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The introduction of non-Hermiticity to topological systems profoundly modifies their topological properties,
leading to unprecedented phenomena beyond the descriptions of Bloch band theory, e.g., the breakdown of the
conventional bulk-boundary correspondence. However, the comprehensive interplay between band topology and
non-Hermiticity remains elusive. Here, based on a non-Hermitian Su-Schrieffer-Heeger model, we demonstrate
that in the non-Hermitian topological systems, band topology and non-Hermiticity interplay by competing
with each other, exhibiting a transition from symmetry dominance to non-Hermitian dominance. The former
is featured with two edge states separately distributed at the two ends of the Su-Schrieffer-Heeger chain, similar
to their Hermitian counterparts. In the latter, however, driven by non-Hermiticity, the two edge states become
localized toward the same chain end, exhibiting the non-Hermitian skin effect. We find that such a transition is
a universal behavior in the non-Hermitian systems, which is responsible for the breakdown of the conventional
bulk-boundary correspondence and is the key factor to understanding the non-Hermitian topological properties.
Furthermore, it is shown that this transition can be modified by the mode coupling between the edge states.
As a comparison, we propose a non-Hermitian square-root Su-Schrieffer-Heeger model, where the edge states
do not couple with each other and the mode coupling effect can be deactivated. Our work explicitly reveals the
interplay between band topology and non-Hermiticity, which lays the foundation for the studies of non-Hermitian
topological physics.
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I. INTRODUCTION

The Hermiticity of a Hamiltonian imposes constraints that
guarantee real eigenvalues and orthogonal eigenstates, reflect-
ing the dynamics of an isolated system. In open systems,
however, the description of Hermiticity breaks down, while
the non-Hermitian Hamiltonians provide suitable approxima-
tions to describe their properties [1–5]. Over the past two
decades, non-Hermitian physics has been extensively inves-
tigated in both theories [6–17] and experiments [18–34],
leading to remarkable properties and phenomena such as
exceptional features [19,24,27,33], unidirectional invisibility
[19,20,23], mode switching [26,32], and enhanced sensitivity
[22,31].

Recently, non-Hermiticity has been further shown to fun-
damentally modify the Bloch band theory, giving rise to
unprecedented physics described by non-Bloch band theory
[35–39]. Therein, a seminal phenomenon emerges, known
as the non-Hermitian skin effect (NHSE) [35]. It describes
the intriguing phenomenon that due to the nonreciprocal
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coupling in non-Hermitian systems, eigenstates of the Hamil-
tonian collapse and exponentially localize around sample
boundaries, exhibiting features similar to the topological edge
states in Hermitian systems. Extensive theoretical [40–44]
and experimental [45–48] efforts have been made to interpret
NHSE.

While NHSE arises from non-Hermiticity and does not
necessarily require the system to be topologically nontrivial,
in topologically nontrivial systems, it is shown that non-
Hermiticity modifies the topological phase transition, leading
to the breakdown of the conventional bulk-boundary corre-
spondence (BBC) [35,36,38]. How the band topology and
the non-Hermiticity interplay and what the role of NHSE is,
however, remain unheeded.

Here, based on a 1D non-Hermitian Su-Schrieffer-Heeger
(SSH) model, we demonstrate that in the non-Hermitian topo-
logical systems, the band topology and the non-Hermiticity
compete with each other, leading to a transition from
a band topology (or crystalline symmetry) dominant re-
gion (TDR) to a non-Hermiticity dominant region (NHDR)
in the parameter space, featuring topological edge states
transiting into topological skin modes. As a result, the
conventional BBC in the Hermitian limit breaks down
and the topological properties are modified in the non-
Hermitian systems. We further show that the mode coupling
is a vital factor that can affect the TDR-NHDR transition,
while in the systems without mode coupling, this effect is
deactivated.

