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insulators at finite temperatures

Aixin Pi,1 Ye Zhang,1 Yan He ,1,* and Chih-Chun Chien 2,†

1College of Physics, Sichuan University, Chengdu, Sichuan 610064, China
2Department of Physics, University of California, Merced, California 95343, USA

(Received 31 December 2021; revised 7 February 2022; accepted 10 February 2022; published 22 February 2022)

The ensemble geometric phase (EGP) has been proposed as a topological indicator for finite-temperature
quantum systems. The ensemble Wilson loop, or the transfer matrix, contains the crucial information in the EGP
construction. We propose a proxy index and a proxy EGP directly from the transfer matrix and apply them to
time-reversal invariant topological insulators exemplified by the Bernevig-Hughes-Zhang (BHZ) and Kane-Mele
(KM) models. The quantized proxy index and proxy EGP smoothly generalize the ground-state topological index
to finite temperatures. For the BHZ model, a comparison with another topological indicator, the Uhlmann phase,
shows different transition behavior with temperature. For the KM model, the EGP have been generalized to the
time-reversal EGP previously, but the proxy EGP does not require any splitting of the contributions. The proxy
index and proxy EGP thus offer an efficient means for characterizing finite-temperature topological properties.
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I. INTRODUCTION

The concepts of topology have played an important role in
condensed matter physics for understanding various phases of
quantum materials beyond the scope of the Landau symmetry-
breaking paradigm [1–3]. For free fermions, the topology
is usually protected by certain discrete symmetries. It has
been argued that topological materials host robust edge modes
stable against symmetry-preserving perturbations [4]. The
topological stability has triggered enthusiasm of the thriving
field [5–8]. Most achievements of topological matter so far
have been obtained under the condition of zero temperature.
However, in the real world, finite temperatures or environ-
mental couplings are almost inevitable. This naturally leads to
attempts to understand the topology of mixed states or open
quantum systems [9–16].

The ground-state topology is usually characterized by
quantized topological indices, many of which are based on the
notion of geometric phases accumulated during an adiabatic
evolution in the parameter space. The Berry phase from the
Berry connection [5,17,18], for example, lays the foundation
for constructing ground-state topological indices. Inspired by
the idea of the Berry connection, several different approaches
has been proposed to extend the concept of geometric phases
from pure states to mixed states [10–12,14,15,19]. For exam-
ple, the Uhlmann connection and Uhlmann phase have been a
promising finite-temperature topological indicator [10,20,21].
The Uhlmann connection depends on a specified parallel con-
dition in the space of purified states of the density matrix
[10,20,22]. This method has been applied to several one-
or two-dimensional topological [14,23,24] and spin models
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[25,26], many of which exhibit finite-temperature topologi-
cal transitions separating topologically trivial and nontrivial
phases. Recently, it has been employed to describe time-
reversal invariant topological insulators with a Z2 index at
finite temperatures [27].

Here, we focus on another recently proposed topological
indicator for mixed states, called the ensemble geometric
phases (EGP) [15,28]. The EGP is a direct extension of the
ground-state expectations of the polarization or the transla-
tion operator to a thermal average. The detailed analysis in
Ref. [15] shows that the EGP depends on a transfer matrix,
which is actually the Wilson loop of the non-Abelian Berry
connection of all the bands with multiple insertions of the
Boltzmann factors. Due to the products of the Boltzmann fac-
tors, the lowest energy state will dominate the contributions of
the EGP. Therefore, the EGP of systems in the thermodynamic
limit will approach the Berry phase of the lowest energy band.
This suggests that the EGP is guaranteed to be quantized if
one integrates it along a closed loop in the parameter space.
In contrast, the Uhlmann phase may not have such a property.
Another feature of the EGP is that it basically remains the
same for all finite temperatures, meaning that a topological
transition only takes places at infinite T . This again differs
from the Uhlmann phase, where finite-temperature topolog-
ical transitions may be found in many systems [14,26,27].
The EGP has been applied to the Chern insulator [28] as an
example.

Recently, a generalization called the time-reversal EGP
has been proposed [29] in order to analyze the time-reversal
invariant Kane-Mele (KM) model [30] at finite temperatures.
The time-reversal EGP introduces a splitting of the contri-
butions from different bands, similar to the procedure of
evaluating the spin Chern numbers [29]. The concept is more
involved and the computation can be demanding. As an alter-
native, we will construct a proxy index and a proxy EGP based
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on the above-mentioned transfer matrix that gives the same
information of time-reversal invariant topological insulators
without splitting the band contributions. We test the proxy
indicators on the Bernevig-Hughes-Zhang (BHZ) model [31]
and the KM model to show consistency with the ground-state
and finite-temperature EGP results. The BHZ model captures
the main features of the HgTe quantum well, in which the
quantum spin Hall effect was first experimentally observed
[32]. The KM model is another example of time-reversal in-
variant topological insulator originally proposed for graphene,
but the small spin-orbit coupling in graphene makes its veri-
fication more challenging. Nevertheless, it may be possible to
realize the KM model in engineered systems [33].

