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Intrinsic freedom of dislocation structures and Peierls stress oscillation
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When the continuous translation symmetry breaks, a continuous mode splits into two distinct discrete modes
with different energies. Based on the fully discrete Peierls model, it is found that stability of such discrete modes
for dislocations can be tuned by the stacking fault energy of a slip system. As the stacking fault energy changes
continuously, the stable dislocation structure transforms periodically and the Peierls stress varies oscillatorily.
Furthermore, at the transformation point, the lattice resistance nearly vanishes and thus the dislocation can almost
move freely.
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I. INTRODUCTION

The dislocation is a kind of structural defect of solids [1]
and it can be viewed as a nonlinear mode protected by topol-
ogy. In the elastic continuum theory of solids, an individual
dislocation is a singular line carrying topology charge charac-
terized by the Burgers vector. However, even with a minimum
lattice vector as the Burgers vector, a dislocation possesses
extended structures instead of being line singularity. Because
dislocation properties are mainly determined by structure, a
great effort has been made in understanding the dislocation
structure [2–16].

The most successful theory of dislocation structure is the
Peierls-Nabarro (PN) model that can predict the core width
and the Peierls stress analytically [2]. In particular, with the
aid of the generalized stacking fault energy (γ surface), which
can be calculated directly from the electron density functional
theory, the PN model has been widely used to investigate
dislocations in a variety of materials [7,9,10,12,14,15]. In the
classical PN model, dislocation structures are dominated by
a nonlinear integrodifferential equation, and thus the lattice
discreteness is not considered sufficiently.

When the lattice discreteness breaks continuous translation
symmetry in the continuum theory, the continuous mode splits
into two types of symmetrically discrete modes. As illus-
trated in Fig. 1, the first type has its symmetry center just
on the lattice point and can be properly referred to as the
O mode. The second type has its symmetry center between
two neighboring lattice points and can be properly referred to
as the B mode. Although both the B mode and the O mode
are equilibrium configurations, their energies are different.
The mode with the lower energy is stable. The existence of
two different discrete modes naturally leads to an important
question: which mode is stable? The stable mode is observable
in experiments. If one type mode always has the lower energy,
this type of mode will be observed in experiments and the
other type of mode will never exist stationarily because the
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high energy mode is unstable. If the mode stability is not
fixed, one mode may be stable in some materials and the
other mode may be stable in other materials. It is therefore
necessary to recognize exactly which type of mode is stable.
In particular, if the mode stability can be changed, both the B
mode and the O mode must be considered on an equal basis.
In this paper, it is shown that the stability of the B mode and
the O mode for the dislocation can be tuned by the stacking
fault energy. As the stacking fault energy changes, the mode
stability exchanges periodically. The transformation between
the B mode and the O mode implies that there is structural
freedom beyond the continuous density distribution given in
the classical PN theory. Furthermore, it is found that, at the
transformation point, the lattice resistance nearly vanishes
and the dislocation almost moves freely. As a consequence,
material plasticity dominated by dislocation mobility should
undergo substantial change when passing the transition point.
These theoretical results suggest a possible way for modifying
and controlling material mechanical properties by using this
freedom of dislocation structure.

II. SPECTRUM MODEL

Appearance of a straight dislocation is the result of a
nonuniformly relative slip between two neighboring lattice
planes (slip planes). The energy related to the relative slip
consists of the elastic energy stored in crystal body and the
misfit energy resulting from the mismatch of the gliding
planes. Within the harmonic approximation of the interaction
among the atoms in a solid, the elastic energy can be generally
written as

Ue = 1

2

∞∑
l=−∞

∞∑
l ′=−∞

�(l − l ′)S(l )S(l ′), (1)

where integers l and l ′ are used to label the parallel atom
chains on a slip plane, S(l ) is the slip field defined by the local
relative displacement between the two slip planes, and �(l )
is the discrete kernel describing effective interaction of the
slip field. The discrete kernel �(l ) can be formally obtained
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FIG. 1. B mode and the O mode occupy different positions in the lattice and separate from each other half a period: (a) the slip field; (b) the
discrete density distribution given by the difference of the slip between neighboring points.