2469-9950/2022/105(9)/094103(6) 094103-1 ©2022 American Physical Society

https://orcid.org/0000-0002-2375-3449
https://orcid.org/0000-0003-0401-9844
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.105.094103&domain=pdf&date_stamp=2022-03-22
https://doi.org/10.1103/PhysRevB.105.094103


CHENG, ZHANG, LU, AND CHEN PHYSICAL REVIEW B 105, 094103 (2022)

Energy Spectrum under OBC(n)

(f)
Bulk states when 

Edge states when varies
(g) (h) (i)

(o)
Bulk states when 

(a) (j)

Energy Spectrum under PBC
(k) (l) (m)

Edge states when varies
(p) (q) (r)

Energy Spectrum under OBC(e)

Energy Spectrum under PBC
(b) (c) (d)

0.6

FIG. 1. (a) The Hermitian SSH model. t1 and t2 represent the intra- and intercell coupling coefficients. A and B denote the sublattice sites.
(b)–(d) Energy spectra under PBC. (e) Energy spectrum under OBC with N = 30, with the bulk (edge) states indicated by the black (red)
curves. (f)–(i) Mode profiles for three randomly selected bulk states and the two edge states. The gray transparent lines represent the bulk
states while the green and purple lines indicate the two edge states. (j) The non-Hermitian SSH model with nonreciprocal intercell coupling,
which is characterized by an offset of γ . (k)–(r) Respectively, the same as (b)–(i), only for the non-Hermitian model with γ = 0.4. Common
parameter: t2 = 1.

II. MODEL

We start with a two-band SSH model, as illustrated in
Fig. 1(a), whose Hamiltonian is given by

H (k) =
(

0 t1 + t2e−ik

t1 + t2eik 0

)
, (1)

where t1 (t2) represents the intra- (inter-) cell coupling co-
efficient (only the nearest neighbor coupling is considered).
k is the Bloch wave vector. This model obeys the chiral (or
sublattice) symmetry and presents a Z2-type topology [39]. As
shown in Figs. 1(b)–1(d), where the energy spectra E under
periodic boundary condition (PBC) are presented, the energy
gap experiences a gap opening-closing-reopening process,
predicting a topological phase transition; i.e., when |t1| < |t2|,
the system is topologically nontrivial and hosts edge states
with zero energy, while it is trivial for |t1| > |t2|. |t1| = |t2| is
the topological transition point. Such a phase diagram is con-
sistent with the topological properties under open boundary
condition (OBC) where edge states emerge for |t1| < |t2| [see
Fig. 1(e); the small discrepancy is due to the finite-size effect].
This is the well-known BBC in Hermitian systems. We show
the mode profiles for three randomly selected bulk states and
the two edge states in Figs. 1(f)–1(i), which exhibit typical
extended or localized behaviors.

When introducing nonreciprocal coupling, the SSH model
becomes non-Hermitian [see Fig. 1(j)]. Here, γ is used to
characterize the intercell coupling offset. γ = 0 returns the
model to its Hermitian limit. The Hamiltonian for such a

non-Hermitian model reads

H (k) =
(

0 t1 + (t2 − γ )e−ik

t1 + (t2 + γ )eik 0

)
. (2)

Note that the eigenvalues and eigenvectors of Eq. (2)
are not necessarily real. This is the consequence of non-
Hermiticity. It is also pointed out that such nonreciprocal
coupling induced non-Hermitian systems do not respect
parity-time symmetry. We again calculate the energy spectra
under PBC and OBC for the non-Hermitian SSH model with
γ = 0.4, as shown in Figs. 1(k)–1(n). Interestingly, the energy
gap closing point under PBC [see Fig. 1(l)] is noticeably
different from the topological transition points under OBC
(where the zero-energy modes disappear). This inconsistence
indicates the breakdown of the Hermitian BBC [35,36,38].
Here, we emphasize that such an inconsistence is an indication
and a consequence of, but not a reason for the breakdown
of the Hermitian BBC. As identified in the following, the
physical reason to the breakdown is the competing between
the band topology and non-Hermiticity.

We present the mode profiles for three random bulk states
in Fig. 1(o), which surprisingly show wave localization toward
the left boundary, in sharp contrast to the Hermitian bulk
states [see Fig. 1(f)]. This is the manifestation of the so-called
NHSE. In fact, driven by non-Hermiticity, all the bulk states
become skin modes [35].

For the edge states, however, very different behavior is
observed. As shown in Figs. 1(p)–1(r), for smaller t1, the
edge states are localized at both ends of the SSH chain,
which are imposed and protected by chiral symmetry that
is responsible for the nontrivial band topology. This is the
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same as the Hermitian counterpart. With increasing t1, non-
Hermiticity gets stronger and forces the edge states to localize
toward the left chain end, competing with the protection of
the chiral symmetry. When non-Hermiticity is strong enough,
the edge states transit into edge skin modes, as a manifes-
tation of NHSE. We argue that such a competition between
band topology (or crystalline symmetry) and non-Hermiticity
is exactly the reason that the Hermitian BBC breaks down
in non-Hermitian systems, considering the NHSE is only
manifested under OBC. As t1 continuously increases, NHSE
becomes overwhelming, topological phase transition happens,
and the zero-energy modes disappear.