The reason why the proxy index and proxy EGP works
is that the transfer matrix can be thought of as a finite-
temperature counterpart of the T = 0 Berry Wilson loop,
which has been used as a Z2 index for the BHZ model in
the ground state [34] and may be measured via interferometry
[35]. The proxy index is constructed from the phases of the
eigenvalues of the ensemble Wilson loop and serves as an
indicator of the Z2 index at finite temperatures. Moreover,
the proxy EGP exhibits quantized values for the time-reversal
invariant BHZ and KM models and reflects the Z2 index at
finite temperatures without splitting the band contributions.

The rest of the paper is organized as follows. Section II
briefly reviews the ground-state topological properties of the
time-reversal invariant BHZ and KM models via the Wilson
loop. Section III reviews the derivation of the EGP via the en-
semble Wilson loop, from which the proxy EGP is introduced.
Section IV presents the proxy index and proxy EGP of the
BHZ and KM models at finite temperatures, along with com-
parisons with the Uhlmann phase and the time-reversal EGP.
Possible implications and measurements are also discussed.
Section V concludes our study. Details of some calcula-
tions and an exactly solvable model are summarized in the
Appendix.

II. SUMMARY OF TIME-REVERSAL INVARIANT
TOPOLOGICAL INSULATORS AT T = 0

We begin by briefly reviewing the ground-state properties
of two prototypical time-reversal invariant topological insula-
tors described by the BHZ and KM models.

A. BHZ model

The Hamiltonian of the BHZ model is given by

H =
(

H0(k) H1

H†
1 H∗

0 (−k)

)
. (1)

The corresponding wave function is ψ =
(ψ1↑, ψ2↑, ψ1↓, ψ2↓)T , where the indices i = 1, 2 label
the two orbitals and the arrows label the two spins. H0 is the
Qi-Wu-Zhang model [36], given by

H0 = sin kxσ1 + sin kyσ2 + (m + cos kx + cos ky)σ3. (2)

Here σi for i = 1, 2, 3 are the Pauli matrices. The model given
by H0 is a Chern insulator with nonzero Chern number for

−2 < m < 2. The H1 term is given by

H1 =
(

0 γ

−γ 0

)
, (3)

which breaks the Sz conservation and inversion symmetry.
The topology of the BHZ model is protected by time-

reversal symmetry, where the time-reversal (TR) operator is
UT = iσ2K with K denoting the complex conjugation. The
TR invariant is given by U †

T H∗(k)UT = H (−k). Due to TR
symmetry, the lowest two bands are degenerate at the four
time-reversal invariant momenta k1 = (0, 0), k2 = (±π, 0),
k3 = (0,±π ) and k4 = (±π,±π ). The degeneracy fails the
definition of the Chern number for each band, but the total
Chern number of these two bands can still be defined. How-
ever, TR symmetry leads to a vanishing total Chern number.
To reveal the nontrivial topology, one can introduce a Z2

index. The Fu-Kane invariant [37] requires the use of globally
defined eigenstates, which can be difficult to find in practice.
As an alternative, we employ a manifestly gauge-invariant
method based on the Wilson loop or Wannier center [34]. In
the continuum limit, the Wilson line can be expressed in terms
of the non-Abelian Berry connection as

Wi,i+1(ky) ≈ exp(iAx(kx,i, ky)�k), (4)

Amn
μ (k) = −i〈um(k)

∣∣∣∣ ∂

∂kμ

∣∣∣∣un(k)〉.

Here μ = x, y and �k = kx,i+1 − kx,i. The Wilson loop is then
given by

W (ky) = P exp

(
i
∮

C
Aμ(k)dkμ

)
. (5)

Here P denotes the path order of the following integral. The
integral contour C is the loop with fixed ky, and kx varies from
0 to 2π .

For numerical calculations, we discretize the momentum
space into a lattice and define a Wilson line operator across a
given link on the lattice, whose matrix element is given by

W mn
i,i+1(ky) = 〈um(kx,i, ky)|un(kx,i+1, ky)〉. (6)

Here |um〉 denotes the eigenstate in momentum space and the
indices m, n run through all the occupied bands. In the case of
the half-filled BHZ model, Wi,i+1 is a 2 × 2 matrix. Then the
Wilson loop with fixed ky is the product of a series of links,
given by

W (ky) = W0,1W1,2W2,3 · · ·WN−1,NWN,0. (7)

Here N is the lattice number along the x axis. The Wilson
line operator, however, is not gauge invariant. Under the
transformation |u(k)〉 → |un(k)〉eiθ (k), we find that Wi,i+1 →
Wi,i+1eiθ (kx,i+1,ky )−iθ (kx,i,ky ). Nevertheless, for a closed loop in
Eq. (7), all the gauge dependence cancels out, and the Wilson
loop is manifestly gauge invariant.

With the Wilson loop, one can use the phases of the eigen-
values λn of W (ky) to infer the Z2 index as follows. We first
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FIG. 1. The phases θ1 = −θ2 of the eigenvalues of the Wilson
loop W (ky ) shown in Eq. (7) for the BHZ model (top row) and the
KM model (bottom row) as a function of ky. For the BHZ model,
γ = 0.2 and m = 1.5 (m = 2.5) for the left (right) panel. For the
KM model, λSO = 0.06 and λv = 0.1 (λv = 0.4) for the left (right)
panel.

obtain

θn(ky) = arg[λn(ky)]. (8)

Here arg denotes the phase angle or argument of a complex
number. Since W (ky) is a unitary matrix, its eigenvalues λn(ky)
are all unit-modulus complex numbers. For the BHZ model,
there are only two arguments θ1,2(ky). Since det(W ) = 1, we
always have θ1 = −θ2. At the TR invariant momenta, ky = 0
or ky = π , the Wilson loop W has degenerate eigenvalues due
to TR symmetry. Therefore, we have an additional condition
θ1 = θ2 at those points.

