most relevant to the structural
phase transition could be as small as 1 meV. Given the nature
of crystalline phase transitions, this work has focused on the
low-energy regions where important energy difference can be
less than 1 meV, which naturally requires a high numerical
accuracy from the ML approach. It has been shown that this
requirement can be fulfilled by the ANNs. In addition, ML
provides a model-free method, which can directly predict the
energy of the system using the positions of the atoms. In
essence, it replaces the energy (or atomic force) calculation
with electrons (as in DFT) to achieve a much higher efficiency.
The accuracy and efficiency, along with its transferability to
various systems, constitute the prevailing advantage of the ML
approach proposed here.

On the other hand, although 2D and 3D use the same
network structure (including the number of inputs), their
meanings are completely different although the descriptors
compress the inputs into the same dimensions. Moreover,
DFT itself has some difficulties treating 2D and 3D systems
in the same way (as we discuss in Sec. IV B). These facts
make the reuse of the trained ANNs for systems with different
dimensions quite difficult.

In the MC simulation, it turns out that the calculation of the
atom-centered symmetry functions is quite time consuming,
which needs to be optimized. In fact, the computational cost
increases sharply with the truncation radius Rc, as well as
the number of three-body descriptors that consider the angles
among three atoms [74]. We note that the proper selection
of hyperparameters and the optimization of descriptors have
been an important topic of investigation [77–79].

Finally, let us consider the universal nature of this ML
approach. We note the approach itself (see Fig. 1), not the
ANNs, is transferable in the sense that the whole setup [see
Figs. 1(b) and 1(c)] can be used for different types of materi-

als, similar to what DFT can do, without having to build a new
model for each different material, benefiting from the fact that
the ANN can act as a general mathematical approximation.
The ML approach contrasts with the effective Hamiltonian
method, which may need very different models for different
systems, in that it does not need much customization, but only
needs appropriate data to train the ANNs. From this point of
view, the ML approach is indeed more “universal.”

B. SnTe and GeTe

Many monochalcogenides, including SnTe and GeTe, have
unique bonding mechanisms that are termed metavalent bond-
ing (MVB) by researchers [35,80], which is believed to be
different from metallic, ionic, or covalent bonding. The elec-
tronic structure instability plays an important role in MVB,
reflecting a competition between the electron delocalization
(as in metals) and the electron localization (as in ionic crystals
or covalent compounds) [35]. As a comparison, ferroelec-
tric oxides have the structural instability that usually arises
from electric dipole-dipole interactions, but lack the elec-
tronic instability as their bonds are ionic [35]. This difference
has profound implication for the construction of an effective
Hamiltonian as we discuss in Sec. IV C.

When bulk SnTe or GeTe is cooled from high tempera-
ture, the Peierls-type rhombic distortion occurs, resulting in
the R3m symmetry, forming covalent bonds [35,81,82] and
reaching a stable state. The potential well for GeTe is much
deeper than SnTe (see Fig. 6), consistent with the fact that
GeTe has stronger electron sharing (more covalent) than SnTe
[cf. Fig. 8(b) of Ref. [35]]. The shallow potential well of SnTe
is also consistent with the smaller displacement of Sn to its
equilibrium position (0.17 Å).

The 2D monolayer SnTe is special in that reducing the
dimensions will impede the electron delocalization, altering
the electronic structure that affects the bond type, leading to
large property changes. In a recent paper, Kooi and Wuttig
[35] pointed out that this example probably shows the destruc-
tion of MVB to a mixed ionic-covalent bonding. The change
to ionic or the covalent bonding will increase the interaction
between atoms. For instance, ionic or covalent bonding may
introduce stronger interaction that increases the ion displace-
ments [from 0.17 Å in Fig. 4(a) to 0.244 Å in Fig. 3(d)], which
may explain the increased phase-transition temperature. Such
bond-type change is an interesting and unique phenomenon
with SnTe, which is evidenced by the similarity (in terms
of potential well depth and the magnitude of displacement)
of the double-well potential of 2D SnTe (Fig. 3) and GeTe
(Fig. 5) while their bulk differs substantially (Fig. 6). We
note that GeTe conforms to the prediction of the finite-size
scaling theory for ferroelectrics, that is when the ferroelec-
tric thin-film material becomes thinner, its phase-transition
temperature will become lower than that of the bulk [83,84].
The reason could be that bulk GeTe has strong covalent bond
(unlike bulk SnTe where the bonding is weaker) which made
the bulk phase transition already high [47].

