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Local equilibrium charge and spin currents in two-dimensional topological systems
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We study the equilibrium and nonequilibrium electronic transport properties of multiprobe topological systems
using a combination of the Landauer-Biittiker approach and nonequilibrium Green’s functions techniques. We
obtain general expressions for both nonequilibrium and equilibrium local electronic currents that, by suitable

projections, allow one to compute charge, spin, valley, and orbital currents. We show that external magnetic fields
give rise to equilibrium charge currents in mesoscopic system and study the latter in the quantum Hall regime.
Likewise, a spin-orbit interaction leads to local equilibrium spin currents, that we analyze in the quantum spin
Hall regime. We show that an accurate theoretical assessment of the equilibrium currents is quite challenging

and propose a two-measurement protocol that facilitates a comparison between experiment and theory.
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I. INTRODUCTION

Edge states and the bulk-boundary correspondence are key
features of systems with topological properties [1-3]. Large
experimental and theoretical interest has been devoted to elec-
tronic two-dimensional (2D) topological systems, which are
characterized by edge states that are robust against disorder
and by a quantized conductance. Currently, it is well estab-
lished that the current flow in integer quantum Hall IQH) and
quantum spin Hall (QSH) systems is associated with gapless
chiral edge states [4] and helical edge states [5], respectively.

Advances in device fabrication and detection techniques
allow one to measure edge currents in IQH [6-10] and QSH
systems [11-13], using a variety of methods. As a result, it
is nowadays possible to experimentally assess local current
maps of 2D samples [12,14-16], whose interpretation calls
for a state-of-the-art microscopic electronic transport theory.

Of particular interest is the investigation of dissipationless
currents proposed in both in IQH [17] and QSH systems
[18-21]. While recent current flow quantum imaging exper-
iments in graphene [15,22] have rekindled the interest in
equilibrium currents in IQH systems [23], to the best of our
knowledge experimental evidence of equilibrium currents in
QSH systems is still missing.

Equilibrium electronic currents in (nontopological) meso-
scopic conductors with broken time-reversal symmetry have
been theoretically addressed a long time ago [24] and gained a
substantial attention [25-27] due to experiments on persistent
currents in mesoscopic rings [28-30].

However, a microscopic study of equilibrium currents in
the IQH regime in a multiprobe set-up is still lacking. The
situation is less clear for QSH systems. Equilibrium currents
in topological insulators have been studied for massless [31]
as well as for massive Dirac electrons [32,33]. Interestingly,
these works overlook the literature on spin currents in the
spin Hall regime. The existence of bulk spin currents in
thermodynamic equilibrium in conductors lacking inversion
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symmetry have been first discussed more than 15 years ago
by Rashba [34] and few years later in more general terms [35].
Application proposals of equilibrium spin currents [36] have
been subject of controversy, until it was shown that both the
Landauer-Biittiker approach [37] and NEGF theory [38,39]
are incompatible with a net equilibrium spin transport.

We address the problem of equilibrium currents using
the nonequilibrium Green’s functions theory (NEGF) [40]
combined with the Landauer-Biittiker approach [41,42] that
allows one to obtain the local transport properties of a given
multiprobe system with arbitrary geometry. We employ the
formalism put forward in Refs. [39,43] to compute local elec-
tronic and spin currents using the recursive Green’s functions
(RGF) method [44—47]. We use this approach to study the
charge and the spin flow in topological systems. We show that
the equilibrium currents cannot be measured by the standard
methods and discuss strategies to assess them. In addition,
our analysis also shows the necessity of separating the equi-
librium from the nonequilibrium contributions to the local
currents for a correct theoretical interpretation of experimental
results. While nonequilibrium transport is governed by the
properties of the Fermi surface states, equilibrium currents
involve all occupied states. Hence, their quantitative assess-
ment is theoretically quite daunting, since it requires not only
accounting for electronic states deep into the Fermi sea, but
also for precise description of the system geometry, disorder
configuration, and material band structure. To circumvent this
issue, we put forward a simple two-measurement protocol
that facilitates a quantitative comparison between theory and
experiments.

In summary, we show that the equilibrium currents in topo-
logical systems, contrary to the common believe, do not stem
solely from the (topological) edge states. They actually have
a significant contribution from electronic states that belong to
the trivial phase, which is quite challenging to calculate with
a good level of accuracy for realistic models. We propose a
simple measurement protocol to separate both contributions,
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FIG. 1. Sketch of a multiterminal Hall bar. The terminals (or
leads) L, labeled by « = 1, - - - , 6, can inject (collect) electrons into
(from) the system C. The dashed line illustrates a possible system
control cross section and / indicates the current path used in the
numerical calculations (see text).

allowing for an amenable computation, as well as for an un-
ambiguous experimental assessment of the (topological) edge
state equilibrium currents.

This paper is structured as follows. In Sec. II, we define
the problem and obtain close expressions for the local charge
and spin currents in a multiprobe set-up using nonequilibrium
Green’s functions. We identify the equilibrium and nonequi-
librium current components and discuss their properties in
terms of the Landauer-Biittiker approach. In Sec. III we in-
troduce an analytical solvable model to show the necessity
of an external magnetic field to generate equilibrium charge
currents. In Sec. IV we study the nonequilibrium and the
equilibrium currents in the integer quantum Hall regime for
a realistic multiterminal setup. In Sec. V we conduct a similar
analysis for quantum spin Hall systems. We summarize our
results and present our conclusions in Sec. VI.

II. ELECTRONIC CURRENT IN A MULTIPROBE
MESOSCOPIC SYSTEM

We begin this section with a brief overview of the
Landauer-Biittiker approach [41,42] for the description of the
transport properties of multiprobe quantum coherent meso-
scopic systems. These results, originally obtained using the
scattering matrix approach [48,49], can be derived using
nonequilibrium Green’s functions (NEGF) [50,51]. In this
paper we adopt the latter. Next, we discuss the theory that
describes local equilibrium and nonequilibrium electronic
currents [39,43,52,53]. We cast the corresponding expres-
sions in a convenient way to implement an efficient recursive
Green’s function (RGF) method [45-47] that is used to com-
pute the results reported in Secs. IV and V.

We consider the standard model Hamiltonian

H=H:+H,+V, (D

where He describes the mesoscopic system C, Hy the leads
that connect C to electronic reservoirs in thermal and chemi-
cal equilibrium, and V' the coupling between the mesoscopic
system C and the leads.

For the sake of concreteness, we consider a Hall bar in
Fig. 1. The multiterminal Landauer-Biittiker formula for the
electronic current I, at the terminal o reads [48,50]

+00
Iazng dE Top(EMNfu(E) — fo(E)]. ()
g Y0

where the Greek letters label the terminals ¢ = 1,---, A.
The terminals, usually modeled by semi-infinite leads, are in
contact with electronic reservoirs in thermal equilibrium and
inject into the system electrons following a Fermi-Dirac distri-
bution f,(E) = [1 + e E—#)/kT1=1  \where e = o + €Vy,
o 1s the equilibrium chemical potential and V, is the voltage
applied to the «-terminal. For the sake of simplicity, we con-
sider that all electronic reservoirs have the same temperature
T.
The transmission 7,4 (E) is given by [54]

Tap(E) = [T (E)G"(E)I4(E)G(E)] 3

where G" = (G%)' is the retarded Green’s function of the
full system, while I'g represents the decay width of the lead
corresponding to the § terminal. For convenience we express
G" and I'g in a local basis representation that renders simple
expressions for the local currents. Here we consider a Wannier
basis with the states as labeled by v = (i, £, o), where the
corresponding wave function is centered at the lattice atom
i and has orbital and spin quantum numbers given by (¢, o).
In this representation, G” has the dimension of the number of
Wannier states in the central region, while the dimension of I'g
is the number of states corresponding to sites at the S-terminal
central-region interface. The decay width matrix reads

Iy =—-2Im(X)), 4)
where X is the retarded embedding self-energy, namely
2, = Ve GV, . 5)

Veo = VZC gives the coupling matrix elements between the
terminal o and the central region C, and G/, is a contact
Green’s function that casts the electron dynamics in the leads.
The latter can be calculated by several methods [44,55-57].

In linear approximation, where f,(E)= fo(E)+
(—0fp/0E)eV, and fo(E) is the equilibrium Fermi-Dirac
distribution, one obtains the familiar result [48]

A A
Ii== GapVs =Y Gap(Ve — Vp). (6)
B=1 B=1

where G is the Landauer conductance given by

_ 6’2 oo afO
Gup = /W dE(—ﬁ)n,xE). )

Here 7,4(E) accounts for the spin degrees of freedom and,
hence, there is no spin degeneracy factor in Eq. (7). As stan-
dard, we chose the sign of I,, Egs. (2) and (6), to ensure a
positive current from terminal 8 to terminal o when Vg >V,
or [Lg > [Ly. See Appendix A for details.