Note that here there are two kinds of transitions. One
is the topological phase transition, which cannot be deter-
mined by band gap closing under PBC due to the effect of
non-Hermiticity. The other is the transition between band
topology (or crystalline symmetry) dominance and non-
Hermitian dominance. This transition is not considered as a
phase transition. It happens because of the competing effect
and the zero-energy modes before and after the transition both
have topological origin (as shown in the following). In fact,
it is this transition that shapes the non-Hermitian topological
phase transition.

We notice that the emergence of edge skin modes was
also observed previously, known as the consequence of a
non-Hermitian coalescence [14]. In Ref. [14], these modes are
referred to as the defective edge states. A number-anomalous
BBC was proposed to mathematically identify these states
[49]. In the present work, we reveal an unambiguous tran-
sition between TDR and NHDR behind the emergence of the
edge skin modes, which provides a deep physical understand-
ing of this phenomenon and of how it behaves both under
thermodynamic limit and in finite structures (as studied in
more detail in the following sections). We believe our study, in
combination with the previous identifications, would provide
a comprehensive understanding of the non-Hermitian topolog-
ical physics.

III. TRANSITIONS UNDER THERMODYNAMIC LIMIT

In this section, we analytically derive the condition for the
transition between TDR and NHDR in the parameter space of
(t1, γ ). The zero-energy edge states for the model in Fig. 1(j)
are expressed as (see the Supplemental Material [50] for
derivations)

φN,A =
(

− t1
t2 + γ

)N−1

φ1,A,

φ1,B =
(

− t1
t2 − γ

)N−1

φN,B. (3)

φi, j (i = 1, 2, . . . , N ; j = A, B) represents the wave func-
tion on the subsite j in the ith cell. Equation (3) implies that
the mode profiles of the edge states are determined by the
propagation constants − t1

t2+γ
and − t1

t2−γ
. Under the thermo-

dynamic limit (i.e., N → ∞), apply the boundary conditions
φ1,B = φN,A = 0 to Eq. (3), yielding |t1| < |t2 + γ | and |t1| <

|t2 − γ |. For a fixed t2 = 1, these two inequalities enclose
a diamond-shaped region in the parameter space of (t1, γ ),
i.e., the TDR [orange region in Fig. 2(a)]. In this region,

(a) (b)

FIG. 2. (a) Diagram for the TDR (orange region) and NHDR
(blue region) under thermodynamic limit. The outer circle de-
notes the topological transition line. To distinguish between the
TDR-NHDT transition and the topological phase transition, the
former is indicated by dashed lines while the latter is indicated
by a solid line. (b) Winding number for the case with γ = 0.4.
Its jumps clearly mark the derived topological transition points.

the edge states are separately located at the two ends of
the non-Hermitian SSH chain, imposed and protected by the
chiral symmetry. Outside the TDR, non-Hermiticity becomes
strong enough to destroy the protection of chiral symmetry
and the system goes into the NHDR [blue region in Fig. 2(a)].
The transition happens at |t1| = |t2 ± γ |, where the two edge
states become delocalized; i.e., they are not localized at the
left chain end nor the right chain end. Instead, they become
standing waves, as if there are no edge states. This interesting
phenomenon is the result of a balanced effect between band
topology and non-Hermiticity.

When the NHSE becomes overwhelming, topological
phase transition happens, which demarcates the outer bound-
ary of the NHDR. Here, we adopt a non-Bloch-band theory
[35,51] to derive the phase transition points, which are found
to locate at t2

1 + γ 2 = t2
2 . A non-Hermitian winding number w

is also calculated, as shown in Fig. 2(b) for the case with γ =
0.4, whose jumps are shown to exactly correspond to the de-
rived phase transition points. The non-zero w unambiguously
relates the topological nontrivial region to the emergence of
the zero-energy modes [see Fig. 1(n), with a discrepancy due
to the mode coupling effect]. This indicates that both the
edge states and the edge skin modes are topological and have
topological robustness. More details on the topological phase
transition, the winding number, and the robustness study are
shown in the Supplemental Material [50].