We plot the numerical result of the phases θ1,2 of the BHZ
model in the top row of Fig. 1. In the left panel, we assume
m = 1.5 and γ = 0.2 in the topological regime. Due to TR
symmetry, θ1 = −θ2 for all k. We have θ1,2 = 0 at ky = 0 and
gradually increases to θ1,2 = ±π at ky = π . Note that ±π are
the same modulo 2π , so the requirement of θ1 = θ2 at ky = π

is satisfied. As ky further increases to 2π , θ1,2 come back to
zero. Therefore, θ1,2 wind around the whole 2π , indicating the
nontrivial topology. On the other hand, in the right panel with
m = 2.5 and γ = 0.2 in the topologically trivial regime, we
find that θ1,2 depart from zero not too far away before coming
back to zero without any winding.

B. KM model

The KM model describes spin-1/2 fermions hopping on
a honeycomb lattice with staggered sublattice potentials and
spin-orbital couplings [38]. Its Hamiltonian in momentum

space can be written as

HKM = d1
1+d2
2+d12
12+d15
15, (9)

d1 = t

(
1+2 cos

kx

2
cos

√
3ky

2

)
, d12=−2t cos

kx

2
cos

√
3ky

2
,

d2 = λv, d15 = λSO

(
2 sin kx − 4 sin

kx

2
cos

√
3ky

2

)
.

Here we have defined 
1 = σ1 ⊗ s0, 
2 = σ3 ⊗ s0, 
12 =
−σ2 ⊗ s0, and 
15 = σ3 ⊗ s3. The matrices σi and si are the
Pauli matrices in the sublattice space and spin space, respec-
tively. The hopping coefficient t can be taken as the energy
unit. λv and λSO are the staggered potential strength and
spin-orbital coupling (SOC), respectively. For a more clear
comparison with the BHZ model, we start with the Rashba
spin-orbital coupling set to zero and later discuss the case with
finite Rashba terms.

The time-reversal (TR) operator for the KM model is
UT K with UT = iσ0 ⊗ s2 and K denoting the complex con-
jugation. The KM model is time-reversal invariant since
U †

T H∗
KM (k)UT = H (−k). The KM model is topological when

λv < 3
√

3λSO and becomes trivial if λv > 3
√

3λSO. The
phases of the eigenvalues of the Wilson loop of the KM
model are shown in the bottom row of Fig. 1. Again, we have
θ1 = −θ2. Moreover, θ1 = θ2 at the TR invariant momenta.
Similar to the BHZ case, the phases wind around 2π in the
topological regime and stay close to zero in the topologically
trivial regime.

III. ENSEMBLE GEOMETRIC PHASE AND ITS PROXY

A. Review of EGP

The EGP ϕE is defined as the polarization or the ther-
mal average of many-body position operator X̂ = ∑

j x̂ j [15].
However, the operator X̂ is not a convenient choice for spa-
tially periodic systems since it does not respect periodic
boundary condition. It was pointed out by Resta [39] that it
is better to consider the translational operator T̂ = exp(iδkX̂ ),
where δk = 2π/L with L denoting the system size. Then, the
polarization is just the phase of the thermal average of T̂ ,

ϕE = arg〈T̂ 〉. (10)

Here 〈· · · 〉 = Tr(ρ · · · ) is the thermal average and ρ is the
density matrix.

To compute the EGP defined in Eq. (10), we consider a
general tight-binding Hamiltonian in real space. In the second
quantization form, the density operator can be expressed as

ρ = 1

Z exp

(
−β

∑
i, j

c†
i Hi jc j

)
. (11)

Here c†
i and ci are the fermion creation and annihilation oper-

ators with i collectively labels the lattice sites and the orbitals
on each site. We assume that there are N lattice sites and n
orbitals in total. The Hermitian matrix H with elements Hi, j

is the Hamiltonian in the first quantized form and β = 1/kBT
with temperature T . We set h̄ = 1 and kB = 1 throughout the
paper. The normalization constant Z is included to ensure

085418-3



PI, ZHANG, HE, AND CHIEN PHYSICAL REVIEW B 105, 085418 (2022)

Tr(ρ) = 1. Explicitly,

Z = Tr[exp

(
−β

∑
i, j

ĉ†
i Hi j ĉ j

)
] = det(1 + e−βH ). (12)

Meanwhile, in the second quantization form, the translation
operator T̂ becomes

T̂ (c†, c) = eiδkX̂ = eiδk
∑

i c†
i xici . (13)

In Ref. [15], the average 〈T̂ 〉 is computed by using path inte-
gral. Instead, we make use of the following operator identity:

Tr

[
exp

(∑
i j

c†
i Xi jc j

)
exp

(∑
kl

c†
kYklcl

)]
= det(1 + eX eY ).