Let us now calculate the local currents using NEGF. We
begin by considering the number operator N, (¢) = d: )d, (1),
where d]f [d,(t)] creates [annihilates] an electron at the local
basis state v. The local electron flow is associated to the
expectation value of the temporal rate of change of the num-
ber operator, namely, (N, (¢)). The average is taken over the
grand canonical ensemble, namely, (---) = Trle ?% ...]/Z,
where Z = Tr[e##] is the partition function and 8 = 1/kgT
as standard [58].
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We calculate (N,(r)) using the equations-of-motion
method, in a similar way as it is done for the total electronic
current [40,59], and obtain

+00
(Nu(1)) =/ %E[Gm —HG*

o0

+Z<Ggavac—vch;c>} . ®

v,V

where G = is the lesser Green’s function of sites in the central
region and G is hybrid lesser Green’s function containing
propagation information between the « lead and the central
region.

Recalling the identities HG< = —(G<H)" and Vo Goc =
—(G&, Vo) we simplify the diagonal matrix element in
Eq. (8) to

v,V

+00
(N, (1)) = %/ dE Re[G<H+ZGgaVaC} ()

It is straightforward to demonstrate that [60]

G H-HG"+) (G5, Vac — VeuaGip) =0, (10)
o

which explicitly shows that in steady state the average number
of particles in any site is constant.

In order to calculate the current flowing between any pair
of states connected by the model Hamiltonian we write Eq. (9)
as

(@) = e(Ny(®)) = = L, (11)

where (g, (¢)) is the rate of change of the charge in the state v
and 1/, is the charge current flowing from the state v to v'.

__ By comparing Egs. (9) and (11), the local electronic current
I, can be defined as

T 2e [T < <
Ly, = _E/ dE Re|:Gvu’Hu/u + ZGCa,vv’VaC,v’v]
—00 ”
= I~CC,v’v + ZZXC,v’v- (12)
a

Here, the subscripts CC and oC denote the partition to which
the sites corresponding to v’ and v belong (in that order).
Thus, H,, # 0 (or V,,, # 0) is a necessary condition for a
nonvanishing local or bond current between the states v and
V. The sum of all the bond currents across the interface
between the system and the « lead yields

;EC,V’U - _%/

—0Q

+00
dE Tr[GE,Voe — Veo Gacl,  (13)

which, due to charge conservation, is identical to /,, the total
electronic current at terminal «, given by Eq. (2) [59].

Let us assume that the bonds of interest are located suffi-
ciently far from any lead interface so that all V¢ ,/, matrix
elements are identically zero. Hence

~ ~ e +00
Iy =l =~ / dE 2Re (G5, H,,). (14)

o0

Using the Keldysh Eq. [40] written as
G =G'Z°G'=) ifuG'T,G" (15)

o

Eq. (14) becomes

-~ e +00 ~
Ly = 7 Xa:/w dE fo(E)T),(E), (16)
where
7% (E) = 2Im[(G'T,G%),, H,,,1. (17)

Recalling that G'T,G“ is Hermitian, it is straightforward
to show that 7%, = —T77 .

Expanding f,, (E) up to linear order in the terminal applied
voltages {Vg}, we write the local current as
o h =
L, =07+, (18)

vy

where the nonequilibrium component reads
Iy =200 Ve (19)
o

with a local conductance

s [t 3fo\ 74
Gi= /_ _dE <—E>va(E). (20)

In turn, the equilibrium local charge current is given by

+0o0 -
I = %f dE fO(E)|:Z7;‘3‘V(E)i|. 1)

—0Q0

Thus, for a finite bias, quantum imaging current mea-
surements capture both the nonequilibrium and equilibrium
contributions to the local currents to .

Let us project /,,, to real space. Recalling that v = (i, £, o)
and the atomic position can be represented by the index i, one
can define the “bond” charge current as

Li= Y I, (22)

2.0 0,0’

Similarly, one can define a bond spin current [39]

I = % Z[lwxm,(i,zm —liepaenls (23)
[Nz

where 7i/2e converts the units of a charge current into a spin
one. We stress that Eq. (23) applies to system Hamiltonians
that do not couple spin-up with spin-down electrons, which
are of interest for standard spin Hall models. In this case the
spin source term vanishes and the spin currents are conserved,
as nicely discussed in Ref. [39]. In general, local spin currents
are present in systems with a strong spin-orbit interaction
[34,38,39,61]. By applying suitable projection schemes to /,,,,
one can also write expressions for local valley currents [62,63]
and orbital currents [64,65].

Note that, similarly to the total currents I, the local
nonequilibrium current I"*? is dominated by the Fermi sur-
face states, that is, it involves an energy integration over a
typically small energy window of width ~kgT around py,
In distinction, the evaluation of the local equilibrium currents
I°9 requires an energy integration of the local transmissions
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FIG. 2. Sketch of the toy model system: Three sites in the central
region attached to two semi-infinite leads at left (L) and right (R). The

dashed line represents the cross section used to evaluate the net local
equilibrium current in the main text.

over all system occupied states. This makes it very difficult
to accurately compute I°4. We discuss this issue in detail in
Sec. IV B.

In the zero-bias limit, {V,,} = 0, Egs. (6) and (18) yield

S
Iy, =T3.

I,=0 and (24)
These relations imply that if Z = (E)# 0 it is possible
to have a finite local electronic current in the central region,
1 (f) # 0, even in the absence of a bias voltage, but there is
no net current flowing through the contacts I, = 0. The latter
implies that there is no entropy production [66], as required
by equilibrium processes. Equation (16) indicates that each
lead o contributes by injecting electrons in the system for
all energies up to its chemical potential u,. Therefore, in the
zero-bias case ({V,} = 0) all the leads inject electrons into the
system at all energies up to the equilibrium chemical potential
Wo- In this sense, the equilibrium currents can be viewed as a
property of the system many-electron ground state.

We can infer an important property of the local equilibrium
currents using the charge conservation and a control cross
section, such as the one indicated in Fig. 1. The continuity
equation demands that the local current I*? integrated along a
closed domain is zero. By taking a cross section that contains
a terminal o and recalling that at equilibrium /, = 0, we show
that the integral of I°? over any system cross section is zero.

In what follows we explore situations where the equilib-
rium steady-state currents injected by all terminals do not
cancel each other and there is a nonvanishing local current
in the absence of bias voltage.

III. TOY MODEL

Let us illustrate some of the main features of the charge
equilibrium currents using an analytically solvable (nontopo-
logical) toy model. We consider a central region consisting of
3 sites coupled to semi-infinite linear chains, see Fig. 2. We
assume that the electrons are described by a nearest-neighbor
single-orbital tight-binding Hamiltonian with hopping matrix
elements —f; with no spin dependence. The central region
sites lie in the xy plane at r; = (0,0), r; = (a/2,a/2), r3 =
(a, 0). We account for a constant magnetic field B = BZ using
the Peierls substitution, namely, tyy — fiwe™?¥ , where @ =
5 O — ) + yi) [45]. Thus,

pr2=¢xn=¢/2 and ¢;3=0, (25)

where ¢ = 2m ®/d is proportional to the ratio between the
magnetic flux ® = Ba?/4 enclosed by the central region tri-
angular “loop” (see Fig. 2) and the magnetic flux quantum
(D() = /’l/ e.

Assuming that the sites 1 and 3 are attached to leads with
self-energies that, in the wide band limit, can be approxi-

mated by X7 = —il';/2 and Xj = —il'3/2, we write G'(E) =
(E1—-H-X")las
E+il/2  t1pei®? 13 -
Gr(E) = t12€7i¢/2 E t236i¢/2 . (206)
13 l23e_i¢/2 E +il'5/2

It is instructive to verify charge conservation by calculat-
ing the net electronic transmission through the central region
sites. Considering the injection from the left lead L, the net
electronic transmissions read

I'I's
IDP2
Th+Ts =0, (28)

f'le + 7~'1’§ - _ (ts — Etscos ¢ + E>1r), 27

~ I
T T — (4

=P —Etnscosd +E*n),  (29)

where D = det[(G")™'], 7, = t123, T3 = 2t2t13t3, and T4 =
131}, The derivation of the expressions for the transmissions
are presented in Appendix B and the sign convention is dis-
cussed in Appendix C. The net electronic transmission at site
2, given by Eq. (28), vanishes due to charge conservation, that
is, the local transmission from site 1 to site 2 equals the local
transmission from site 2 to site 3. In contrast, the electronic
transmissions given by Eqs. (27) and (29), respectively, do
not vanish since they do not account for the transmissions
through the bonds with the leads, i.e., electrons entering site 1
through the left lead L and leaving site 3 through the right
lead R. Moreover, assuming injection from the left lead L,
the total transmission leaving site 1, Eq. (27), must equal the
transmission entering site 3, Eq. (29).