The MVB theory effectively explains many unique phe-
nomena associated with monochalcogenides, and SnTe in
particular, such as the increase of phase-transition temperature
as it gets thinner. However, the MVB also makes the construc-

094116-7



J. ZHANG et al. PHYSICAL REVIEW B 105, 094116 (2022)

tion of an effective Hamiltonian difficult, which we discuss
next is Sec. IV C. In addition, to address the unique proper-
ties of SnTe, our DFT calculations have employed different
schemes to deal with SnTe, especially bulk SnTe [31,47]. For
instance, we have found that relaxation of bulk using SCAN
will obtain a lattice constant (6.34 Å) that is most close to ex-
perimental value [22,31] than PBE (6.40 Å) or PBE with van
der Waals (vdW) (6.345 Å). Our own tests in the Appendix,
Sec. A 2, show that SCAN is a good choice in terms of both
accuracy and efficiency.

Finally, our results of the crystalline phase transitions
have indicated the existence of a second phase. As shown
in Figs. 3(f) and 5(d), 2D monolayer SnTe and GeTe have
another structural phase in a narrow temperature range, where
the average displacement of atoms is along the 〈100〉 direc-
tion. To understand its origin, we checked snapshots of atom
displacements of 2D SnTe during the simulations, which indi-
cate that, in this temperature range, atoms shift along different
〈110〉 directions, resulting in a second ferroelectric phase with
average displacement along the 〈100〉 direction. This is similar
to what happens in BaTiO3, where while most dipoles are
in the 〈111〉 direction, at certain temperatures, the averaged
polarization could be along 〈100〉 or 〈110〉 directions [85].
This phenomenon is likely caused by the competition between
energy minima as shown in Fig. 3(b). The energy difference
between the saddle point and the energy minima seems to
be the key factor that determines if the other phase exists.
For instance, the signature of the extra phase appears [see
Figs. 3(f), 5(d), and 6(b)] when the value is large (1.92 meV
for 2D SnTe, 2.58 meV for 2D GeTe, and 2.45 meV for bulk
GeTe), but does not exist when the value is small (0.25 meV
for bulk SnTe) as seen in Fig. 4(b).

C. Effective Hamiltonian

An effective Hamiltonian provides an economic descrip-
tion of a given system and a surrogate energy function
with the abstracted atom displacements (e.g., local mode)
as the input. The effective Hamiltonian approach has been
most successful in dealing with ferroelectric perovskites [9],
which possesses structural instability often associated with
the dipole-dipole interaction as perovskites are ionic oxides.
In contrast, MVB materials have structural instabilities as-
sociated with electronic instabilities [35]. This feature has
profound implication for the construction of an effective
Hamiltonian for monochalcogenides since it does not satisfy
the necessary condition of a local mode.