(14)

Here 1 is the identity matrix with the same dimension as X
and Y . The proof of this identity can be found in Appendix A.
Applying the above formula to Tr(ρT̂ ), we find

〈T̂ (c†, c)〉 = 1
Z det

(
InN + T e−βH

)
, (15)

where we have defined a diagonal matrix T ≡
diag(eiδkx1 , · · · , eiδkxN ) ⊗ In, and In is the n × n identity
matrix.

The real-space Hamiltonian can be block diagonalized by
transforming to momentum space as

H =
∑

k

Hk|k〉〈k|, (16)

where Hk is an n × n Hermitian matrix defined in lattice
momentum space. We can further diagonalize Hk to find the
eigenenergies as follows:

Hk = UkEkU
†
k , Ek = diag(E1,k, · · · , En,k ), (17)

where Uk is a unitary matrix whose columns are the eigenvec-
tors of Hk . In momentum space, the matrix T can be expressed
as

T =
∑

k

|k + 1〉〈k|. (18)

One can see that T only contains nonzero matrix elements on
the upper subdiagonal line.

Since Z is a real number and does not contribute to the
phase, the EGP can be expressed as follows:

ϕE = arg det(1 + Ue−βEU †T )

= arg

[
exp Tr

( ∞∑
n=1

(−1)n−1 An

n

)]
.

(19)

Here we have used the matrix identity det M = exp(Tr ln M )
and also defined A = e−βEU †T U for convenience. In momen-
tum space, A = ∑

Ak|k − 1〉〈k|, where k = 1, . . . , N . Some
details of the evaluation can be found in Appendix B.

For convenience, we introduce a path-ordered matrix prod-
uct MT , known as the transfer matrix [15], which is defined
as

MT = (−1)N−1
∏

k

Ak = (−1)N−1
∏

k

e−βEk+1U †
k+1Uk .

(20)

Here U †
k+1Uk is the overlap between the eigenstates located

at two adjacent points in momentum space. Collecting all the
above results, we finally arrive at the following expression:

ϕE = arg[etr ln(1+MT )] = arg[det(1 + MT )]. (21)

This EGP expression was first derived in Ref. [15], but our
derivation is slightly different.

It is possible to simplify the expression of the transfer
matrix MT by rewriting it as a path-ordered product of density
matrices. Explicitly,

MT =
∏

i

e−βEki UkiU
†
ki

=
∏

i

∑
n

e−βEn,ki |un(ki )〉〈un(ki )|

=
∏

i

ρ(ki ) (22)

with unnormalized density matrix ρ(ki ) at momentum ki. In
the continuum limit, it can also be written as a path-ordered
integral as

MT = P exp

(
− 1

T �k

∮
C

H (k)dkx

)
. (23)

Here �k is the difference between two adjacent momentum
points. In order to find a meaningful MT , we have to keep �k
nonzero. Otherwise, the eigenvalues of MT will be either zero
or infinite.

B. Proxy ensemble geometric phases

Although the EGP serves as a finite-temperature topolog-
ical indicator related to the polarization, here we show that
it is more convenient to use the transfer matrix MT as the
central quantity for characterizing the topology. Inspired by
the Uhlmann phase, which was previously used to character-
ize the topology of the two-dimensional Chern insulator at
finite temperatures [23], we propose an alternative topological
indicator called the proxy EGP, defined as follows:

�E (ky) = arg tr[MT (ky)]. (24)

The proxy EGP is more computationally manageable since it
directly extracts the information from MT . For a simple two-
band system, the proxy EGP reproduces the EGP as follows.
The two eigenvalues of MT satisfy |λ1|  1  |λ2| due to
the infinitely many products of the Boltzmann factors. In this
case, the proxy EGP agrees with the EGP because

ϕE = arg det(1 + MT ) ≈ arg λ1 ≈ arg trMT = �E . (25)

However, for models with degenerate or almost degenerate
bands, the situation is more complicated, and the proxy EGP
will be generally different from the EGP. Take the BHZ model
for example, we will find the four eigenvalues of its MT satisfy
|λ1| ≈ |λ2|  1, |λ3| ≈ |λ4| � 1. Due to TR symmetry, λ1 is
the complex conjugate of λ2. Hence, det(1 + MT ) ≈ λ1λ2 =
|λ|2, which is a positive number. Therefore, the EGP in this
case is always zero. The analysis shows that a direct applica-
tion of the EGP to time-reversal invariant topological models
only leads to trivial results. As pointed out in Ref. [29] with
the KM model as an example, a possible way out is to define
separate EGPs for the spin-up and spin-down bands. The dif-
ference of the spin up and down EGPs gives the time-reversal
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EGP, which can then detect the topology of time-reversal
invariant systems.

On the other hand, a similar analysis leads to trMT ≈
λ1 + λ2 = 2|λ1| cos θ1. Here θ1 is the phase of λ1. Therefore,
depending on the value of θ1, the proxy EGP can take two
quantized values 0 or π according to the sign of trMT . The
analysis thus shows that the proxy EGP can directly reflect
the underlying topology without splitting the contributions. In
the following section, we will show that the proxy EGP indeed
indicates the finite-temperature topology of time-reversal in-
variant topological insulators, using the KM and BHZ models
as concrete examples. As will be shown shortly, the quantized
values of the proxy EGP will lead to abrupt jumps indicating
the nontrivial topology from the Z2 index. To calibrate our
analytic and numerical results, we have verified the accuracy
of the numerical calculations by an exactly solvable model
summarized in Appendix C.