The total transmission between the left and the right leads
reads

rr
The = —— (14

DI —En; cos¢>+E2r2). 30)

This ensures charge conservation for site 1 since TI .+ T
7-1% = 0 and for site 3 since T + 7; T2 = 0. Here we
have used that TIL = Tr and 7;R = —Tge. The above argu-
ments are also valid assuming mJectlon from the rlght lead.
An analogous calculation shows that TR + TR + T8 =0and
TE+TE+TE=0.

We are now ready to analyze the equilibrium current. Let
us consider, for instance, the bond current flowing from site 2
to site 1, namely

R =1 [ aEp@lTae +TEE] 6

oo

with the sum of local transmissions given by

T + 'T ——t2i3t13

DP

x [(T1 + TE* — (T1t55 +15,1'3) ] sing. (32)

Interestingly, 7,5 + 7% (and thus I'Y) vanishes in three
situations: (i) if one breaks the loop by turning off any of
the hopping matrix elements #5, f3 or i3, (ii) if there is no
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magnetic field (¢ = 0), and (iii) if the system is detached from
the leads (I'y = I'; = 0).

The presence of a magnetic field breaks time reversal sym-
metry inducing a preferential electronic flow through one of
the two system branches, 1-3 or 1-2—3, depending on the
injection direction. This causes a current imbalance between
the branches leading to a nonvanishing equilibrium electronic
current given by Eq. (31). Conversely, once the loop is broken
by disconnecting one of the bonds, the electronic current flows
through a single branch irrespective of the injection direction
and there is no local current in the equilibrium.

The lack of equilibrium currents when the system is de-
tached from the leads is somehow surprising in view of the
vast theoretical [25-27] and experimental [28-30] literature
on persistent (equilibrium) currents in isolated mesoscopic
rings. Unfortunately, the Landauer-Biittiker approach is un-
able to address isolated systems. Periodic boundary conditions
play a key role to explain equilibrium persistent currents,
while in our formulation the scattering states necessarily in-
volve both the central region and the leads and, thus, cannot
be reduced to an isolated system setup [67].

The simplicity of the model allows us to analytically show
that

TE+ TR =TL+ TR =TL+ TR (33)

The above expressions highlight two important properties of
equilibrium currents:

(i) There is no net equilibrium current leaving or entering
the system: The total equilibrium transmission from 2 to 1,
given by the sum in Eq. (31), namely 7'12 + 7'12, equals the
total equilibrium transmission from 1 to 3 given by T T
By invoking charge conservation and by accounting for the
injection of both left and right terminals, we find that there is
no net equilibrium transmission between 1 and L. The same
happens for the net equilibrium transmission between the site
3 and the right reservoir R. In summary, both terminals inject
the same equilibrium current into the system leadlné to a zero
net equilibrium electronic current, that is, s = Im =0. A
nonvanishing net electronic current at the terminals requires
a voltage bias. In this case, Eq. (19) does not vanish and a
nonequilibrium electronic current sets in.

(ii) The equilibrium current integrated over any system
cross section is identically zero. This is nicely seen by ana-
lyzing the equilibrium current P flowing through the section
defined by the dashed line in Fig. 2, namely,

+o0 »
Ro=t [ Carp@(TE+TE T T o9

Recalling that T"‘ = —77}‘ and Eq. (33), it immediately fol-
lows that ISec =

IV. LOCAL CURRENTS IN THE QUANTUM HALL
REGIME

In this section we study the equilibrium and nonequilib-
rium local currents in the IQH regime [68] for a multiprobe
setup. First, we discuss general qualitative aspects of the trans-
port properties using the Landauer-Biittiker approach. Next,
we calculate the local and total currents using the formalism

3 (b)
6 1 6
4 5 4 5
(c) | 2 3 @ 2 3
1 Ih_é 1 6
4 5 4 5
(e) | 2 3 1 2 3
1 6 1
i ’

FIG. 3. Sketches of local transmissions/conductances for a sys-
tem in the IQH regime. Panels (a) to (f) correspond to an electronic
injection from a single terminal & = 1 to 6, respectively. Spin de-
pendent process are neglected and, thus, spin-up (dashed red) and
spin-down (solid blue) states are degenerate.

presented in Sec. II considering a graphene system as a case
in point.

Let us consider 6-terminal setup, as the one sketched in
Fig. 1. We address the situation where an applied bias voltage
Vbias between terminals @« = 1 and 8 = 6 drives an electronic
current / from terminal 1 (I; = 1) to terminal 6 (Ig = —I).
For simplicity, we set V| = W, and assume the terminal 6
as grounded, V5 = 0. We consider terminals 2 through 5 as
voltage probes, namely, I = I3 = I, = Is = 0. The current
I and the voltages V;, V3, V4 and Vs are determined by the
applied bias Vyys.

A. General discussion

Here we address qualitatively the charge transport proper-
ties of a Hall bar system in the IQH regime [50,68] paying
particular attention to equilibrium currents.

We consider that the Hall bar, see Fig. 1, is subjected to a
perpendicular magnetic field B = BZ that is sufficiently strong
to give rise to quantized edge states. The electrons injected at
the terminal @ = 1 along the x direction are deflected towards
their left-hand side flowing to the nearest terminal 8 = 2 with
edge states propagating along the y direction.

Figure 3 shows the local transmissions for all possible sin-
gle terminal injection processes. Due to the strong magnetic
field electrons are transmitted by edge states, the conductance
is quantized, and the current is chiral [50]. In this section we
neglect spin-dependent processes and, thus, the edge states are
spin degenerate.

For simplicity, we consider the zero-temperature limit and,
further, assume that E lies between the N th and (N, + 1)th
Landau level energies. In this situation, there are N = N
propagating channels per spin at any of the system edges. The
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conductance matrix, given by Eq. (7), reads

10 0 1 0 0
1 -1 0 0 0 o
2l o 1 -1 0o o o
G=22N—- 6 o o -1 1 ol ©¥
o 0 0 0 -1 1
o 0 1 0 0 -1

The negative diagonal conductance values manifestly en-
forces current conservation. Current conservation and gauge
invariance imply that ), Gop = Y P Gup = 0[48,69].

Using Egs. (6) and (35) we calculate the unknown voltages
{V,} for an applied bias voltage Vj,,s between terminals 1 and
6 that drives an electronic current /, see Fig. 1. We obtain

h
Vi, Vo, Va3, Vy, V5, Vo) = (1,1, 1,0,0,0) — 1, 36
V1, V2, V3, Vi, Vs, Vo) = ( )2Ne2 (36)

where I = (2Né? /h)Woias. As expected, the “top” terminals
2 and 3 are in equilibrium with the source terminal 1, the
“bottom” terminals 4 and 5 are in equilibrium with the drain
terminal 6, and there is no voltage drop through the propaga-
tion direction (V, = V3, V, = Vs) [50].

The longitudinal resistance [48,50,69] R, = Rig45 =
[V, — V3|/I = Rj6.23 = O vanishes, while the transverse resis-
tance is Ryy = Ri635 = |V3 — V5|/I = Ri624 = h/2Ne?. This
is the standard Biittiker picture to describe IQH transport
measurements [48].

Additionally, we calculate the contact resistance R. by
subtracting the longitudinal resistance Ry, from Rj¢ 6, namely
R, =Ri616 — Ry = h/2Nez. This shows that the contact re-
sistance R, includes contributions from the system coupling to
both terminals 1 and 6 and that each terminal offers a contact
resistance to the established current /. Thus, in the IQH regime
the resistance Ri6 16 = h/2N &2 corresponds solely to the re-
sistance generated by 2N propagating modes at the contacts
[50,69].