in a model-independent way by using spectrum analysis. The
spectrum �̃(k) defined in the wave-vector space (k space) is
given by Fourier transformation

�(l ) = D

2π

∫ π
D

− π
D

�̃(k)eilkDdk,

where D is distance between two neighboring atom chains
parallel to the dislocation line. The �̃(k) consists of the regu-
lar part �̃r (k) and singular part �̃s(k) [17–19]

�̃(k) = �̃s(k) + �̃r (k),

and in the leading term approximation,

�̃r (k) = ωr (1 − cos kD), �̃s(k) = ωs

∣∣∣∣sin

(
1

2
kD

)∣∣∣∣,
where ωr and ωs are physics constants that need to be deter-
mined. From this phononlike spectrum, it is easy to obtain

�r (l ) = D

2π

∫ π
D

− π
D

�̃r (k)eilkDdk = ωr

2
(2δl − δl+1 − δl−1),

�s(l ) = D

2π

∫ π
D

− π
D

�̃s(k)eilkDdk = − ωs

2π

1

l2 − 1
4

.

Substituting �(l ) in the leading term approximation into
Eq. (1), one obtains (see the Appendix)

Ue = ωr

4

∞∑
l=−∞

ρ2(l ) − ωs

4π

∞∑
l=−∞

∞∑
l ′=−∞

ρ(l )ρ(l ′)

×ψ (0)

(
|l − l ′| + 1

2

)
+ Kb2h

4π
ln

R

D
, (2)

where ρ(l ) = S(l + 1) − S(l ) is the discrete dislocation den-
sity, ψ (0)(z) is the polygamma function, b is the Burgers
vector, R measures the size of the crystal, K is the energy
factor of a dislocation, and h is the period along the dislocation
line. The last term is a constant resulting from selection of the
potential energy zero point (the interaction energy approaches
zero as far away in the distance). The elastic energy Ue is inter-
preted as the self-interaction energy of dislocation in a length
of period h [20]. As shown in Fig. 2, the polygamma function
is the substitute of the logarithmic function, which coincides

with the logarithmic function as |z| > 1 and has no singularity
at the origin z = 0. In the continuous approximation x = lD
(D → 0),

ρ(l ) = S(l + 1) − S(l ) −→ dS

dx
D = ρ(x)D,

∞∑
l=−∞

−→
∫ ∞

−∞

dx

D
, ψ (0)

( |x|
D

+ 1

2

)
−→ ln

|x|
D

,

and the energy in unit length is

Ue

h
= ωrD

4h

∫ ∞

−∞
ρ2(x)dx − ωs

4πh

∫ ∞

−∞

∫ ∞

−∞
ρ(x)ρ(x′)

× ln
|x − x′|

D
dx dx′ + Kb2

4π
ln

R

D
. (3)

The second term in Eq. (3) is just the energy functional given
in the classical Peierls model [2]. Apparently, the classical
Peierls model should be recovered as a continuous limit and
thus the constant ωs must be

ωs = K

h
= Kτ

D
,

FIG. 2. Comparing the polygamma function with the logarithmic
function.
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FIG. 3. γ surface for various values of the dimensionless param-
eter 
.

where τ = hD is the area of the primitive cell of the slip
plane. The first term in Eq. (3) represents the point-contact
exclusive interaction that originates from lattice discreteness.
The results of the exactly solvable model suggest that in the
isotropic approximation the constant ωr is μτ/D for the edge
dislocation and μτ/2D for the screw dislocation, where μ is
the shear modulus [21].

In the local approximation, the misfit energy is identified
with the generalized stacking fault energy (γ surface) [7,22]

Um =
∞∑

l=−∞
γ (S)τ,

γ (S) = μb2

2π2d
sin2 πS

b

(
1 + 
 sin2 πS

b

)
, (4)

where d is the spacing between the slip planes and 
 is a di-
mensionless parameter defined by the unstable stacking-fault
energy γus

γus = γ

(
b

2

)
= μb2

2π2d
(1 + 
). (5)

As shown in Fig. 3, the γ surface is simply a single peak
function for 
 > −0.5.