IV. EFFECT OF MODE COUPLING

Under the thermodynamic limit, the edge states are sep-
arately located at the two ends of the SSH chain without
coupling. However, in systems with finite cells, mode cou-
pling between the edge states becomes significant. In this
section, we show that the mode coupling can enhance the
NHSE and accordingly expand the NHDR. Figure 3(a)
presents the TDR-NHDR diagram in a finite non-Hermitian
SSH chain with N = 200. Without loss of generality, we
consider positive coupling coefficients, i.e., t1 > 0 and γ > 0.
TDR and NHDR are quantified by a mode density over the
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FIG. 3. (a) Numerically calculated TDR-NHDR diagram in a finite non-Hermitian SSH chain with N = 200. TDR (orange region) and
NHDR (blue region) are characterized by LD = 1 and 2, respectively. The dashed line denotes the topological transition line identified by
the non-Bloch-band theory. The solid arrow with dots denotes three examples illustrated in (b)–(d), where the mode profiles for the two zero
modes with increasing t1 are presented (with γ = 0.4). Insets: the modulus of the wave functions at A and B sites in logarithmic scale, showing
energy transfer from right to left during the TDR-NHDR transition. The green and purple lines indicate the two edge (skin) modes. Similar
studies are conducted for (e)–(h) N = 70, (i)–(l) N = 30, and (m)–(p) N = 15. Note that the scatter density in the insets is reduced by skipping
eight, four, and two sites, respectively, for N = 200, 70, and 30.

left-half cells, which is defined as

LD =
�N/2�∑
n=1

∑
i=A,B

[∣∣φa
n,i

∣∣2 + ∣∣φb
n,i

∣∣2]
, (4)

where �N/2� rounds down N/2 to its next lowest integer. a
and b denote the two zero modes. Given that these two modes
are square normalized, LD essentially counts the number of
localized states at the left chain end, with LD = 1 indicating
the two states are separately localized at the two chain ends
(marking the TDR) while LD = 2 indicates the two states are
localized at the left chain end as non-Hermitian edge skin
modes (marking the NHDR).

From Fig. 3(a), it is seen that the transition line separating
TDR and NHDR moves away from that in Fig. 2(a) and
the NHDR is indeed expanded. In TDR, there are localized
states with LD = 0 or 2, indicating they are at the same chain
end. Note that these states are not skin modes, instead, they
are formed due to the coupling effect. We further present
the mode profiles for the two zero modes with increasing t1
in Figs. 3(b)–3(d), which show evolution similar to that in
Figs. 1(p)–1(r); i.e., the two modes transit from edge states
to edge skin modes. This further corroborates the results in
Fig. 3(a).

We argue that the expansion of NHDR is due to the cou-
pling between the two zero modes. From Eq. (3), it is seen
that the left (right) zero mode φa (φb) is tightly confined at
sites A (B) and exponentially decays toward the right (left)
when N → ∞. At finite N , however, φb starts to leak energy
toward the left. Restricted by the boundary condition at the

left end, the energy initially in the B sites of φb is transferred
to the A sites of φa [as shown by the insets in Figs. 3(b)–3(d),
the purple dots], indicating φa and φb are coupled. Through
such a coupling, the NHSE is enhanced and the NHDR is
expanded. Note that at finite N , φa can also transfer energy
toward the right to φb. However, this process is suppressed by
the non-Hermiticity and almost all the energy is concentrated
in the left [see insets in Figs. 3(b)–3(d), the green dots]. We
further present the studies for N = 70, 30, and 15. It is shown
that with decreasing N , the NHDR is further expanded, owing
to a stronger mode coupling. For N = 15, the transition line
between TDR and NHDR almost touches the x axis, suggest-
ing that in a short chain the NHSE is prominent. Moreover,
we find that for near zero γ , the edge states do not transit into
the edge skin modes and always exist until the topological
phase transition happens [see Figs. 3(a), 3(e), 3(i), and 3(m)].
This indicates that in finite systems with mode coupling, the
non-Hermiticity has to be strong enough in order to com-
pete with the band topology. Otherwise, the system behaves
as its Hermitian counterpart. It is also pointed out that the
topological phase transition line in the finite systems (i.e.,
the outer boundary of NHDR) deviates from the prediction
by non-Bloch-band theory and is size dependent. This is the
effect of mode coupling, similar to the finite-size effect in
Hermitian systems.