Let us use the Biittiker voltage probe model [70] to briefly
discuss decoherence effects and why the longitudinal resis-
tance vanishes in the IQH regime. The introduction of an extra
terminal ¢ to a A-terminal system can be trivially accounted
for by writing Eq. (6) as

A
V) + Y GupVe = Vp). (3T
p=1

A
I =Y Gup(Vy — Vp). (38)

IO( = ga(p (VOt

Assuming that the terminal ¢ is a voltage probe (/, = 0), one
can calculate V,, using Eq. (38) and substitute the result into
Eq. (37) to obtain [50]

A
= Gl (Va —Vp), (39)
p=1

where the effective conductance is

ga g B
Qe” Gap + —p . (40)
Zﬂ:l Gyp

_JHl J][l
7 dlE I

FIG. 4. Nonequilibrium component of the local electronic cur-
rent map Tf 1 estimated using Eq. (19). Since the states are
spin degenerate both spin components are sketched together for
simplicity.

For simplicity, let us discuss the influence of a maximally
coupled voltage probe on a two-terminal setting (A = 2), with
“left” and “right” leads. In the IQH regime for N = 1, the
conductance reads Grp = Gpr = Zez/h. The addition of an
extra terminal ¢ interrupts the direct flow between terminals
L and R, leading to the nonvanishing conductance elements
Gy = Gyr = Grr = 2¢*/h. The extra terminal changes Grr
from 2¢?/h to 0 and preserves Gg; . By inserting these results
in Eq. (40) one finds that G¢if = GE = 2¢2/h. Thus, the in-
troduction of an extra terminal does not change the effective
conductance of the system.

Usually a reservoir incoherently populates the system
channels producing additional resistance [50,71]. But in the
IQH regime, the chiral nature of the states forces the extra
terminal to collect the entire electronic flow and inject it back.
Thus, decoherence processes do not introduce momentum
relaxation here, leading to the absence of longitudinal resis-
tance.

Let us now qualitatively discuss the local conductances and
currents. Figure 4 sketches the nonequilibrium local electronic
current, Eq. (19) and (20), for the voltages given by Eq. (36).
For N =1, the Value of the local conductance at each edge
is 2¢?/h and V| = V, = V3 = hl/2¢?, leading to an electronic
current / flowing through the system upper edges. In contrast,
since V4 = Vs = Vg = 0, there is no electronic current flowing
at the bottom edge of the Hall bar.

In turn, the local equilibrium current map is obtained from
Eq. (21). As discussed in Sec. III, the magnetic field breaks
time reversal symmetry causing a current imbalance at the
central branch of the Hall bar, the sum of transmissions in
Eq. (21) does not vanish locally resulting in a clock-wise cir-
culating electronic current. Since Eq. (21) involves an energy
integration over all occupied states, /! contains contributions
from both edge states and bulk ones. We discuss these features
in the next subsection for a given model system.

B. Local currents in Quantum Hall systems: Numerical results

Let us now present a quantitative analysis of the local
currents. For that purpose we consider, as an example, a
graphene system modeled by a single-orbital nearest-neighbor
tight-binding Hamiltonian, namely [72]

Z tl} io ](r’ (41)
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where c}a (c;,) is the operator that creates (annihilates) an
electron with spin projection o at the ith site of a honeycomb
lattice, t;; = te'i with t = 2.7 eV, ¢ ; 1is the Peierls phase
discussed in Sec. III that accounts for a constant magnetic
field B = Bz, and (---) restricts the summation to nearest-
neighbors sites. This simple Hamiltonian is very successful in
describing the low-energy properties of monolayer graphene
samples [72].

The transport properties are calculated using the multiter-
minal RGF method presented in Ref. [47]. The Hall bar has
armchair (zigzag) edges along the horizontal (vertical) direc-
tion, which is about 900 A (530 A) long. As standard [45],
we model the contacts by using pristine graphene nanoribbons
in the absence of a magnetic field with high doping in order
to mimic the large density of states of the metallic contacts
used in experiments. We have checked that the leads are suf-
ficiently wide to avoid edge-to-edge interface coupling. Our
simple choice for the system-contact interface is justified by
Ref. [73], that by using different convenient gauges (see, for
instance, Ref. [74]) showed that the transport properties of
graphene systems in the IQH regime are almost insensitive
to the degree of smoothness of the system-contact interface.

The Landau levels energies Ey, are given in good
approximation, as long as |Ey, | <t [47], by Ey =
E\/N_ [72], where E| = /3/2at/lp and £ = \/li/eB =
AR 2 (P/Dy) is the magnetic length. Here, ® = BAy is
the magnetic flux enclosed by a single hexagon of the hon-
eycomb lattice of area Ay = a*/3/2, the magnetic quantum
flux is ®g = h/e and a = 2.46 A. We set ®/d, = 0.01, so
that E; = 0.33¢.

Figure 5 shows that the nonequilibrium local charge cur-
rent at the atomistic level of a graphene Hall bar in the
IQH regime for Er = 0.333¢ and Er = 0.4¢, just above the
N, = 1 Landau level energy, follows the behavior predicted
in Sec. IV A, see Fig. 4. Both the intensity and the direction
of the electronic current are given by the arrow directions and
their color intensity. The honeycomb lattice has three distinct
bond directions and we attribute different colors when the
bond current flows towards (blue) or against (red) the arrows
directions. The local electronic current has contributions from
terminals 1, 2, and 3 that are equilibrated at the same voltage.
Here, terminals 4, 5, and 6 play no role in Eq. (19) since
their voltages vanish. The resulting current map shows an
electronic flow from source (left) to drain (right) that runs
through the upper edges, as expected from the qualitative
discussion of the previous subsection [75].

The insets of Fig. 5(a) show that for Er = 0.333¢ the elec-
tronic current has two counter propagating components due to
interference effects caused by scattering at the corners formed
between zigzag and armchair edges in the middle of the Hall
bar. The component flowing towards the drain lies further
away from the edges while the backscattered component lies
at the edge vicinity. This simple picture is ratified by noticing
that the interference effect is energy dependent. Changes on
the electronic energy Er that lead to variations of the electron
group velocity, modify the interference pattern. We find (not
shown here) that this effect is stronger for Er in the vicinity
of the Landau levels energies Ey,, where the group velocity
displays an enhanced dependence on Er. We show in Fig. 5(b)
that for Er = 0.4¢ the counter propagating flow of electrons
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FIG. 5. Nonequilibrium local electronic charge current 1" in
the IQH regime calculated using Eq. (19) for (a) Er = 0.333¢ and
(b) Er = 0.4¢. The current is in units of e*Vij,s/h and includes both
spin orientations. Positive values (blue) indicate local currents flow-
ing along the arrow directions, while negative values (red) indicate
currents opposite to the arrows.

disappears because the ratio between the Fermi wavelength
and the distance between the corners changed. Notice that the
number of propagating channels is 3 and the current integrated
over a vertical cross section has the same value for both cases
in Fig. 5.

We obtain the local equilibrium current by evaluating
Eq. (21) for each bond in the system. The computation of
Eq. (21) is very time consuming since the integrand presents
sharp variations with energy that require a high density of
points to be resolved and the integral has to be calculated
over a large energy interval, that starts at the bottom of the
band and accounts for all occupied states. More importantly,
the result is hardly comparable with experiments, since it
involves a precise description of the system specific delo-
calized states that appear between successive plateaus in the
IQH regime and strongly depend on the disorder configu-
ration. To circumvent those issues we propose the analysis
of AT (1, jt2) = I () — I3 (1) instead. At the zero-
temperature limit, A?fﬂ)(m, U2), reads

M2 ~
AT (1, ) = 2/ dE [2&:7;%(15)]- (42)

231

This quantity can be experimentally determined by perform-
ing two distinct local current measurements with the system
doped at different chemical potentials using a similar setting
as that of the experiments reported in Ref. [22]. This simple
two-measurement protocol allows a comparison with theory,
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FIG. 6. Equilibrium local electronic charge current Afeq(ul, “2)
in the IQH regime calculated using Eq. (42) for u; = 0.3 and
o = 0.4¢. The current is in units of ef/h and includes both spin
orientations. The arrows indicate the color code for the electronic
propagation direction. Propagation towards the right and top direc-
tions have positive values (blue) while propagation towards left and
bottom have negative values (red).

since it facilitates the computation of Eq. (21) for realistic
model Hamiltonians and doping differences.