The equilibrium dislocation structure is determined by the
minimum energy principle

δU

δS(l )
= 0, U = Ue + Um.

The explicit balance equation from the minimum energy prin-
ciple is

−ωr

4
[ρ(l ) − ρ(l − 1)] − ωs

2π

∑
l ′

ρ(l ′)
l ′ − l + 1

2

= −∂γ

∂S
τ. (6)

However, if there is the resolved external stress σ , the balance
is dominated by the Gibbs energy G

δG

δS(l )
= 0, G = U −

∞∑
l=−∞

σS(l )τ. (7)

In practice, the stable structure and the response behavior to
the external field can be more suitably studied by using the

following time-dependent equation (Landau equation):


∂S

∂t
= − δG

δS(l )
, (8)

where  is an effective damping constant. In particular, when
an arbitrary input function with the dislocation boundary con-
dition is used as the initial condition, it will spontaneously
relax to the stable equilibrium solution. In the following eval-
uation, the classical Peierls solution is employed as the initial
input. After it has relaxed to the stable dislocation solution,
the external stress is applied gradually to investigate how
the dislocation responds. For the dissipation due to shear
wave emission from the slip planes, the damping constant is
 = μτ/(2ct ), where ct is the shear wave velocity [23]. It is
reasonable to measure the evolution time in the characteristic
time scale b/ct .

III. PEIERLS STRESS OSCILLATION

By using the theory presented above, the stable dislocation
core structures and the Peierls stress are investigated numer-
ically for the γ surface with various stacking fault energy.
Because dislocations are highly localized modes, the slip can
be neglected far away from the dislocation center. In practical
numerical calculations, Eq. (8) is solved by truncating the
lattice points number to be the finite one including 200 sites
(−100 � l � 100). Surprisingly, it is found that the Peierls
stress oscillates as the stacking fault energy decreases mono-
tonically. As shown in Fig. 4, as a function of dimensionless
parameter 
 that describes the magnitude of the stacking fault
energy, the Peierls stress σp, defined by the critical external
stress to make a dislocation move, clearly falls off in an
oscillation way. The Peierls stress at oscillation nodes nearly
vanishes (σp ∼ 10−6μ). As a consequence, the dislocation
can almost move freely. In addition, while the Peierls stress
varies continuously with the dimensional parameter 
, its
derivative is not continuous at the nodes. Therefore, the nodes
are singular points where something takes place in physics.
A detailed examination reveals that nodes are the points at
which transformation of the mode structures happens. For
0 � 
 � −0.098, the B mode has a lower energy UB < UO,
and thus the B mode is stable. For −0.098 � 
 � −0.27,
the B mode loses stability and the O mode becomes a stable
one. The node 
 = −0.098 is the transition point. In the
range 0 � 
 � −0.5, there are three transition points (nodes)
distributed periodically (Fig. 4). Apparently, the energy dif-
ference between the B mode and O mode vanishes at the
transition points, UO − UB = 0.

While a continuous mode can locate at any point, the pos-
sible positions of the B mode or the O mode are a series of
discrete points that are aligned periodically. It can be observed
that the B mode and the O mode are distinct from each other
not only in the structure, but also in the positions defined by
the symmetric center. Once the B mode is transformed into
the O mode, or otherwise, it moves forward (or backward) a
step that equals half a period. Therefore, mode movement can
be realized by sequent transformations:

B → O → B → O → B → O → B · · · .
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FIG. 4. (a) Peierls stress oscillation of the pure edge dislocation in the cubic lattice with the γ surface given by Eq. (4); the dashed line is
given by the fit Eq. (10). (b) The energy difference between the B mode and the O mode near the first node. The Poisson ratio ν ≈ 1/3 is used
in calculation. The oscillation originates from stability transformation between the B mode and the O mode.

