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Rotating Majorana zero modes in a disk geometry
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We study the manipulation of Majorana zero modes in a thin disk made from a p-wave superconductor, in order
to understand their use as a building block for topological quantum computers. We analyze the second-order
topological corner modes that arise when an in-plane magnetic field is applied, and we calculate their dynamical
evolution when rotating the magnetic field, with special emphasis on nonadiabatic effects. We characterize the
phase transition between high-frequency and near-adiabatic evolution using Floquet analysis. We show that
oscillations persist even in the adiabatic phase because of a frequency-independent coupling between zero modes
and excited states, which we have quantified numerically and analytically. These results show that controlling
the rotation frequency can be a simple method to avoid the nonadiabatic errors originated from this coupling and
thus increase the robustness of topological quantum computation.
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I. INTRODUCTION

Topological quantum computing is a promising approach
to quantum information processing, since it provides robust-
ness against local perturbations (see, for instance, Refs. [1,2]).
One way to implement topological quantum computing is
through manipulating Majorana zero modes. Using their non-
Abelian statistics, one can use adiabatic exchange of Majorana
zero modes to construct topological quantum gates. One of the
attractive aspects of topology is the robustness against local
perturbations with symmetry protection, and thus, if one can
produce Majorana zero modes, they may provide a very robust
platform for quantum computation [2–5].

One particular set of systems of interest consists of time-
reversal invariant topological superconductors (TSCs) and
superfluids in two and three dimensions. These can host gap-
less counterpropagating Majorana edge modes [6]. One of
the candidates for the realization of p-wave TSCs are doped
Bi2Se3 compounds [7–13], and several experiments have, in-
deed, given evidence for p-wave pairing in CuxBi2Se3 [14,15].

Recent studies show that when a perturbation that breaks
the symmetry protecting the topology is applied, the resulting
system can host lower-dimensional topologically protected
gapless states called hinge or corner modes [16–18]. Such
Majorana corner modes have been considered in various two-
dimensional (2D) systems [12,17,19–22].

In our work, we consider a quasi-two-dimensional system
consisting of a thin disk of doped Bi2Se3, described by a
model developed by Phong et al. [12], which can be turned
into a second-order TSC. In that approach an in-plane mag-
netic field breaks the time-reversal symmetry and stabilizes
Majorana zero modes on the edge of the system. Adiabatically
rotating the orientation of the magnetic field results in the
movement of Majorana zero modes along the edge of the
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disk. This fact can be used to define a protocol for braiding
Majorana zero modes of multiple disks, clearly showing the
advantage of working with a disk geometry [23–26].

Realistic braiding for topological quantum computation
cannot be perfectly adiabatic. Thus, it is necessary to under-
stand the nonadiabatic corrections that affect the movement
of the Majorana zero modes [27–32]. In this paper we ana-
lyze in detail the evolution of Majorana states in the model
considered in Ref. [12]. As discussed in Sec. II, we derive
an effective one-dimensional description of the edge states,
which allows us to analyze the behavior of the Majorana zero
modes in detail. Numerical results for a fixed orientation of the
magnetic field are shown in Sec. III. We then turn our attention
to the dynamical evolution of zero modes for a rotating field
as a function of frequency in Sec. IV. We concentrate on a
detailed analysis of the overlap between the final state and the
initial Majorana state in a one-cycle rotation. Through Floquet
analysis of the evolution operator [33,34], we find that, at the
transition point between the high-frequency sudden phase and
the low-frequency near-adiabatic phase, the quasienergy spec-
tral gap closes. It is shown that the approach to the adiabatic
limit is not uniform, but we find pronounced oscillations of the
zero-mode probability amplitude which can be described by a
frequency-independent tunneling in a corotating frame. This
oscillatory behavior is problematic, since it makes it harder
to control quasiparticle poisoning. In Sec. V we calculate
the oscillation frequency using perturbation theory. We gain
a better analytic understanding of the source of these prob-
lems. Furthermore, we identify field-rotation frequencies that
are best for high-fidelity braiding of Majorana zero modes.
Finally, we draw some conclusions in Sec. VI.