Figure 6 shows the local equilibrium current map, obtained
by integrating Eq. (21) from @; = 0.300¢ up to w, = 0.400¢
to capture the transition though the Landau level N, = 1, that
is, the transition between 1 to 3 propagating edge modes
per spin [47]. As predicted by the qualitative analysis of
Sec. IV A, the equilibrium charge current flows clockwise at
the system edges. The equilibrium local current has contribu-
tions from edge states with energies above and below E;. We
recall that the transmission at a particular electronic energy
can exhibit an interference pattern that presents forward and
backwards propagation along the edge direction due to inter-
ference effects caused by scattering at the zigzag-armchair
corners as illustrated by Fig. 5. Interestingly the local equi-
librium current, that is composed by integrating the sum of
To (E) that captures different interference effects, presents a
resulting pattern characterized by a clear clockwise electronic
current at the edges and an additional counter-clockwise elec-
tronic current closer to the system center.

Figure 6 also shows that the equilibrium current flows par-
allel to the system-leads interfaces. This is a consequence of
the mismatch between the system modes and the leads modes
(doped at a high density of states energy, realized by shifting
the energy of the electrons at the contacts by —¢). The current
injected by a given lead enters the system through all sites at
the corresponding lead-system interface. The magnetic field
inside the central region forces the current to flow parallel to
the system-lead interface towards the edge. The superposition
of the injection by all six terminals of the Hall bar renders the
electronic flow that is parallel to the system-leads interfaces,
as seen in Fig. 6.

We recall that the local equilibrium electronic current in-
tegrated over any cross section of the system vanishes, as
shown in Sec. II. We have integrated I°¢ over several different
cross sections and verified that, within numerical precision,
this statement is correct.

We conclude this section by stressing that equilib-
rium charge currents cannot be assessed by nonequilibrium

transport measurements, since the latter inevitably involve
irreversible processes, such as electron equilibration at the
contacts probes. However, since the equilibrium local currents
in the IQH regime are chiral, they produce a magnetic field
that can in principle be measured. Having obtained if]fl for
a given system, the change in magnetic field AB(r) can be
calculated using the Biot-Savart law, as discussed in Ref. [33].
Experiments can follow the reverse path, for instance, use
SQUIDs to measure AB(r) [22] and infer the local equilib-
rium current.

V. LOCAL CURRENTS IN QUANTUM SPIN HALL
SYSTEMS

In this section we study the electronic and spin transport of
multiterminal two-dimensional systems in the QSH regime.
As above, for simplicity we consider the zero-temperature
limit. For Fermi energies within the topological gap, the
nonequilibrium electronic transport in a Hall bar geometry is
ruled by helical states propagating at the system edges and
the conductances G,z are quantized [1-3]. We show that the
equilibrium currents do not follow this simple picture.

A. General discussion

The conductance matrix elements G,z of an electronic sys-
tem in the QSH regime at 7 = 0 in a Hall bar configuration
shown in Fig. 1 reads [71,76]

-2 1 0 1 0 o0

Jr -2 1 0 0 0

el o 1 -2 0 0 1
g:; 1 0 0 -2 1 0 (43)

o o0 o0 1 -2 1

o 0 1 0 1 =2

The quantized entries reflect the fact that in the QSH regime
each terminal o injects two modes that propagate towards
opposite edges.

We consider the same setup as in Sec. IV, namely, that a
Vbias 18 applied between the terminal 1 and 6 (see Fig. 1) and
that the remaining terminals act as voltages probes and, hence,
L, =1 =1, =1s = 0. We use Eq. (43) to solve Eq. (6) for the
unknown voltages to obtain

3 1 1 h
Vi,Vo,Va, Vo, V5, V)= =, 1, =, 1, =,0 =1, 44
V1, V2, V3, Vu, V5, V) (2 713 )62 44)

where I = (2¢%/3h)Viis, in agreement with previous papers
[71].

The QSH transverse resistance is Ry, = 0. Since the
voltage probes are not spin resolved, the transverse charge re-
sistance vanishes due to the symmetry between the electronic
propagation at the “upper” and “lower” edges of the Hall bar.
Thus, there is no charge imbalance between the transverse
terminals. In turn, the longitudinal resistance is R, = h/2e?
and the contact resistance is R. = Ri616 — Rxx = hje*. As
expected for two resistors in series, R, is twice the resistance
corresponding to a terminal with two perfectly conducting
propagating modes.
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.up
— down

FIG. 7. Local nonequilibrium electronic current map estimated
using Eq. (19). Here, the current I = (2¢*/3h)Vjys is established as
a response of the bias Vi, for Er inside the topological gap. The net
spin of the electronic flow is indicated as dashed red for spin up and
as solid blue for spin down.

It has been suggested that dephasing processes can explain
why it has been so difficult to observe a perfect conduc-
tance quantization in QSH systems (see, for instance, the
supplemental material of Ref. [11] and Refs. [71,76]). Let us
discuss this result, that has been mostly overlooked, using the
Biittiker voltage probe model (see, for instance, Sec. IV B).
In IQH systems, chirality prevents a voltage probe to inject
electrons back to the same edge state from which they have
been drained, preventing interference effects between injected
and drained electrons. In distinction, in the QSH regime a
voltage probe that relaxes both momentum and spin and, thus,
injects electrons at both the clockwise and anti-clockwise he-
lical propagating edge states, promoting interference between
counter propagating helical edge modes with opposite spins
orientations. The most relevant dephasing microscopic mech-
anisms for topological insulators are reviewed in Ref. [77].

Using a three-terminal system [18] with a strongly coupled
voltage probe, Gy, = 2¢°/h, we find that the QSH effective
conductance, Eq. (40), drops from 2¢?/h to 3¢?/2h. Here the
voltage probe interferes with one of the edge states carrying
half of the current between the original two terminals, leading
to an effective resistance of 2/1/3e* [71,76]. The supplemental
material of Ref. [11] studies weakly coupled voltage probes
Guy < € /h and models a gradual suppression of the perfect
quantized conductance, a hallmark of the QSH, with increas-
ing dephasing.

Let us now qualitatively discuss the nonequilibrium cur-
rents. We take Er within the topological gap, a situation where
only helical edge states are responsible for the electronic
transport.

Using Eq. (19), we build the nonequilibrium local current
map shown in Fig. 7 by weighting each local conductance map
by its respective voltage, see Eq. (44). At the edge between
terminals 1 and 2, only the local conductances from those
terminals are not zero, with values e¢?/h per channel. Since
Vi = (3/2)(hI/e*)and V, = (hl/e?), Eq. (19) gives a net local
current of //2 propagating from terminal 1 to terminal 2 with
spin-up orientation. Repeating this reasoning over the whole
system, we find that (i) all edges have current //2, (ii) termi-
nals 1 and 6 are indeed injecting and receiving a total current
I and (iii) terminals 2 through 5 are voltage probes with zero
net current. Figure 7 shows that there is no net spin current
flowing from terminals 1 to 6, as expected in the absence of a
spin polarized bias.

—
o
N
[\V]
w
-
1
1
1
v
—
[oN
=
[\
W

_____ = ymm———-—
L) 1
1 L. up
: 5 4 5 : — down
i A

FIG. 8. Sketches of local transmissions ﬁ,,j(,(E) for a Hall bar
system in the QSH regime. Panels (a) to (f) correspond to an elec-
tronic injection from the terminal o« = 1 to 6, respectively. The
spin-orbit coupling breaks the spin-up (dashed red) and spin-down
(solid blue) degeneracy.

<----

Let us now consider equilibrium currents. Our discussion

is based on the local transmissions maps defined in Eq. (17)
for energies E within the topological gap. We postpone the
quantitative analysis of the local equilibrium currents, that
involve an integration over all occupied states, Eq. (21), to
the next subsection.
_ Figure 8 shows the local charge and spin transmission
Tis,jo (E). Each terminal injects two modes that have oppo-
site spin orientations and propagate at opposite system edges
towards the closest neighboring terminal. Notice that, due to
spin-momentum locking, the edge between terminals 1 and
2 supports an electronic spin-up propagation flowing from
a =1 to 2 [Fig. 8(a)] and spin-down propagation from 2 to
1 [Fig. 8(b)]. Thus, the net charge transmission vanishes. The
superposition of the transmission maps results in a zero net
charge transmission, since at all edges of the Hall bar there are
counter propagating electronic states that cancel each other.
Therefore, the equilibrium contribution to the local charge
current in Eq. (21) vanishes. In turn, our analysis suggests the
presence of finite equilibrium edge spin currents circulating in
the system.