The transformation from a stable mode to a unstable mode
needs to overcome the energy barrier. The energy difference
in a unit length between the O mode and the B mode is defined
as the PN barrier of a dislocation:

Ep = |UO − UB|
h

.

The higher the PN barrier is, the more difficult to transform,
and thus the more robust the stable mode is. Because the
energy of the B mode (or the O mode) should be a smooth
function of 
, near the transition point 
c, the PN barrier
must vary in the form Ep ∝ |
 − 
c|. For the first transition
point of the edge dislocation, the data from numerical calcu-
lation suggest Ep = 1.0567 × |
 + 0.098146| × 10−3 μb2.

The Peierls stress is mainly determined by the PN barrier.
In the classical PN model, the Peierls stress is proportional to
the barrier height in the leading term approximation

σp = πEp

bD
= 3.32 × |
 + 0.098146| × 10−3 μ. (9)

On the other hand, as shown in Fig. 4, the global behav-
ior of the Peierls stress of the edge dislocation can be well
fitted by

σp =
∣∣∣∣0.4 sin 5.75π (
 − 0.25)


 − 0.25

∣∣∣∣ × 10−4 μ. (10)

Near the critical point 
c = −0.098146, this expression
becomes σp = (0.0006 + 2.07 × |
 + 0.098146|) × 10−3 μ.

The accuracy predicted from the leading term approximation
Eq. (9) is acceptable when the first term in brackets is negligi-
ble. Theoretically, the Peierls stress around a transition point
can be expanded into the power series

σp = σ (0)
p + σ (1)

p |
 − 
c|. (11)

If σ (0)
p = 0, the Peierls stress is proportional to the PN barrier,

and thus it is exactly equal to zero at the transition points.
However, present numerical evaluations indicate that σ (0)

p ∼
10−6 μ and σ (1)

p ∼ 10−3 μ for the edge dislocation. Therefore,
although the PN barrier disappears at the transition points, the
Peierls stress does not completely vanish. There exists extra
contribution to the lattice friction beyond the PN barrier in

the fully discrete Peierls model. The origination and physical
mechanism of the extra lattice friction remains elusive.

In the 1990s, Speight and Ward, using the Bogomol’nyi
argument, showed that for specially discretized nonlinear
models there may exist static kink solutions occupying any
position relative to the lattice [24,25]. Consequently, kinks of
the models experience no PN barrier and can be quasistatically
moved through the lattice without being pinned. Recently, a
variety of models free of the PN barrier are proposed and
studied [26–29]. The fully discrete Peierls model can also be
viewed as a model free of the PN barrier. However, it is more
rational to explain phenomena revealed above by activation of
the intrinsic freedom of dislocation structures.

IV. SCREW DISLOCATIONS IN FACE CENTERED CUBIC
(FCC) LATTICE

Dislocations in real materials frequently involve both the
edge and screw components. In the isotropic approximation,
the energy functional is given by

U = μτ

4D

∞∑
l=−∞

[
ρ2

e (l ) + 1

2
ρ2

s (l )

]

− μτ

4πD

∞∑
l=−∞

∞∑
l ′=−∞

[
ρe(l )ρe(l ′)

1 − ν
+ ρs(l )ρs(l

′)
]

×ψ (0)

(
|l − l ′| + 1

2

)
+

∞∑
l=−∞

γ (Se, Ss)τ + Kb2h

4π
ln

R

D
,

(12)

where subscripts e and s are used to label the edge and screw
parts. As an application, the screw dislocation lying along the
〈110〉 direction in the fcc lattice is studied with the γ surface
of the (111) plane [30]

γ (Se, Ss) = μb2

4π2d

[
1 − cos

2πSs

b
cos

2πSe√
3b

+ sin2 2πSe√
3b

+


(
cos

2πSe√
3b

− cos
2πSs

b

)
sin

2πSe√
3b

]
. (13)
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FIG. 5. (a) γ surface given by Eq. (13) with 
 = −1.4, where energy and length are measured respectively in the units of μb2/(4π 2d ) and
b. (b) The Peierls stress oscillation for the 〈1̄10〉 screw dislocation in the fcc lattice.