II. MODEL

We study a minimal, universal model for a time-reversal-
invariant two-dimensional p-wave TSC. This model occurs
in various contexts, one of which is the description of a
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thin slab of three-dimensional triplet time-reversal supercon-
ducting phase in a topological superconductor such as doped
Bi2Se3 [7–13]. In our work, following Ref. [12] we consider
this 2D topological superconductor system with a circular ge-
ometry, i.e., as a disk of radius R. Making the assumption that
the Fermi energy lies well inside the conduction band, we can
write the state of the system as a four-component wave func-
tion, �(r) = (�e

↓(r) �h
↑(r) −�h

↓(r) �e
↑(r))T , as shown

in Ref. [12]. Here the subscripts ↑ and ↓ label the spin of the
electron or hole, respectively. The superscripts “e” and “h”
denote the components in Nambu (particle-hole) space.

We can then express the Bogoliubov–de Gennes Hamilto-
nian in polar coordinates as

H (r) = ε̄F

(
1

k2
F r

∂

∂r
r

∂

∂r
+ 1

k2
F r2

∂2

∂θ2
− 1

)
τz ⊗ sz

+ ε̄F
√

2γ

kF

(
0 −eiθ

(
∂
∂r + i

r
∂
∂θ

)
e−iθ

(
∂
∂r − i

r
∂
∂θ

)
0

)
⊗ s0.

(1)

In this equation, the Pauli matrices τi act in Nambu space,
i.e., on the particle and hole components of the wave func-
tion, and si are the spin matrices. The parameters ε̄F is the
difference between the Fermi energy and band gap of the
original three-dimensional insulator (EG), while the Fermi
wave number kF = √

EGε̄F /(h̄vF ). Both the gap energy EG

and the Fermi velocity vF should be determined from exper-
imental data. The dimensionless parameter γ is defined by
the measured superconducting gap �exp and ε̄F as �2

exp/(2ε̄2
F )

[12]. Here, we select a gauge where the superconducting order
parameter is real. We use h̄ = 1 and work at zero temperature
throughout the rest of the paper. The TSC model (1) pos-
sesses time-reversal symmetry and particle-hole symmetry. A
detailed discussion of the symmetry operators, including the
time reversal T̂ and charge conjugation Ĉ, can be found in
Appendix A.

The spectrum of 2D px ± ipy superconductors is gapped,
but in finite systems there are in-gap edge states which are
protected by the topological properties of the bulk. In such
systems the topological phase of the bulk is characterized in
terms of the first Chern number, while its sign determines
the propagation direction (chirality) of edge states [6,12,35–
39]. In the time-reversal invariant system considered here,
the subspace with left-handed chirality has the Chern number
+1 and the other subspace has the Chern number −1. Edge
states are not only characterized by chirality, but also by their
total angular momentum, with the eigenvalues given by a half-
integer angular momentum quantum number j = 	 + 1/2 (	
is an integer). The total angular momentum operator for a
chiral superconductor is Lz = −i∂θ − τz/2 [12]; thus, we can
obtain the corresponding representation for a time-reversal-
symmetric superconductor by combining two copies of Lz:

Jz =
(

− i∂θ − τz

2

)
⊗ s0. (2)

When γ is small and R is large, the radial wave functions
of the low-energy edge states satisfying hard-wall boundary
conditions �(r = R, θ ) = 0 are approximately independent
of j.