Our qualitative analysis also shows that local transmissions
maps obtained considering single-terminal injections can be
deceiving. Only by taking into account all terminal injections
one obtains the correct current. This indicates that the pictures
usually drawn in experimental studies of spin and valley Hall
effects [78—85] can be misleading since they indicate that the
current injected from the source terminal flow to neighboring
terminals (depending on the spin or the valley degrees of
freedom) other than the drain terminal. This would imply the
violation of charge conservation. The bias defines the source
and drain terminals, the electronic current enters the system
from the source terminal, travels through a path determined
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by interaction of the electrons with the material, and leaves the
system at the drain terminal. In distinction, in linear response
the local transmissions 77(’7 do not contain information about
the bias and the electron probability to propagate toward dif-
ferent terminals depends on their spin, valley, and/or orbital
quantum numbers. 775 corresponds to the local current path
only for the case of current injected from a single terminal
B (Vg # 0) with all the other terminals « (a # ) grounded
(Vo = 0), see Eq. (19). For instance, in Fig. 8(a) 7/~" indi-
cates that the current injected from terminal 1 can propagate
to both terminals 2 and 4, depending on the spin projection,
and are not allowed to propagate to terminal 6. Conversely,
the actual local current /,; set by the bias voltage flows from
terminal 1 (source) to terminal 6 (drain), as Fig. 7 shows. In
summary, one must not confuse the actual elestronic current
path I~k, with transmission probabilities paths 775 . The first is
determined by the bias voltage, while the latter are not.

B. Numerical results

For the numerical analysis of the local currents in the QSH
regime we use the Kane-Mele (KM) model [5], that describes
the low-energy properties of electronic states in graphene with
strong spin-orbit interaction by a tight-binding Hamiltonian,
namely

H=-— Z l‘]CiT(er(r + Z itZUiij}g/C,TgCi(r’- 45)
(i.j)o ((i.j)).0.0

The first term accounts for nearest-neighbors hopping pro-
cesses with t; =t = 2.7 eV [72]. The second term includes
the spin-dependent hopping amplitude between second neigh-
bors with #, = 0.065¢. The presence of spin-orbit coupling
creates a topological gap Ag = 6+/3t, [5] such that the bulk
bands onsets occur at the energies £Ag/2 = £0.338¢. Here
S* is the Pauli matrix z component and v;; = +1 (v;; = —1)
if the path from i to j follows the counterclockwise (clock-
wise) direction with respect to the hexagon centers of the
honeycomb lattice. The graphene Hall bar is attached to six
semi-infinite leads, where the spin-orbit coupling is turned off.
The leads are doped at E = —¢ to maximize the density of
propagating modes.

In order to compute both nonequilibrium and equilib-
rium currents, we employ the multiprobe recursive Green’s
function method [47] to calculate the local spin resolved
transmission coefficients given by Eq. (17). For simplicity, the
leads are modeled by highly doped pristine graphene semi-
infinite ribbons to maximize the electronic density of states
and mimic metallic contacts used in standard experiments. A
smoother and more realistic system-contact model is expected
to blur the currents at the interface without qualitative changes
on our results.

Figure 9 shows the nonequilibrium component of the lo-
cal current 'I\fﬂ, obtained by computing Eq. (19) for Er =
—0.300¢. We plot the local charge current driven by Vg
(including both spin orientations). As expected from the dis-
cussion in Sec. V, see Fig. 7, the electronic transport from
source (left) to drain (right) occurs through both top and
bottom edge states. For the chosen model parameters, the top
(bottom) edge carriers haso = 1 (o = —1).
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FIG. 9. Nonequilibrium local electronic charge current T for
the KM model Hamiltonian in the QSH regime for Er = —0.3¢. The
electronic current is presented in units of e?Vy,s /A1, includes both spin
orientations, and is computed using Eq. (19). The color code is the
same as in Fig. 6.

Let us now address a more specific issue: The nonequi-
librium currents at the system-terminal interfaces at the QSH
and IQH regimes. In the QSH regime, Fig. 9, the current
flowing through the central region crosses a system-terminal
interface via one of the edges and it is injected back into the
system at an opposite edge. In this case, the interface has low
resistance, so that all the electronic current crosses the inter-
face at the position it arrives. The strong current directionality
fades away as the electrons enter the leads and populate trivial
(non-QSH) states allowing for bulk propagation connecting
opposite edges. That is not the case in the IQH regime:
Figure 5 clearly shows a finite current at the system-terminal
interface connecting opposite edges. In this case, we consider
a partition where the magnetic field is absent in the leads and
the interface has high resistance, so that only a fraction of the
electronic current is absorbed at the position where it arrives
and the remaining fraction continues to travel in the system.
As aresult, the change in its direction happens partially inside
the system itself and inside the leads as well. In an experi-
ment, the current is mostly likely to turn back to the system
inside the voltage probe lead where the material constituting
the leads usually behaves as a trivial metal, not sharing the
same properties of the studied system. The contrast between
the QSH and IQH system-terminal interface currents I"*¢ is
particularly large for voltage probe terminals. This behavior
is allowed since there is no conservation rule requiring the
current to be entirely absorbed by any voltage lead. It is only
required that the current collected by a voltage lead must be
injected back.

The computation of the equilibrium currents _is more in-
volved, since it requires an energy integration of 7;7 ;  over all
occupied states. As previously discussed, equilibrium charge
currents are absent in systems with time-reversal symmetry.
This is explicitly manifest by the counter propagating helical
edge states, a hallmark of the QSH regime. We verify that
this is indeed the case. We run extensive computations of
Ty ;»(E) and find that Zé (} is zero within numerical precision
along all tested cross sections and energy values. On the other
hand, a finite spin-orbit interaction favors the appearance of
equilibrium spin currents [38], that is Tl%‘ jT(E ) # Tl‘i‘ j i(E ).
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FIG. 10. Equilibrium local spin current AT in units of 7 for the
KM model Hamiltonian in the QSH regime calculated using Eq. (47)
for (a) u; = —0.5t, ur, = —0.4¢ and (b) u; = —0.3¢, u, = —0.2¢.
The color code is the same as in Fig. 6.

In what follows we discuss the properties of the latter in the
QSH regime.

The equilibrium spin current, Eq. (23), is defined as the dif-
ference between the spin-up and the spin-down components of
the equilibrium local charge current, namely,

h Teq Teq
o= z_[lz‘mn — Iyl (46)

As in the case of equilibrium charge current, an accurate
evaluation of 1 i ® is difficult since it involves an integration
over all occupied states. In analogy Eq. (42), we define

ATy, o) = T35 () = T (). 7)

According to the model parameters, the topological gap cor-
responds to |E| < Ag/2 = 0.338¢. That is, for |E| > 0.338¢
the electronic propagation is dominated by bulk states, while
for |E| < 0.338¢ it occurs via edge states. To capture in-
formation about the contributions from both edge and bulk
prggpagation to the local eq}gnhbrium current, we calculate

eq( 0.5¢, —0.4r) and AL, eq(—0.3t, —0.2t). We show the
results in Fig. 10.

We find that the equilibrium spin current AI i “ due to
trivial states, see Fig. 10(a), spreads over the Hall bar trans-
verse cross sections and it is strongly enhanced at the system
edges. Interference effects are also present, as discussed in
Sec. IVB, when addressing local currents in the IQH regime,
see Fig. 5. AI **d has a counter propagating structure along
the horizontal dlrectlon This pattern originates from the su-
perposition of bulk contributions to the local transmission

taken at different energies. As a result, the equilibrium spin
current shown in Fig. 10(a) that flows clockwise at the system
edges but alternates between clockwise and counter-clockwise
propagation as the distance from the edges increases. Interest-
ingly, even in the absence of helical edge states, the transport
becomes stronger at the edges. The equilibrium spin current
in Fig. 10(b) has only contributions from helical edge states.
Here, the interference pattern dependence with the energy is
very weak, since the dispersion of the helical edge states is
linear, that is, the group velocity does not vary inside the
topological gap. As a result, the spin flow is narrower and
stronger than the one in Fig. 10(a) at the edges. The circulation
is clockwise and there is no current signal in the bulk.

It is important to mention that previous papers [33,86]
studying qulllbrlum currents in topological insulators have
shown that / ]eq is zero at Er = 0. This remarkable result has
been obtained both analytically [86] and numerically [33] for
isolated systems modeled by standard topological Hamiltoni-
ans. The analytical demonstration of this property relies on
particle-hole symmetry [86]. The QSH results presented here
consider doped leads to simulate metallic contacts that break
particle-hole symmetry. Figures 10(a) and 10(b) do not allow
to conclude that the local spin currents AI>®? corresponding
to trivial and topological states show a tendency to cancel
each other. We have tried to confirm if I;; % =0 for Er =0
using our formalism for the KM model w1th undoped leads
and a two-terminal geometry, a much simpler setting than the
Hall bar of Fig. 1. Unfortunately, the energy integral is still
very difficult to converge to a precision that rules out a finite
local current and the results we obtain are inconclusive. In
real systems this issue looses importance, since particle-whole
symmetry is absent in realistic materials electronic band struc-
tures and destroyed by disorder.