In Fig. 5, the γ surface given by Eq. (13) with 
 = −1.4
and the Peierls stress versus dimensionless parameter 
 are
plotted. In Fig. 6 and Fig. 7, the slip field and the density
distribution are shown for typical values of the dimensionless
parameter 
. Similarly, the Peierls stress oscillation and the
mode transformation appear as the 
 changes monotonically.
However, the oscillation period decreases gradually, and the
residual stress σ (0)

p increases obviously compared with the
edge dislocation discussed above. Because the dimensionless
parameter 
 actually represents the stacking fault energy of
the fcc lattice, γs = 9μb2(1 + 
/

√
3)/(16π2d ), the core type

of dislocation structure may be controlled by changing the
stacking fault energy γs [16,31]. In Table I, values of the
dimensionless parameter 
 are listed for some typical metals
with fcc lattice structure.

V. SUMMARY

In summary, the stability of discrete modes and relevant
implication are studied in the framework of the fully discrete
Peierls model. The conventional continuous mode splits into
the B mode and the O mode, which have little difference
in continuous envelope, but have distinct structures on the
atom scale. The mode with lower energy is stable. Therefore,
on the atomic scale, dislocations in materials may display
two different structures characterized theoretically by the B
mode and the O mode. It is necessary to carefully examine
the dislocation core in experiments and numerical simulations
to determine which type it is. Transformation between the
B mode and the O mode implies activation of a freedom of
dislocation structure [13]. Here, the mode stability and trans-
formation have been specifically investigated as a function

of the stacking fault energy parametrized by a dimension-
less constant 
. A sequential transformation series is clearly
revealed as 
 changes in a physical range. Peierls stress oscil-
lation originates from the dislocation structure transformation.
It is predicted that the lattice resistance is drastically reduced
at the transition points due to Peierls barrier vanishing. In
general, the dislocation core structure is determined mainly
by both the stacking fault energy and the elastic constants
of bulk material. It is well known that the stacking fault
energy and the elastic constants are strongly dependent of
temperature and pressure, and other factors such as alloying
and deformation [15,16,31,32]. Therefore, the type of disloca-
tion structure may be tuned artificially and material plasticity
may be substantially altered as approaching the transition
points.
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APPENDIX

In this Appendix, the energy functional Eq. (2) is derived in
detail. Due to the discrete displacement symmetry, the elastic
energy in the harmonic approximation of the interaction can
be generally expressed as

Ue = 1

2

∑
l

∑
l ′

�(l − l ′)S(l )S(l ′). (A1)

TABLE I. Dimensional parameter 
 for typical fcc metals [30].

Metal Cu Ag Au Al Ni Rh Pd Pt Pb


 −1.63 −1.67 −1.61 −1.35 −1.66 −1.54 −1.45 −1.10 −1.37
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FIG. 6. Screw component Ss and the edge component Se of the slip field of the screw dislocation in the fcc lattice: (a) 
 = −1.1, (b) 
 =
−1.3, (c) 
 = −1.4, (d) 
 = −1.5, (e) 
 = −1.6, and (f) 
 = −1.7, where the slip is measured in units of the Burgers vector b and the
Poisson ratio ν = 1/3 is taken in evaluation.

Hereafter, the summation index always runs over all integers
if it is not specified explicitly. In the leading terms approxima-
tion

�(l ) = �s(l ) + �r (l ),

�s(l ) = − ωs

2π

1

l2 − 1
4

,

�r (l ) = ωr

2
(2δl − δl+1 − δl−1).

Thus the energy is a sum of two terms

Ue = U r
e + U s

e ,

U r
e = 1

2

∑
l

∑
l ′

�r (l − l ′)S(l )S(l ′),

U s
e = 1

2

∑
l

∑
l ′

�s(l − l ′)S(l )S(l ′).