In terms of a dimensionless radius and Fermi momentum,
ρ = r/R and λ = kF R, we can approximate the wave function
for λ � 1,

�±
j (ρ, θ ) ≈ f (ρ)√

4π
ei jθ

(
eiθ/2

∓e−iθ/2

)
⊗ |±〉, (3)

f (ρ) = − Ñ√
ρ

eλ sin ξρ sin [λ cos ξ (1 − ρ)], (4)

where we define the two-component spinors |〉+ = (1, 0)T

and |−〉 = (0, 1)T to correspond to the left-hand and the right-
hand chiral state, respectively. The function f (ρ) is the radial
component of the wave function, is independent of j, and is
normalized as ∫ 1

0
f 2(ρ)ρdρ = 1. (5)

Finally, the parameter ξ in Eq. (4) is defined as

ξ = arctan [
√

2γ /(1 − γ )]/2. (6)

The detailed derivation of the approximate wave function is
given in Appendix A. We can make a rough estimate of the pa-
rameters in the wave function, and we see that the radial wave
number is approximately kF and the radial decay length of the
wave function from the boundary to the interior of the disk
is kF sin ξ ≈ �exp/(2kF ε̄F ), which should be much smaller
than the disk’s radius R for this model to be valid. In fact, the
angular momentum of the edge states must be restricted to the
region | j| < λ

√
1 − γ /2. For larger j, such states lie outside

the superconducting gap, are embedded in the continuum, and
are, therefore, delocalized [12]. We have checked the validity
of this inequality in a tight-binding model, as discussed in
Appendix B. Note that, as shown in Refs. [12,40], scalar
disorder does not mix in-gap states.

In the limit of large R, the energy of �±
j (ρ, θ ) is [36]

E±
j = ∓ω0 j, (7)

where

ω0 = ε̄F

√
2γ

λ
= �exp

kF R
. (8)

That is to say, the energy of edge states is approximately
proportional to their angular momentum quantum number
j. In what follows, a chiral edge state with total-angular-
momentum quantum number j is denoted as | j, χ〉, where
χ = ± denotes the chirality, clockwise (+) and anticlockwise
(−), respectively. The two sets of chiral edge states sets are
denoted as χ+ and χ−, respectively. We define a chirality
operator X̂ with eigenvalues ±1, represented by

X = τ0 ⊗ sz, (9)

which satisfies X̂ | j, χ〉 = χ | j, χ〉. The edge-state energies
and symmetry transformations among these states are shown
schematically in Fig. 1.

Finally, Majorana zero modes are generated by breaking
time-reversal symmetry [12,17]. This can be achieved by ap-
plying an in-plane magnetic field, which turns the system
into a higher-order TSC [16,17]. The Zeeman Hamiltonian
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FIG. 1. Schematic representation of the energies and symmetry
transformations of edge states. The operator T̂ is the time-reversal
operation, while Ĉ is charge conjugation. T̂ connects a state to its
time-reversed partner, which has opposite angular momentum and
chirality, while Ĉ only reverses j, leaving chirality intact. The blue
points denote edge states belonging to the set J1, while yellow points
are members of set J2, both defined in Eq. (13).

describing the coupling to an external magnetic field is

HZ (φ) = EZ

(
0 eiφ

e−iφ 0

)
⊗ sx, (10)

where EZ = μeBZ is the Zeeman energy of the field, μe is the
magnetic moment of the electron, BZ is the field strength, and
φ is the angle of that field with the z axis. Note that we work in
the regime where the Zeeman field is weak so as not to spoil
the superconducting phase [41].

While the in-plane Zeeman field breaks the time-reversal
symmetry, the Hamiltonian still retains the particle-hole sym-
metry and invariance under the product of time reversal and
chirality:

{Ĥ + ĤZ , Ĉ} = 0, (11)

[Ĥ + ĤZ , T̂ X̂ ] = 0. (12)

Since the in-plane Zeeman field couples states of opposite
spin, it couples an edge state with angular momentum j and
chirality χ to the j ± 1 states with the opposite chirality
−χ . This coupling scheme leads to two uncoupled subspaces
spanned by two sets of edge states which are related by
angular-momentum inversion:

J1 = (| jmax,−〉, | jmax − 1,+〉, . . . , |− jmax + 1,−〉),

J2 = (|− jmax,−〉, |− jmax + 1,+〉, . . . , | jmax − 1,−〉).

(13)

Here | j| must be constrained to | j| < jmax = λ
√

1 − γ /2
[12].