We conclude by stressing that, 11ke in the IQH regime,
the local equilibrium spin currents I 4 cannot be detected by
nonequilibrium transport experlments Yet, one can envisage
strategles to indirectly measure equilibrium currents, for in-
stance, ;% carries a magnetic moment that gives origin to an

>Nl

electric dipolar field [33], which can in principle be measured.

VI. SUMMARY AND CONCLUSIONS

We review the Landauer-Biittiker formalism to mul-
titerminal systems and derive general expressions using
nonequilibrium Green’s functions that allows one to compute
local electronic currents in mesoscopic systems at both the
equilibrium and nonequilibrium regimes. In distinction to the
nonequilibrium transport that is dictated by the properties of
the Fermi surface, equilibrium currents are governed by the
system ground-state. We show that the results we put forward
for the local electron currents can be projected into a suit-
able basis allowing the calculation of the spin-bond current.
By analogy, this approach can be extended to obtain further
transport properties, such as equilibrium and nonequilibrium
valley and orbital local currents.

To illustrate the formalism, we put forward a lattice toy
model that consists of a central region with bonds forming
a triangular ring subjected to a magnetic field that breaks
the time-reversal symmetry. The simplicity of the model
allows us to obtain closed analytical expressions for both
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equilibrium and nonequilibrium currents in an atomistic ba-
sis. These results clearly show that, in the absence of a
bias voltage, the net electronic current through the system
vanishes, but the net local (equilibrium) current is not nec-
essarily zero, as previously found, for instance, in Ref. [43]
using NEGF.

Motivated by recent experiments [22], we further discuss
the properties of equilibrium and nonequilibrium (linear re-
sponse) local currents in the IQH and the QSH regime for
a realistic Hall bar setup. As a case to point, we consider
graphene systems.

In the IQH regime, a nonvanishing local charge current
is driven by the magnetic field induced broken time reversal
symmetry. We demonstrate that net equilibrium local charge
currents circulate without leaving the system. Our calculations
show that any transverse section of the system has net equi-
librium charge current equal to zero, as expected. We revisit
the voltage probe decoherence model to justify the absence of
momentum relaxation that leads to the absence of longitudinal
resistance. We discuss the challenges involved in an accurate
assessment of the energy integration in Eq. (21) for realistic
model systems. To circumvent the latter, we propose a two-
measurement protocol that avoids the necessity of accounting
for all occupied states, and makes possible a quantitative com-
parison between theory and experiment.

In the QSH regime, the counter-propagating helical edge
states interact at the system-terminal interfaces, forcing mo-
mentum relaxation and the appearance of a finite longitudinal
resistance. We show that at equilibrium, the local charge cur-
rent vanishes due to time reversal symmetry, but the spin-orbit
interaction gives rise to a finite local spin current that circu-
lates the system with no net current flowing through any cross
section of the system. We find that our two-measurement pro-
tocol reveals the nature of trivial and topological equilibrium
currents in QSH systems.

We emphasize the distinction between transmission, con-
ductance and current. Thus, we learn that local transmissions
maps obtained considering single terminal injections can be
deceiving [78-85]. Only by taking into account all terminal
transmissions properly weighted by the terminal voltages one
obtains meaningful results.

Finally, our results are nicely interpreted by the Biit-
tiker picture [50] that considers the injection of electrons
by all terminals for electron energies ranging over the entire
band, weighted by the Fermi distribution. In equilibrium, all
terminals attached to the system simultaneously inject the
same current, leading to a zero net equilibrium electronic
current. The presence of an external magnetic field breaks
time-reversal symmetry and gives rise to nonvanishing dissi-
pationless equilibrium local charge currents, while spin-orbit
interactions originate nonvanishing dissipationless equilib-
rium local spin currents with zero local charge current. Let
us stress that despite not being detectable by nonequilibrium
transport measurements, equilibrium currents can be assessed
indirectly, as discussed in Secs. IV and V.

We believe that the formalism we put forward and
the results we obtain can be very helpful in the under-
standing of future experiments on quantum imaging of
current flow in different two-dimensional setups and material
platforms.
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APPENDIX A: LANDAUER-BUTTIKER EQUATIONS

In this Appendix we present alternative representations
of the Landauer-Biittiker equation for multiterminal systems,
discuss the value of the diagonal terms of the conductance
matrix and the sign convention of the electronic current.

In Ref. [48], Biittiker has assumed that each reservoir in-
jects a positive current into the system through a terminal
attached to it. In line with Ref. [48], we consider that the posi-
tive current injected by the reservoir « into the system is given
by (e/h) f dE NL(E)fy(E) is accompanied by a negative
current —(e/h) f dE Ry(E)fy(E) reflected back to reservoir
a. Here N, (E) and R, (E) are the number of modes and the
reflection coefficient at energy E in lead «, respectively [69].
The current injected from a given terminal 8, with S # «,
reduces the current at o« by —(e/h) f dE Tyus(E)fg(E), where
Tap is the transmission coefficient from g to «. Thus, the net
current at the terminal « is given by

e

h

= Tap(E)f3(E)).
BFa

I / dE ([N(E) — Ra(E)fa(E)

(A)

In the thermodynamic equilibrium, where f, (E) = fg(E),
the nonequilibrium current must be zero. Thus, the reflec-
tion and transmission probabilities must add to the number
of modes, that is, R, (E) + Z#a Tap(E) = N (E). Hence,
Eq. (A1) can be cast as

=35 [AETENE) - o) ()

pa

Terminal « injects positive current [, into the system when
fo(E) > fg(E), which occurs when the chemical potential
Mo > Hp.

We use the standard chemical potential parametrization
Ma = o + eV [48,49,51], fo(E) = fo(E) + (=3 fo/IE)eVy
and Eq. (A2) to obtain

Iy ==Y Gap(Vs = Va), (A3)
B#a

where the conductance Gqg is given by Eq. (7) in the main
text. Notice that applying a voltage V, — Vg > 0 one creates
a chemical potential difference p, — ppg > 0 that induces a
positive current I,, which means that Eq. (A3) ensures a
positive current flowing from the terminal with higher voltage
to the terminal with lower voltage.
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Defining a diagonal transmission probability 7,4(E) =
Ro(E) — Ny(E), Eq. (A1) can also be cast as

I = —;%/dE Tos (EVf5(E), (Ad)

where the sum runs through all the terminals, including 8 =
a. The expansion of fg in Eq. (A4) up to linear order in the
voltage Vj gives

h=-7 / dE|:§ 7;ﬁ<E)}fo<E> - ;gaﬁvﬂ' (AS)

Since charge conservation requires that the total current in
the system must sum up to zero and there is no current flow if
all the voltages are the same, one finds the sum rules [48,69]

D TapEY= Gup = Gup =0.
B o B
which allows us to write Eq. (AS) as

Iot - - Zgaﬂvﬁ-
B

From the conservation rules in Eq. (A6) we calculate the
diagonal elements of the transmission and the conductance
matrices as

(A6)

(A7)

Taw ==Y Tap. (A8)
BFa
Gow == Gup == Gups (A9)
pa a#p

respectively.
We can also rewrite Eq. (A7) using Eq. (A6) to recover
Eq. (A3) as

Iy == GupVp — (— ZGaﬁ)Va (A10)
Bt o
==Y Gup(Vg — Va). (A1)
pta

Therefore, the Landauer-Biitikker equation can be cast by
Egs. (A7) or (A3), since both are completely equivalent.

We stress that the negative sign in Eq. (A7) implies a
positive current flowing from the terminal with the high-
est voltage to the one with the lowest voltage. A positive
voltage Vg in Eq. (A7) renders a negative contribution to
the current I, because the conductance G,p from B to o
is positive. On the other hand, a positive voltage V, ren-
ders a positive contribution to I, because G,, is a negative
quantity. For instance, assume that a bias voltage Vs is
applied between terminals 1 (V} = W) and 2 (Vo = 0) in
a two-terminal system and that the conductance matrix ele-
ments read G = Gy, = €?/h and G| = Gy» = —e?/h. Thus,
Eq. (A7) leadsto I} = -G V) — GV = (ez/h)VbiaS > (0 and
L= =G Vi — GnVs = —(€%/h)Vhias < 0.