For ferroelectric perovskites, the long-range dipole-dipole
interaction is the driving force causing the structural instabil-
ity. The local interactions are approximately harmonic with
regard to the displacement of atoms (e.g., the value κ2 for
BaTiO3 is positive in Table II of Ref. [9]), therefore giv-
ing rise to the local mode. In contrast, the instabilities of
monochalcogenides come from the electronic structure which
is a more localized feature. As a consequence, the relevant
phonon mode is highly anharmonic with large Grüneisen pa-
rameter [80,86], making it hard to define a proper local mode
that is valid for the displacement that spans the whole range
of interest. This issue could be one reason that the effective
Hamiltonian approach predicts a phase-transition temperature

that is away from experimental results. Moreover, according
to the MVB theory, the bonding type could change with the
displacement and the dimension, which is demonstrated by
the unusually high phase-transition temperature of 2D SnTe.
One way to address the problem is to patch the effective
Hamiltonian [31,32], where the idea was to introduce new
terms to compensate for the change in the order parameter
when the dimension changes from 3D to 2D as the SnTe
becomes thinner [31]. While the prediction of the transition
temperature has improved (e.g., 147 K versus experimental
98 K for bulk SnTe), the patch is hard to conceive, in addition
to the fact that it will cause fragmentation of the effective
Hamiltonian approach in the long run, therefore losing its
elegance in simplicity and “ease of use.”

Given the above discussion, it may be concluded that the
difficulty with monochalcogenides hinges on the facts that (i)
the proper local mode is hard to determine [34] and (ii) the
local mode (order parameter) can change substantially as the
dimension of the system is reduced. The ML approach, on
the other hand, does not need to determine the local mode
in the first place and it does not care if the dimension is re-
duced or not, therefore, no patch is needed when the thickness
changes. It is important to note that our ANN-based approach
has treated the 2D and bulk SnTe in a unified fashion, requir-
ing no separate determination of the local mode or patching
the effective Hamiltonian [31,32]. In addition, the method
does not have to start all over again from the very beginning
when a similar but different system is treated.

With the machine-learning-based approach, the determi-
nation of the local mode, the potential modification of the
effective Hamiltonian, and the calculation of the coefficients
can be avoided. The only requirements are the generation of
new training data sets. Therefore, the current approach can be
extended conveniently to various systems.

D. Limitation

In our simulations, we have assumed the lattices of SnTe
or GeTe are fixed in the clamped state. For 2D systems, this
can be realized using epitaxial strain, whereas for 3D system it
may not be entirely realistic. From Landau-Devoshire theory,
it is known that the phase-transition temperature is indeed
affected by strain [87]. We note that the inclusion of strain,
ideally embedded in the ANNs (see Fig. 1), is not a trivial
job and will be done in a future work. Especially when such
precision needs to be maintained, the addition of strain will
greatly increase the degree of freedom of the samples. The
phase transitions of bulk SnTe and GeTe we predicted are
therefore lower than known experimental values.

In order to address this issue and correctly predict the
phase-transition temperature, we performed additional calcu-
lations to estimate the effects of strain with DFT. In Fig. 7,
the “cubic phase” indicates the lattice structure obtained by
relaxing the unit cell while keeping all the atoms in their ideal
positions (therefore a cubic phase); the “trigonal phase” indi-
cates the relaxed lattice structure by first moving the Sn/Te (or
Ge/Te) atoms along one 〈111〉 direction and allowing the po-
sitions of the atoms to be relaxed as well. Figures 7(a) and 7(b)
show the potential well of bulk SnTe and GeTe in their cubic
and trigonal phases, respectively, where the atom displace-
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FIG. 7. Energy versus atom displacement for the cubic (blue
curve) and trigonal (green curve) phases of SnTe (a) and GeTe (b).
The lattice structure for each remains the same during the shift of
atoms. The red curve shows the obtained energy when we fix the
fractional coordinates of the atoms and relax the unit cell, which
demonstrates an interpolating path with minimal energy between the
cubic and the trigonal phases.

ment is along the 〈111〉 direction. The two figures compare
the energies of the cubic and trigonal phases when the atom
positions are the same (in fractional coordinates). The results
indicate that, when strain is included, the actual PES will
most likely become a smooth surface bridging the cubic and
trigonal phase as shown by the red line with triangles in
Fig. 7, which show that, for bulk SnTe, the potential well is
−3.82 meV, giving rise to a TC of 60 K by considering the TC

without strain obtained with MC [Fig. 4(b)], while for bulk
GeTe, TC = 420 K. As a matter of fact, if we only consider
using the potential well of the trigonal phase (the green curve
with black circles), the phase-transition temperatures for bulk
SnTe and GeTe are 96 and 753 K, respectively, close to exper-
imental values. Without doubt, MC simulations will provide
consistent phase-transition temperatures when the strain as
new degrees of freedom are included.