Since the edge states are concentrated at the boundary,
a complete two-dimensional treatment is unnecessarily com-
plex: we would like to construct a one-dimensional effective
Hamiltonian that only involves said edge states. Note that
there is only one term in Eq. (3) dependent on j, which is
ei jθ . We can thus write the effective Hamiltonian ignoring the
radial part of the wave function, by considering only the angu-
lar part ei jθ |±〉/√2π . In this basis, the operator Jz defined in
Eq. (2) maps to pθ = −i∂θ . This reduces the two-dimensional

model on a disk to an effective one-dimensional model on a
ring. This is valid as long as the decay length of edge states
is much smaller than the radius of the disk. The reduced edge
Hamiltonian takes the form

Hedge(θ ; φ) = ω0[−pθσz − 2ε sin(θ − φ)σy]. (14)

In the above equation, ε = EZ/(2ω0) is the dimensionless
magnitude of the Zeeman field and this Zeeman term is a
Dirac mass term [39]. It is well known that a change of the
sign of this term can create domain-wall soliton states [42,43].

The reduced wave function can be written as

ψ (θ ) = (ψ+(θ ), ψ−(θ ))T
, (15)

which must obey the antiperiodic boundary condition because
the angular momentum quantum number j is half-integer.
The two components of this spinor correspond to the angular
functions for each of the two chiral blocks χ±.

In this effective model, the three basic symmetry operators
of the original 2D model, the chirality operator X̂ , the charge
conjugation Ĉ, and the time reversal T̂ are now represented
by the operators σz, K, and −iσyK, respectively. Here K is the
complex conjugation operator.

III. NUMERICAL AND EFFECTIVE
TIME-INDEPENDENT SOLUTIONS

We now analyze the effective Hamiltonian Hedge. For sim-
plicity, we divide it by the frequency ω0, and due to rotational
symmetry, we only consider φ = 0,

h(θ ) = Hedge(θ ; 0)/ω0. (16)

First of all, we expand the Hamiltonian in the eigenstates of
pθ . Using particle-hole symmetry, the solutions in the two
subspaces J1 and J2, Eq. (13), can be mapped onto each
other. Hence, we can focus our discussion on the subset J1

and we take jmax = 48 + 1/2 as a reasonable illustration. By
numerical matrix diagonalization, we find the full spectrum
of the effective edge Hamiltonian. We show the the energy
of the seven states nearest zero as a function of the scaled
Zeeman energy ε in Fig. 2(a) and compare the solution of
the effective edge Hamiltonian with a more complete solu-
tion using a tight-binding method (see Appendix B for more
details) in Figs. 2(b) and 2(c). In Figs. 2(a) and 2(b), we
can see that a zero mode appears as ε > 2. By analyzing the
results of the diagonalization of the reduced Hamiltonian in
the J1 subspace, we find that zero-energy states decay faster
than the best exponential fit ε0 ≈ 0.528 exp (−2.66ε), where
ε = 0.5EZ kF R/�exp. Thus, the energy splitting of zero modes
can be suppressed exponentially by increasing the radius R
and the Zeeman energy EZ = μeBZ [defined in Eq. (10)]. In
Figs. 2(b) and 2(c), we can see a good agreement between
the three methods. We should mention that when ε becomes
large the results of the numerical diagonalization and effective
methods slightly deviate from the tight-binding model since
it contains more states of the 2D bulk. But this deviation
is small up to ε = 5. In the inset in Fig. 2(b), we further
compare the tight-binding and the diagonalization results and
show that they exhibit the same exponential suppression of the
zero-mode energy to a value of 10−6 at ε = 3.5, dependent on
the lattice pacing in our tight-binding model.
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FIG. 2. (a)–(c) Low-energy eigenenergies of the edge space J1 [defined in Eq. (13)] under the influence of an in-plane magnetic field as
a function of the dimensionless Zeeman energy ε = EZ/(2ω0). Panel (a) shows the seven smallest eigenvalues of h(θ ) [defined in Eq. (16)],
obtained by a numerical diagonalization method within the J1 subspace. We can see that a zero mode can be identified when ε exceeds
2. In panels (b) and (c), we compare the ground-state and the first-excited-state energies, respectively, obtained by the numerical matrix
diagonalization (blue dashed line), tight-binding model (red line; for details see Appendix B) and the effective results [orange line; for details
see Eq. (27)]. We can see that the results of the three methods show excellent agreement in the region we focus on (ε > 1). In the insert in
panel (b), we further compare the tight-binding model and the diagonalization and show that they exhibit the same exponential suppression of
the zero-mode energy to a value of 10−6 at ε = 3.5, dependent on the lattice pacing in our tight-binding model. (d) The angular function ϕ(θ )
of the Majorana zero mode [defined in Eq. (21)] when ε = 5 obtained using a numerically exact diagonalization and the effective Hamiltonian.
We see that the effective expression is practically indistinguishable from the numerical result obtained by matrix diagonalization.