IV. RESULTS OF TIME-REVERSAL INVARIANT
TOPOLOGICAL INSULATORS

A. BHZ model

We first apply the formalism of the proxy EGP to the BHZ
model at finite temperatures by focusing on the path-ordered
matrix product MT in Eq. (20), which can be thought of as
a generalization of the Wilson loop to finite temperatures. To
see this, we note that the overlap matrix can be expressed as

(U †
ki+1

Uki )mn = 〈um(ki+1)|un(ki )〉 ≈ 1 − i
∫ ki+1

ki

Aμdkμ,

(26)

Aab
μ (k) = −i

〈
ua(k)| ∂

∂kμ

|ub(k)

〉
. (27)

Here the indices a, b indicate all possible orbitals 1, . . . , n.
Making use of it, MT can be expressed as

MT =
∏

i

e−βE (ki ) exp

(
− i

∫ ki+1

ki

Aμdkμ

)
(28)

Ek = diag(E1,k, . . . , En,k ),

which is just a path-ordered integral of the non-Abelian Berry
connection with multiple insertions of the diagonal matrices
of the Boltzmann factors. Here we have assumed N to be an
odd number in order to drop the factor (−1)N−1. It is now
clear that MT may be referred to as the ensemble Wilson
loop. If we replace the diagonal matrices e−βE (ki ) with another
matrix diag(0, . . . , 0, 1, . . . , 1), where the nonvanishing ele-
ments correspond to the occupied bands, then we recover the
Wilson loop of the non-Abelian Berry connections of those
occupied bands.

MT is a 4 × 4 matrix for the BHZ model. At zero tempera-
ture, the topology is reflected by the phase of the eigenvalues
of the Wilson loop. Analogously, we define the following
phases for fixed ky:

θE
n (ky) = arg λn(ky). (29)

Here λn is the nth eigenvalue of MT . The numerical results of
θE

n are shown in the top row of Fig. 2. Note that the four θE

FIG. 2. The phase θE of the eigenvalues of MT (ky ) for the BHZ
model as a function of ky. Due to θE

1 = θE
2 = −θE

3 = −θE
4 , there are

two sets of degenerate data on the plot. Here γ = 0.2 and T = 5.0
with m = 0.8 and m = 2.8 for the left and right panels, respectively.

satisfy the following relation

θE
1 = θE

2 = −θE
3 = −θE

4 . (30)

Thus, although there are four eigenvalues, only two opposite
phases are visible, making the plots similar to the Wilson-
loop result from the Berry connection at T = 0. In the left
(right) panel of Fig. 2, we assume m = 0.8 (m = 2.8) in the
topological (trivial) regime. In both cases, a small spin-orbital
coupling γ = 0.2 and relative high temperature T = 5.0 are
assumed.

A comparison of θE with θ from the Wilson loop at T = 0
shows that they share similar qualitative features. They are
both zero at ky = 0 or ky = 2π . In the topological regime, θE

stays at zero and then starts to rise as ky increases. It reaches
±π at another TR invariant momentum ky = π . Therefore,
θE also winds around a full circle as we travel from ky = 0 to
ky = π . Thus, we can still interpret its winding as an indicator
of the topology. When compared to Fig. 1, the only difference
is that θE remains zero inside two small intervals of ky close
to 0 and 2π . However, this does not affect the winding of the
phase. On the other hand, for the topological trivial case, θE

are basically zero. The comparisons show the phase of the
eigenvalues of the ensemble Wilson loop can reflect the T = 0
topological properties at finite temperatures. The winding of
θE can also be inferred by the following index, which we call
the proxy index for the EGP:

νn = 1

2π

∫ π

0
dky

∂

∂ky
θE

n . (31)

The topological regime corresponds to νn = ± 1
2 while the

topologically trivial regime corresponds to νn = 0. The proxy
index thus generalizes the Z2 index to finite temperatures. We
remark the definition is consistent with another Z2 index called
the magnetoelectric polarization defined at T = 0 in Ref. [40].

We remark that we show the results for a selected value of
T = 5 as the qualitative behavior of θE are basically the same
for all finite T . However, if we consider the limiting case of
T → ∞, e−βE (ki ) will be proportional to the identity matrix,
causing MT to become the identity matrix as well. Therefore,
θE

n = 0 for all n, and the system becomes topologically triv-
ial at infinite high T as expected. The topological transition
according to the proxy index only occurs at T = ∞, which is
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FIG. 3. The proxy EGP �E for the BHZ model as a function of
ky. Here γ = 0.2 and T = 5.0 with m = 0.8 (topological) and m =
2.8 (trivial) for the left and right panels, respectively.

different from the finite-temperature topological phase transi-
tion of the Uhlmann phase of the BHZ model [27].

The proxy EGP, �E , of the BHZ model as a function of
ky is shown in Fig. 3. Similar to the Uhlmann phase of the
BHZ model, �E only takes two quantized values, 0 or π . This
is because the eigenvalues of MT of the BHZ model are all
complex conjugate pairs, guaranteeing its trace to be a real
number. Therefore, �E is quantized at 0 or π , forming a Z2

group. For the topological case with m = 0.8, �E jumps from
0 to π and then jumps back to 0 later as ky goes from 0 to 2π .
On the other hand, �E is always 0 in the topologically trivial
case with m = 2.8. Therefore, the abrupt jump of �E from
0 to π may serve as another indicator of finite-temperature
topology. In both panels of Fig. 3, we assume T = 5.0, but
we have verified that the qualitative behavior of �E remains
the same for all finite T . Therefore, similar to the analysis of
θE , the topological transition only happens at infinite T .