We finally note that, by including the influence from atoms
up to the fifth (for the 2D case) or the seventh (for the bulk
case) NNs, the ML approach can take into account of the

local electronic structure change due to ion shift [88]. In ad-
dition, the long-range Coulomb interaction may also need to
be included via the Ewald method [89]. However, the current
results indicate that this part of the energy will likely be much
smaller than that of typical perovskites such as BaTiO3 or
PbTiO3.

V. CONCLUSION

In this work, we have developed a ML approach to in-
vestigate the crystalline phase transitions of SnTe and GeTe.
The constructed energy functions of SnTe and GeTe using
ANN are employed in MC simulations to obtain the phase
transitions, where the energy difference between different
ferroelectric phases can be smaller than 1 meV/atom. Un-
like other approaches, no specific model or formula, which
often requires a priori knowledge or a good understanding
of the given system, is necessary to approximate the PES.
This approach therefore also makes it unnecessary to deter-
mine the coefficients appearing in the model or the formula,
essentially resulting in a model-free method while achieving
the accuracy of ab initio calculations. This feature is ad-
vantageous than other more complex methods when the real
difficulty of obtaining the phase-transition temperature lies
in the construction of a sufficiently accurate model PES. In
addition, since the ANNs can work as a universal mathemat-
ical structure, it can approximate various systems according
to the universal approximation theorem (see, e.g., Chap. 4 of
Ref. [60]) within the range covered by the sampling space.
Such virtues, along with its accuracy and efficiency, make
the ML approach very flexible to investigate crystalline phase
transitions of various systems.
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APPENDIX: CONVERGENCE

Training sample generation is one important step in the
process of building the necessary ANNs to predict the phase-
transition temperature of monochalcogenides. In order to
obtain accurate results, we have various tests to validate the
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FIG. 8. The energy-versus-displacement curves are obtained
with different k-point setup for (a) 2D monolayer GeTe of a 2 × 2
unit cell and (b) Bulk GeTe of a 1 × 1 × 1 unit cell.

exchange-correlation functional, as well as the setups used
in first-principles calculations. Since the phase-transition tem-
perature is closely related to the energy landscape with respect
to atom displacement, we choose the convergence of the
double-well potential of Sn(Ge) atoms moving in different
high-symmetry directions (〈111〉 direction for 3D and 〈110〉
direction for 2D) as key tests.

1. GeTe

For GeTe, we find that the first-principles calculation re-
sults are insensitive to the choice of the exchange-correlation
functionals. The use of PBE with a moderately dense k mesh
is adequate as shown in Fig. 8, which checks the conver-
gence using the energy-versus-displacement curve. For the 2D
monolayer GeTe, we used a 2 × 2 unit cell (16 atoms and a
20-Å vacuum layer) and found in Fig. 8(a) that an adequate
convergence is achieved with a 2 × 2 × 1 k mesh. However,
also considering the double potential in other directions (e.g.,
the 〈100〉 direction) and the accuracy in the lattice constant,
the 4 × 4 × 1k mesh is used in the sample generation. For
bulk GeTe, we used a 1 × 1 × 1 unit cell (8 atoms) to check
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FIG. 9. The energy-versus-displacement curves for 2D SnTe are
obtained with a 2 × 2 unit cell and different k-point setups using
(a) PBE and (b) DFT-D3

the convergence, which is achieved with an 8 × 8 × 8 k mesh
as evidenced in Fig. 8(b).