Before proceeding to the Eq. (2) derivation, it is helpful to
develop the difference and summation calculus that is similar
to the differential and integral calculus. Let us introduce the
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FIG. 7. Dislocation density distribution given by the discrete gradient of the slip field: (a) 
 = −1.1, compact O mode, (b) 
 = −1.3,
slightly dissociated B mode, (c) 
 = −1.4, dissociated O mode, (d) 
 = −1.5, dissociated B mode, (e) 
 = −1.6, dissociated O mode, and
(f) 
 = −1.7, highly dissociated B mode.

forward difference operator ∇ and the backward difference
operator ∇̄

∇S(l ) = S(l + 1) − S(l ), ∇̄S(l ) = S(l ) − S(l − 1).

The density is defined as the forward difference of the slip

ρ(l ) = ∇S(l ).

Obviously,

∇̄S(l ) = ρ(l − 1).

For the difference operation of the product, there are iden-
tities similar to the formula well known in the differential

calculus

∇(Sρ) = S(l + 1)ρ(l + 1) − S(l )ρ(l )

= S(l + 1)ρ(l + 1) − S(l )ρ(l + 1) + S(l )ρ(l + 1)

− S(l )ρ(l )

= ρ(l + 1)∇S + S(l )∇ρ = S(l + 1)∇ρ + ρ(l )∇S

(A2)

and

∇̄(Sρ) = S(l )ρ(l ) − S(l − 1)ρ(l − 1)

= ρ(l )∇̄S + S(l − 1)∇̄ρ = S(l )∇̄ρ + ρ(l − 1)∇̄S,

(A3)
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where the last steps come from exchange invariance between
S and ρ. In analogy to the Newton-Leibniz integral formula,
there is summation identity

l=l1∑
l=l0

∇S(l ) = S(l0 + 1) − S(l0) + S(l0 + 2) − S(l0 + 1)

+ · · · + S(l1 + 1) − S(l1) = S(l1 + 1) − S(l0),

where the intermediate terms cancel each other and only two
boundary values remain. In analogy,

l=l1∑
l=l0

∇̄S(l ) = S(l1) − S(l0 − 1).

In physics, variational derivative of the energy is the force

f (l ) = − δU

δS(l )
= −

∑
l ′

�(l − l ′)S(l ′).

Obviously, energies U r
e and U s

e can be written as

U r
e = −1

2

∑
l

fr (l )S(l ),

fr (l ) = − δU r
e

δS(l )
= −

∑
l ′

�r (l − l ′)S(l ′),

U s
e = −1

2

∑
l

fs(l )S(l ),

fs(l ) = − δU s
e

δS(l )
= −

∑
l ′

�s(l − l ′)S(l ′). (A4)

For the �r (l ), the related force is

fr (l ) = −
∑

l ′
�r (l − l ′)S(l ′) = −

∑
l ′

ωr

2
(2δl−l ′ − δl−l ′+1 − δl−l ′−1)S(l ′)

= −ωr

2
[2S(l ) − S(l + 1) − S(l − 1)] = ωr

2
∇̄∇S(l ) = ωr

2
∇̄ρ(l ) (A5)

and the energy is

U r
e (l ) = −1

2

∑
l

fr (l )S(l ) = −ωr

4

∑
l

S(l )∇̄ρ(l )

= −ωr

4

∑
l

[∇̄(Sρ) − ρ(l − 1)∇̄S(l )] = ωr

4

∑
l

ρ2(l ), (A6)

where the condition ρ(±∞) = 0 has been used in the last equality.
For the �s(l ), the force is

fs(l ) = −
∑

l ′
�s(l − l ′)S(l ′) = ωs

2π

∑
l ′

S(l ′)
(l − l ′)2 − 1

4

= ωs

2π

∑
l ′

[
S(l ′)

l − l ′ − 1
2

− S(l ′)
l − l ′ + 1

2

]

= ωs

2π

∑
l ′

S(l ′) − S(l ′ + 1)

l − l ′ − 1
2

= − ωs

2π

∑
l ′

ρ(l ′)
l − l ′ − 1

2

(A7)

and the energy is

U s
e (l ) = −1

2

∑
l

fs(l )S(l ) = ωs

4π

∑
l

∑
l ′

ρ(l ′)S(l )

l − l ′ − 1
2

= ωs

4π

∑
l ′

ρ(l ′)
∑

l

S(l )

l − l ′ − 1
2

. (A8)