When compared to the Uhlmann phase �U of the BHZ
model discussed in Ref. [27], the zero-temperature behavior
of �U and �E is basically the same, reflecting the Z2 index
in the ground state. However, the regime where �U = π can
be found shrinks with T , and there is a finite-temperature
topological phase transition to the trivial regime. In contrast,
�E stays qualitatively with its zero-temperature value for any
finite temperature and only vanishes completely at infinite
temperature. The two topological indicators thus give differ-
ent pictures of finite-temperature topological properties of the
BHZ model.

B. KM model

The proxy index and proxy EGP from MT can also be
applied to the Kane-Mele (KM) model. We plot the phase θE

of the eigenvalues of MT (ky) for the KM model as a function
of ky in Fig. 4. Here θE

n also satisfy the relation of Eq. (30),
so the data group into two degenerate sets of opposite values.
In the left panel with small λv , θE winds around a full circle,
representing the nontrivial topology. In the right panel with
large λv , θE never finish a whole circle, showing the trivial
case. Note that the range of ky is (0, 2π/

√
3) due to the

honeycomb lattice of the KM model. A proxy index of the
winding number can also be defined for the KM model as

νn = 1

2π

∫ π/
√

3

0
dky

∂

∂ky
θE

n . (32)

FIG. 4. The phases θE of the eigenvalues of MT (ky ) for the Kane-
Mele model as a function of ky. Due to θE

1 = θE
2 = −θE

3 = −θE
4 ,

there are two sets of degenerate data. Here λSO = 0.06t and T = 5.0t
with λv = 0.1t (topological) and λv = 0.4t (trivial) for the left and
right panels, respectively.

Here the upper limit of the integral is different from that of
the BHZ model because of lattice is not square. Again, νn =
±1/2 indicate the topological regime. Therefore, the proxy
index generalizes the ground-state Z2 index of time-reversal
invariant topological insulators to finite temperatures.

We also consider the KM model with the following Rashba
type SOC term:

HRashba = d3
3 + d4
4 + d23
3 + d24
3, (33)

d3 = λR(1 − cos x cos y), d4 = −
√

3λR sin x sin y,

d23 = −λR cos x sin y, d24 =
√

3λR sin x cos y.

Here we have defined x = kx/2, y = √
3ky/2, 
3 = σ2 ⊗ s1,


4 = σ2 ⊗ s2, 
23 = −σ1 ⊗ s1, and 
24 = σ1 ⊗ s2. The re-
sults of θE of the model are shown in Fig. 5 for a moderate
value of λR = 0.1t . We find that with the finite Rashba cou-
pling, the degeneracies between θE

j s are lifted. Nevertheless,
the qualitative behaviors are the same as the KM model with-
out the Rashba term shown in Fig. 4. Thus, the proxy index is
also the same.

Next, the proxy EGP, �E , of the KM model without the
Rashba term is evaluated and shown in Fig. 6 as a function of
ky. Similar to the BHZ model, the eigenvalues of MT are all
complex conjugate pairs, which also guarantee that the trace
is a real number. Thus, �E is quantized at 0 or π . When ky

is varied, finite �E can be observed in the topological regime.

FIG. 5. The phases θE of the eigenvalues of MT (ky ) for the Kane-
Mele model as a function of ky. Here λSO = 0.06t , λR = 0.1t , and
T = 5.0t with λv = 0.1t (topological) and λv = 0.3t (trivial) for the
left and right panels, respectively.
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FIG. 6. The proxy EGP �E for the Kane-Mele model as a func-
tion of ky. Here λSO = 0.06t and T = 5.0t with λv = 0.1t and λv =
0.4t for the left and right panels, respectively.

The proxy EGP thus serves as another finite-temperature topo-
logical indicator, which does not require splitting of the band
contributions as the time-reversal EGP discussed in Ref. [29].
We also found that �E remains quantized and behaves quali-
tatively the same when the Rashba SOC term with a moderate
value is introduced.

C. Implications

The EGP is associated with the polarization, which may
be measured experimentally from the expectation of the
momentum shift operator [28,29]. Since the EGP smoothly
extends the zero-temperature topological behavior to finite
temperatures, there is no change of the topological regime as
temperature increases, as long as the infinite temperature point
is excluded. While the generalization to the time-reversal EGP
allows a description of the finite-temperature behavior of the
KM model [29], the splitting of band contributions may re-
quire additional care in the construction.

On the other hand, the proxy index and proxy EGP fully
agree with the T = 0 indicator and do not deviate from it
at finite-temperatures when applied to the two models of
time-reversal invariant topological insulators. Therefore, we
do not consider the proxy index and proxy EGP as brand
new topological indicators in those cases. Rather, they pro-
vide a streamlined calculation to infer the finite-temperature
topology characterized by the EGP in a computationally man-
ageable manner. Experimentally, the EGP may be measured
from the polarization or interferometry in natural or engi-
neered materials [28,29] while the proxy index and proxy
EGP allow for an efficient and unified characterization of the
results.