2. SnTe

We found that the sample generation for SnTe is difficult,
which is likely related to its unique electronic properties as
explained in Sec. IV B. For 2D monolayer SnTe, we used a
2 × 2 unit cell and tested PBE and DFT-D3 with different k-
mesh setups. Figure 9(a) shows that the potential well deepens
as the k mesh becomes denser, achieving a convergence at 4 ×
4 × 1. A similar conclusion can be made using the DFT-D3
method as shown in Fig. 9(b).

As discussed in Sec. IV B, the metavalent status makes
first-principles calculations of bulk SnTe tricky. Therefore,
we tested a few different approaches, including PBE, DFT-
D3, and SCAN, where GPAW was used for the first two
calculations while VASP was used for the SCAN calculation.
It has been shown that SCAN can perform better than other
semilocal density functionals [90] to accurately predict the ge-
ometries and energies of diversely bonded systems (including
covalent, metallic, ionic, hydrogen, and van der Waals bonds)
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FIG. 10. The energy-versus-displacement curves of bulk SnTe
using different k-point setups and different exchange-correlation
functionals, which are (a) PBE, (b) DFT-D3, and (c) SCAN.

[91], making it likely also suitable for SnTe with unique
electronic properties.

Figure 10(a) shows that, with PBE, the results do not con-
verge even with a very dense k mesh (12 × 12 × 12) where
the potential well continues to become shallower, conflicting
with the known experimental fact that bulk SnTe does undergo
crystalline phase transitions with decreasing temperature at
∼100 K. To address this problem, we also tried using DFT-D3,
but with no obvious improvement [see Fig. 10(b)], which
reflects the difficulty in treating the vdW interactions in MVB
systems. Finally, using SCAN we find that (i) the relaxed
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FIG. 11. Potential well of bulk SnTe at different lattice constants.

lattice constant (6.34 Å) is most close to the experimental
value of 6.32 Å and (ii) the first-principles calculation results
converge at the 8 × 8 × 8 k mesh where Fig. 10(c) indicates
the 6 × 6 × 6 and 8 × 8 × 8 k meshes produce very similar re-
sults, which also encloses the result obtained with the k mesh
of 12 × 12 × 12. This allows us to conclude that SCAN can
better describe SnTe among the methods considered here. This
can be understood by the fact that SCAN represents a major
step forward in the nonempirical semilocal approximations
[68,90], capturing mid-range vdW interactions to a certain
extent, as can be seen from the improved performance [92].

Therefore, in the sample generation we adopted SCAN
and the 6 × 6 × 6 k mesh considering the balance between
accuracy and the cost of the calculations. We note that the
SCAN results here are consistent with those from Ref. [31].
In addition, we find that for bulk SnTe, the potential well is
affected by the lattice constants as shown in Fig. 11, again
showing that the phase transition is affected by strain as dis-
cussed in Sec. IV D.

3. Discussion

Regarding the accuracy of the DFT calculation, we have
used adequate k-points sampling and large plane-wave cutoff.
For the sample generation with the 1 × 1 × 2 SnTe supercell,
we use the 6 × 6 × 3 k-point sampling and 900 eV as the
cutoff, which are quite large numbers that achieve the desired
DFT accuracy. It shall be noted that, after the ANNs are
trained, there is no need to run DFT calculations on large
supercells (e.g., the 12 × 12 × 12 supercell used in the MC
simulations) since following calculations employ the ANNs
instead of DFT calculations. Therefore, the large k-points
sampling would not be too much a burden.

It is worth noting that the accuracy of the ANNs mentioned
in the text should not be confused with the accuracy of DFT
calculation. Since the energy difference between ferroelectric
phases is very small, as shown in Fig. 4(a), it is important
for the ANNs to capture the tiny difference to correctly pre-
dict the ferroelectric phase at low temperatures, therefore, the
predicted value of the ANN needs to be as close to the DFT
result as possible. The accuracy of the ANNs mentioned in the
text refers to the extremely small difference between the ANN
predictions and the DFT results.
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