Equation (A3) is less often used, but has the advantage
that the current is explicitly written in terms of voltage
differences, which also guarantees that we can set one of
the voltages to zero without loss of generality [50]. It is

simpler and straightforward to obtain the current in the two-
terminal system, namely, I} = Gjp (V] — V,) = (€2 /h)Viias and
L = Gy (Vo — Vi) = —(€?/h)Vhjas. Moreover, in multitermi-
nal systems, Eq. (A3) provides a simple way to calculate the
voltage measured by a voltage probe, where the terminal has
zero net current. Assuming that the voltage probe is at the
terminal y (I, = 0), Eq. (A3) yields [50,69]

Zﬁ;ﬁy GyVp

V) = ———F7—.
Zﬂiy Gyp

The use of voltage probes is frequent in experiments and

calculations aiming to obtain longitudinal and transverse re-

sistances, as described in the main text.

We also emphasize that some authors take into account
the negative charge of the carriers and define as negative the
charge current being injected from the reservoir to the leads
[69]. As a consequence, I, has the opposite sign of Eq. (Al).
In this case, one must consider the action of a positive volt-
age on the chemical potential of negative charges as p, =
o — eV, which changes the sign of the linear term on V,
of the Fermi-Dirac distribution approximation. Thus, one ob-
tains versions of Egs. (A3) and (A7) without the minus signs,
namely, [, = Zﬁ Gap(Vg — Vo) and I, = Zﬁ GapVp, respec-
tively, that satisfy the conservation rules in Eq. (A6). In this
picture, a positive bias voltage Vg — V,, > 0 indicates a neg-
ative chemical potential difference pg — e < 0. Electrons
will flow from the reservoir with higher chemical potential
M to the one with lower chemical potential pg, establishing
a positive current from terminal B (higher potential Vg) to
terminal « (lower potential V), in agreement with Ohm’s law.

(A12)

APPENDIX B: TOY MODEL GREEN’S FUNCTIONS
AND TRANSMISSIONS IN MATRIX REPRESENTATION

In this Appendix we present the explicit matrix representa-
tion of some standard useful formula that appear in the main
text.

The retarded Green’s functions reads

G =(E1-H-3)'= %CT, (B1)
where D = det(E1 — H — X) and C is the cofactor matrix
of E1 — H — X with elements C;;y = (—1)"*!"M};. The minor
M, is the determinant of £E1 — H — X" without the row / and
the column /’. Analogously, the advanced Green’s functions is
G" = (G")' = 4.C*. Thus,

1 1
G =—C' and G*=—C*. (B2)
D D*
In turn, the spectral function A, = G'T',,G“ reads
r a 1 *
Atk =Y _G}iTq;iGY = oF > ColajiCly
J J
1 i j *
= i D (=DM (= 1M
J
-1 1+k
— Q (B3)

D 2 Mt M.
k

Notice that Agi1 = 2, Ta,jjIMjl* = 0.
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The local transmission, defined by Eq. (17), becomes

(_1)l+k
|D|?

Te(E)=2 > Im[MjTo My Hy, ). (B4)
J

We write the total transmission, Eq. (3), as

Tap = ) TansGl,TpuGl,

v'v

1
= W Z Lo tiCovTg1kCry s
v'v

1
EE Y ToulMuy Ty > 0. (BS)

For simplicity, we use diagonal line widths compatible
with the toy model in Sec. III where the formulas are applied.
In order to obtain general expressions, one needs to account
for the off-diagonal matrix elements of the line widths.

APPENDIX C: TOY MODEL LOCAL TRANSMISSION
SIGN CONVENTION

Here we discuss the sign convention of the local trans-
mission in Eq. (17) using the toy model shown in Fig. 2.
We consider that the site 2 is disconnected from the other
sites and that the magnetic field is zero (f;; = tr3 = ¢ = 0).
In this case, the total transmission 7z, injected from left
L to right R must equal the local transmission 7;Ll from
site 1 _to site 3 upon injecting from L. Using Eq. (B4) we
find T = 2Im[M,,T'1M3H311/|D|?, where H3; = —t3; and
the minors My, = E?> +iET3/2 and M3 = —Et;3 are cal-
culated using the matrix £E1 —H — X" in Eq. (26). Thus,
Th = T T3E%5/%/ID)? > 0. In the case t2] =ty =¢ =
0, Eq. (30) yields Tz, = l“lr‘3Ezt]23/|D|2 . Moreover,
an analogous calculation shows that ’T13 TLR Therefore,
Egs. (3) and (17) follow the same sign convention.

Now we discuss how the local current responds to a
positive chemical potential difference and a positive bias volt-
age. We use Eq. (16) to calculate the current from site 1
to 3, namely, I3y = (e/h) de[fL(E) T(E) + fr(E)TS{(E)].
Since T > 0 and ’T T < 0, the current is posmve if
WUp > g, negative if p < g and vanish in the equilibrium
U = Wg, as expected for systems with time-reversal symme-
try.

In an analogous fashion, we consider a bias voltage Vyi,s >
0, where V; = Wias and Vg = 0, and use Eq. (19) to calculate

the nonequilibrium current to obtain ?1 = (_}31Vblas Since

Tk > 0, both the conductance G, given by Eq. (20), and %5
are positive. Therefore, the local current flows from site 1 to
site 3, that is, it flows from the highest voltage (left) to the
lowest voltage (right), as defined for the total current between
terminals.

APPENDIX D: LOCAL EQUILIBRIUM CURRENTS
IN GRAPHENE NANORIBBONS

As discussed in Sec. IV B, an accurate evaluation of the
local equilibrium currents I®9, given by Eq. (21), is a quite
numerical challenge, that requires the integration of the net
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FIG. 11. (a) Net local transmission as a function of the energy
for a selected bond at the edge of a armchair graphene nanoribbon.
The inset shows the selected bond (i, j) by the red ellipse. (b) Local
equilibrium current INS.“ as a function of the Fermi energy Er (T =
0) in units of et /h. The inset shows the deviation from zero for Ep
values approaching the charge neutrality point.

local transmission—which is not a smooth function—for all
bonds over all system occupied states. To illustrate the numer-
ical difficulty, we present a quantitative analysis of the local
equilibrium currents for a pristine armchair graphene nanorib-
bon with strong spin-orbit interaction in the QSH regime at
T = 0 using the model Hamiltonian defined in Sec. V B. For
simplicity, we chose to analyze a two-terminal system, which
renders a much faster computation then the multiprobe Hall
bars, studied in Secs. IV and V.

We consider a 90-A wide graphene nanoribbon, which has
roughly the minimum width to prevent the overlap of opposite
edge states, destroying the QSH regime. Figure 11(a) shows
the net local transmission }_,_; » T.%(E), the integrand of
Eq. (21), for a selected bond (i, j) (indicated in red in the
inset) near the edge as a function of the electronic energy
E. The integrand displays strong fluctuations in energy win-
dow corresponding to bulk (trivial) states. It presents sharp
discontinuities at energies corresponding to the opening of
transversal propagating modes, that are similar to Van Hove
singularities found in the system density of states of quasi-1D
systems and shows strong oscillations corresponding to inter-
ference effects that we attribute to influence of the leads. The
net local transmission becomes a smooth function of £ within
the topological gap located around the charge neutrality point.
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Figure 11(b) gives T4 for the selected bond as a function
of the Fermi energy Ep, it corresponds to the integral of
D LR 7T;7 (E) from the bottom of the band at roughly —3¢ up
to Er. The integral behaves smoothly and tends to zero at the
charge neutrality point Er = 0, which is in qualitative agree-
ment with previous papers [33,86]. We note that by increasing
the number of integration points Tqu (Er = 0) becomes rather
small (as compared with its maximum value), but the conver-
gence is rather slow. Due to the singularities of the integrand,
see Fleg 11(a), even using 10*- .- 10° integration points, we
find |/; jq (Er = 0)| < 10 3¢t /h. The characteristic behavior of
Zéqu (Ep) around Ep = 0 is illustrated by the inset of Fig. 11(b)

where we have used 30 000 integration points. At this point it
is important to recall that the typical accuracy of the recursive
Green’s functions method is of the order 107 for the con-
ductance [45,47]. Thus, the accurate computation of the local
transmission in Eq. (21) within numerical precision requires a
larger number of points, which for larger systems is very time
consuming and becomes rapidly prohibitive.

This discussion gives further support for using the two-
measurement protocol we propose, in order to compare theory
with experiment and for considering chemical potential inter-
vals over which the local transmissions show none or only few
singularities.
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