We remark that different finite-temperature topological in-
dicators reflect the robustness of different quantities against
thermal averaging. Take the BHZ model as an example, the
Uhlmann phase exhibits a finite-temperature transition to a
trivial regime [27], showing the triviality of the holonomy
in the Uhlmann bundle at high temperatures. On the other
hand, the proxy index and EGP preserve the topological prop-
erties at any finite temperature through the Boltzmann factors.
Both scenarios are valid, but they reflect different topological
properties. We caution that for systems in two (or higher)
dimensions, the calculation of the Uhlmann phase may show
different results if the order of integrations are changed [19].

As shown in Ref. [27], however, the BHZ model is a special
case where the Uhlmann phase is insensitive to a change of
the order of integrations. In contrast, the EGP and its proxies
do not have such complications.

D. Possible measurement of proxy EGP and proxy index

Now we turn to possible ways for measuring the proxy
EGP and proxy index. We first recall that the EGP is accessi-
ble by direct measurements through optical setups such as the
Mach-Zehnder interferometer, as proposed in Ref. [15]. The
idea of this measurement goes back to Ref. [11]. We briefly
review the main ideas of this type of EGP measurements. In a
Mach-Zehnder interferometer, an incoming laser beam is split
into two traveling along different paths, which may be called
the upper and lower arms. These photons in the two arms
can be conveniently described by a two-dimensional Hilbert
space, which is the same as that of a qubit. In this language,
the mirror reflection and beam splitting can be described by
2 × 2 matrices as

UM =
(

0 1
1 0

)
, UB = 1√

2

(
1 i
i 1

)
. (34)

In the upper arm, the beam passes through a phase shift ele-
ment, which delays the phase of the photon by χ . Meanwhile,
the beam in the lower arm passes through and interacts with
a sample topological fermion system, which is the object that
we want to probe. Now it is possible to engineer the interac-
tions between the photons and fermions such that the photon
beam in the lower arm will pick up a phase shift proportional
to the center of mass of the fermions. This phase shift is just
described by the argument of the expectation of the translation
operator T̂ = exp(iδkX̂ ), which then gives the EGP. We refer
the reader to Ref. [15] for the detailed construction of the
interaction. At the end, the two beams pass through another
beam splitter to give rise to the output signals. One can find
the intensities of these two outputs, given by

I±
out = 1

2 (1 ± |〈T̂ 〉| cos[χ − arg〈T̂ 〉])Iin. (35)

By varying the phase χ and measuring the intensity change,
one may deduce the phase arg〈T̂ 〉, which is the EGP.

Now we come back to the proxy EGP and proxy index
determined by the eigenvalues of MT . The EGP only provides
us information of ϕE = det(1 + MT ), which is not enough to
determine all the eigenvalues of MT . In order to make use of
the above EGP measurement, we propose an indirect way to
determine the eigenvalues of MT . We introduce a parameter to
the momentum displacement by the replacement δk → δk/η.
According to Eq. (23), we find that MT will become (MT )η.
By varying η, we can measure a series of EGP as

(ϕE )η = det(1 + Mη
T ) =

n∏
j=1

(
1 + λ

η
j

)
. (36)

Here λ j for j = 1, . . . , n are the eigenvalues of MT . Now
we can choose n different values of η to obtain n different
equations of the form of Eq. (36). Since (ϕE )η can be exper-
imentally measured, we can in principle obtain all λ js from
those n equations. With all the λ js at hand, it is straightforward
to determine the proxy EGP �E = arg(

∑
j λ j ) and the proxy
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index from θE
j = arg(λ j ). For multiband systems, however,

the above procedure may be more challenging. We remark
that the EGP has a more natural tie to physical quantities
since it comes from the translation operator while the proxy
EGP and index provide more straightforward evaluations of
the time-reversal invariant topological systems discussed here.

V. CONCLUSION

Based on the EGP formalism, we propose the proxy index
and proxy EGP via the ensemble Wilson loop or transfer ma-
trix MT for characterizing time-reversal invariant topological
insulators at finite temperatures, exemplified by the BHZ and
KM models. The phases of the eigenvalues of MT display
similar behavior as those of the Berry-Wilson loop at T = 0.
The proxy index reflects the winding and distinguishes the
topological and trivial phases. The proxy EGP is quantized
for both BHZ and KM models and exhibits jumps between
0 and π in the topological regime. Moreover, the proxy EGP
characterizes the time-reversal invariant topological insulators
without the need for splitting the band contributions. The EGP
and its proxies are free from complications of integration
order that affects the Uhlmann phase in higher dimensions.
Different from the Uhlmann phase of the BHZ model show-
ing a finite-temperature topological transition, the proxy EGP
only exhibits a transition at infinite temperature. Our study
thus shows the rich physics of topological systems at finite
temperatures.
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APPENDIX A: DERIVATION OF EQ. (14)

Here we prove the identity of Eq. (14). For convenience,
we repeat this equation as follows:

Tr

[
exp

(∑
i j

c†
i Xi jc j

)
exp

(∑
kl

c†
kYklcl

)]
= det(1 + eX eY ).