V. A NON-HERMITIAN SQUARE-ROOT SSH MODEL

In this section, we propose a non-Hermitian square-
root SSH model to demonstrate the TDR-NHDR transition
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FIG. 4. (a) The square-root non-Hermitian SSH model. t1, t2, and
γ denote the same coupling coefficients in the non-Hermitian SSH
model, except that in the square-root model, the coupling coefficients
are taken as a square-root operation. A, A′, B, and B′ represent the
four sites. (b) The energy spectrum of the square-root model under
OBC. The bulk states are indicated by the black lines. The edge (skin)
states are indicated by the red lines, which show that in the square-
root model, the edge (skin) states are split symmetric to zero energy.
(c) Numerically calculated diagram for TDR (LD = 0, the orange
color) and NHDR (LD = 2, the blue color) in the finite chain. The
black arrow with dots indicates three examples illustrated in (d)–(f),
where the mode profiles of the two edge (skin) states with increasing
t1 are presented, exhibiting the TDR-NHDR transition. The green and
purple solid lines denote the two states. A delocalization occurs at the
transition line (i.e., t1 = 0.6). Common parameters: t2 = 1, γ = 0.4,
and N = 30.

without mode coupling. The square-root model takes a square-
root operation on the Hamiltonian of the parent model by
adding a set of subsites on wherever hopping is permitted
[52–55]. As shown in Fig. 4(a), this model modifies the
hopping coefficients of the original SSH model to be square
rooted, obeying the following Hamiltonian:

H (k) =

⎛
⎜⎜⎜⎝

0
√

t1 0
√

t2 − γ e−ik

√
t1 0

√
t1 0

0
√

t1 0
√

t2 + γ√
t2 + γ eik 0

√
t2 − γ 0

⎞
⎟⎟⎟⎠.

(5)
We calculate the eigenspectra of a finite chain with N =

30, as shown in Fig. 4(b). The edge states in the square-root
model are split, with positive and negative energy symmetric
to the zero energy (see the red lines) and can be expressed
as (see the Supplemental Material [50] for the derivations, as
well as the discussions on the topological phase transition and
the winding number)

φn,A = 0, φ1, j =
(

− t1
t2 − γ

)N−1

φN, j,

with

j = A′, B, B′ for

∣∣∣∣ t1
t2 − γ

∣∣∣∣ < 1. (6)

From Eq. (6) (see the Supplemental Material [50] for the
full solution), it is seen that the edge states in the square-root
model are localized at the same chain end, i.e., the right
end. This is due to the reduction of the inversion symme-
try. A direct consequence is that the two edge states in this
case are no longer coupled with each other. Accordingly,
the NHDR expansion is deactivated. In Fig. 4(c), we present
the TDR-NHDR diagram at a finite N = 30, which shows
that the transition line lies at t1 = t2 − γ , exactly the same
as that in the thermodynamic limit. The mode profiles for
the two localized states with increasing t1 are presented in
Figs. 4(d)–4(f). A similar evolution as the SSH model is
observed as the two states transit from the edge states lo-
cated at the right end to the edge skin modes located at the
left end. Interestingly, due to the lack of coupling effect, the
delocalization behavior at the transition line, as discussed for
the SSH model under the thermodynamic limit, is restored
in the square-root model, where the two edge states become
extended Bloch waves [see Fig. 4(e)]. In the finite SSH model,
however, this phenomenon is absent due to the coupling effect.

VI. CONCLUSIONS

Based on a non-Hermitian SSH model, we demonstrate
in non-Hermitian systems that the band topology and non-
Hermiticity interplay by competing with each other, leading to
an unambiguous transition from band-topology dominance to
non-Hermitian dominance, which shapes the non-Hermitian
topological phase transition. We further find that the mode
coupling between the edge states can be a positive aid to
enhance the NHSE, which can be activated or deactivated in
different systems. Our work reveals the fundamental interplay
between band topology and non-Hermiticity, which can serve
as a universal mechanism for the non-Hermitian topological
physics. The results can be generalized to a variety of phys-
ical fields, as well as to the higher dimensions, where the
chapters for non-Hermitian physics are to be opened (see the
Supplemental Material [50] for our discussions on non-
Hermitian skin effect in higher dimensions and its competing
effect with band topology, where a square lattice [56] and
a Kagome lattice [57–59] are demonstrated as examples).
They also apply to non-Hermitian systems with bipolar skin
effect that corresponds to a phenomenon where the eigenstates
with different eigenenergy can localize toward different open
boundaries [37]. Driven by the competing effect, topologi-
cal states in these systems also experience the TDR-NHDR
transition with the localization of the resultant edge skin
modes dependent on what eigenenergy they fall onto. Exper-
imentally, our results can be implemented in systems with
nonreciprocal coupling [45–48].
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