Introducing function ϕ by the following equation:

∇ϕ

(
l − l ′ − 1

2

)
= ϕ

(
l + 1 − l ′ − 1

2

)
− ϕ

(
l − l ′ − 1

2

)
= 1

l − l ′ − 1
2

,
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from Eq. (A2) the last summation in Eq. (A8) can be changed into∑
l

S(l )

l − l ′ − 1
2

=
∑

l

S(l )∇ϕ

(
l − l ′ − 1

2

)
=

∑
l

[
∇(Sϕ) − ϕ

(
l + 1 − l ′ − 1

2

)
∇S(l )

]

=
∑

l

∇(Sϕ) −
∑

l

ϕ

(
l − l ′ + 1

2

)
ρ(l ). (A9)

The function ϕ(l − l ′ + 1
2 ) can be obtained exactly. It is given by

ϕ

(
l − l ′ − 1

2

)
= ψ0

(
|l − l ′| − 1

2

)
+ ϕ0, (A10)

where ϕ0 is an arbitrary constant. ψ0(z) is the polygamma function defined by the Gamma function (z)

ψ0(z) = 1

(z)

d(z)

dz
, ψ0(z + 1) − ψ0(z) = 1

z
.

The function ϕ actually describes the interaction energy between two dislocations ρ(l ) and ρ(l ′). It is physically rational to
choose the constant ϕ0 = −ψ0(N → ∞) to make the interaction energy vanish when two dislocations are far apart:

ϕ

(
l − l ′ − 1

2

)
= ψ0

(
|l − l ′| − 1

2

)
− ψ0(N ), N → ∞.

As a result of selection of potential energy zero point, the first term of the last expression in Eq. (A9) is zero. The energy U s
e now

is

U s
e (l ) = − ωs

4π

∑
l

∑
l ′

ϕ

(
l − l ′ + 1

2

)
ρ(l ′)ρ(l ′)

= − ωs

4π

∑
l

∑
l ′

ψ0

(
l − l ′ + 1

2

)
ρ(l ′)ρ(l ′) + ωs

4π

∑
l

∑
l ′

ψ0(N )ρ(l )ρ(l ′)

= − ωs

4π

∑
l

∑
l ′

ψ0

(
l − l ′ + 1

2

)
ρ(l ′)ρ(l ′) + ωsb2

4π
ln

R

D
, (A11)

where R is a macroscopic length and D is the period in direction perpendicular to the dislocation line, and∑
l

ρ(l ) = b, ψ0(N ) = ln N = ln
R

D
, N → ∞,

are used.
In summary,

Ue = ωr

4

∞∑
l=−∞

ρ2(l ) − ωs

4π

∞∑
l=−∞

∞∑
l ′=−∞

ρ(l )ρ(l ′)ψ (0)

(
|l − l ′| + 1

2

)
+ ωsb2

4π
ln

R

D
. (A12)

This elastic energy Ue is the self-interaction energy of disloca-
tion in a length of period h. In the continuous approximation,
the classical PN model should be recovered, and thus the
constant ωs must be

ωs = Kτ

D
,

where τ = hD is the area of the primitive cell of a slip
plane. Because the dislocation radius r0 (dislocation width)
introduced in the continuum elasticity theory approximately
equals the lattice characteristic length D, r0 ∼ D, the last term
is roughly the same as the dislocation energy given in the

continuum elasticity theory

U 0
e = ωsb2

4π
ln

R

D
= Kb2h

4π
ln

R

D
.

The first two terms can be referred to as the dislocation core
energy

U c
e = ωr

4

∞∑
l=−∞

ρ2(l ) − ωs

4π

∞∑
l=−∞

∞∑
l ′=−∞

ρ(l )ρ(l ′)

×ψ (0)

(
|l − l ′| + 1

2

)
. (A13)
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