We will first prove the following simple case:

Tr

[
exp

(∑
i j

c†
i Xi jc j

)]
= det(1 + eX ) (A1)

Assume that the N × N matrix X can be diagonalized as

X = U †�U, � = diag(λ1, . . . , λN ). (A2)

Here λi with i = 1, . . . , N are the eigenvalues of X . We can
introduce a new set of fermion operators

ai =
∑

j

Ui jc j, a†
i =

∑
j

c†
jU

†
ji. (A3)

Then the right-hand side of Eq. (A1) can be simplified as

Tr

[
exp

(∑
i j

c†
i Xi jc j

)]
= Tr

[
exp

(∑
i

λia
†
i ai

)]

=
∏

i

Tr[exp(λia
†
i ai )] = det(1 + eX ). (A4)

This completes the proof of Eq. (A1).
To prove Eq. (14), we make use of the integral form of the

Baker-Campbell-Hausdorff formula [41] as follows:

Z ≡ ln(eX eY ) = X +
[ ∫ 1

0
ψ (eadX et adY ))dt

]
Y. (A5)

Here we have introduced the function ψ (x) = x ln x
x−1 and also

the adjoint operator adX , which generates the commutator
when applying to any other operators

adX (Y . . . ) = [X,Y . . . ]. (A6)

Note that for any matrices X and Y ,[∑
i j

c†
i Xi jc j,

∑
kl

c†
kYklcl

]
=

∑
i j

c†
i ([X,Y ])i jc j . (A7)

Since the right-hand side of Eq. (A5) are all commutators
between X and Y , we find that∑

i j

c†
i Zi jc j =

∑
i j

c†
i

(
X +

[ ∫ 1

0
ψ (eadX et adY ))dt

]
Y

)
i j

c j

= X +
[ ∫ 1

0
ψ (exp[adX ] exp[t adY ])dt

]
Y

= ln(eX eY ). (A8)

Here we have defined

X =
∑

i j

c†
i Xi jc j, Y =

∑
i j

c†
i Yi jc j .

Making use of the above results, we find that

Tr

[
exp

(∑
i j

c†
i Xi jc j

)
exp

(∑
kl

c†
kYklcl

)]

= Tr

[
exp

(∑
i j

c†
i Zi jc j

)]
= det(1 + eX eY ). (A9)

This completes the proof of Eq. (14).

APPENDIX B: DETAILS OF EGP

The matrix A is an N × N matrix with nonzero blocks
located on the subdiagonal line as

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 A2 0 0 0 0
0 0 A3 0 0 0
0 0 0 A4 0 0

0 0 0 0 . . . 0
0 0 0 0 0 AN

A1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B1)

It is easy to verify that A has the property TrAn �= 0 only for
n = mN , where m is an integer. The reason is that only the N th
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power of A has nonzero diagonal blocks AN = (
∏

k Ak ) ⊗ 1.
With this property, we can simplify Eq. (19) as

Tr

[ ∞∑
n=1

(−1)n−1 An

n

]
= Tr

[ ∞∑
m=1

(−1)mN−1 AmN

mN

]

= tr

[ ∞∑
m=1

(−1)mN−1 (
∏

k Ak )m

m

]

= tr ln(1 + MT ). (B2)

In the second line of above derivations, we have used the fact
that

Tr(AN )m = Tr

[( ∏
k

Ak

)
1

]m

= N tr

( ∏
k

Ak

)m

. (B3)

Here “Tr” means the trace over both momentum and orbital
spaces while “tr” means trace over only orbital space.

APPENDIX C: VERIFICATION OF NUMERICAL
ACCURACY

To verify the accuracy of the numerical results, we consider
the following simple two-band Hamiltonian:

H = cos kxσ1 + sin kxσ2 + (m + cos ky)σ3. (C1)

It is possible to give an analytical expression for the ensemble
Wilson loop. For fixed ky, we consider an ensemble Wilson
line, defined as

V (kx ) = P exp

(
− 1

T �k

∫ kx

0
H (k′

x )dk′
x

)
. (C2)

To simplify the notation, we suppress the ky dependence of
V (kx ). The desired result is then given by MT = V (kx = 2π ).
Clearly, V (kx ) can be solved from the following equation:

dV (kx )

dkx
= − 1

T �k
H (kx )V (kx )

= − 1

T �k
[(m + sin ky)σ3 + e−ikxσ3/2σ1eikxσ3/2]V (kx ).

FIG. 7. Phase θE of the eigenvalues of MT (ky ) for the model of
Eq. (C1) as a function of ky. The dots are numerical results while the
line is the analytic result. Here m = 0.8 and T �k = 1.

One can simplify the above equation by a gauge transforma-
tion V = e−ikxσ3/2U , and then the equation becomes

dU (kx )

dkx
= −

(
1

T �k
[(m + sin ky)σ3 + σ1] + i

2
σ3

)
U (kx ).

For fixed ky, the term inside the big parentheses is a constant
matrix, it is straightforward to find that

MT = V (2π )

= − exp

(
− 2π

T �k
[(m + cos ky)σ3 + σ1] − π iσ3

)
.

(C3)

As a comparison, we plot the phases θE of the eigenvalues of
MT (ky) for the model of Eq. (C1) as a function of ky in Fig. 7.
The red dots are numerical results of Eq. (23) while the red
line is computed from the analytical result of Eq. (C3). One
can see the two results agree with each other well. We remark
that, however, this model is topologically trivial.
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