We write the θ representation of the two-component wave
function of the zero mode in the J1 subspace defined in
Eq. (13) as

ψ0(θ ) = (ψ+
0 (θ ), ψ−

0 (θ ))T . (17)

The general expansion of ψ0(θ ) is shown in Eq. (C3). The
zero mode in the other (J2) subspace has the wave function
ψ∗

0 (θ ). Using the symmetry operations in Eqs. (11) and (12),
we can prove that

T̂ X̂ψ0(θ ) = σxKψ0(θ ) = ψ0(θ ). (18)

We can thus superimpose the degenerate zero-energy states
and express the wave functions of the two Majorana zero
modes as

ψm
1 (θ ) = ψ0(θ ) + ψ∗

0 (θ )√
2

= ϕ(θ )
|+〉 + |−〉√

2
, (19)

ψm
2 (θ ) = − i[ψ0(θ ) − ψ∗

0 (θ )]√
2

= ϕ(θ − π )
|+〉 − |−〉√

2
,

(20)

where

ϕ(θ ) = ψ+
0 (θ ) + ψ−

0 (θ ) = 2Re{ψ+
0 (θ )}. (21)

We give the full expressions of the wave functions ψm
1 (θ ) and

ψm
2 (θ ), as well as their inter-relations, in Appendix C.

We show the angular function ϕ(θ ) calculated through
matrix diagonalization for the region θ ∈ [0, 4π ] in Fig. 2(d).
It is clear from that figure that the Majorana zero mode ψm

1 is
localized around the point θ = 0, and similarly ψm

2 is local-
ized around θ = π .

After analyzing the numerical results, we would like to
get an approximate analytical description for further analysis.
Due to the antiperiodic boundary conditions, we cannot ap-
proximate the Hamiltonian h(θ ) by linearizing the Dirac mass
term around the point it changes sign (θ = 0 or θ = π ) and
solve the two independent Dirac-Landau level spectra as in
Refs. [23,24]. The method used in Ref. [12] mixes the two
uncoupled sets and thus only describes half the spectrum.
To avoid these problems, we work in the j representation of
the edge Hamiltonian, but individually solve for a single set,
which we take to be J1. To achieve this goal, we first relabel
the angular momentum states as

|k; ±〉 = | j = 2k ∓ 1/2,±〉 (22)

to denote the basis in J1 with integer k, and then we make the
approximation that the low-energy wave functions vary slowly
in k, so that we can approximately treat k as continuous in this
region. Hence, we express the Hamiltonian in terms of k and
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derivatives with respect to k,

h(k) =
(−2k + 1/2 ε(e−∂k − 1)

ε(e∂k − 1) 2k + 1/2

)
. (23)

Note that h(θ ) defined in Eq. (16) differs from h(k) in the
Eq. (23); the latter is a continuous Fourier representation for
h(θ ) in the subspace J1 only. To solve most compactly for
the eigenstates of h(k), we first apply a unitary transformation
Q†h(k)Q to h(k), with

Q = 1√
2

(
e−∂k/4 −e−∂k/4

e∂k/4 e∂k/4

)
. (24)

This substantially simplifies the matrix structure of h(k), since
it sets the diagonal elements to 0. We then expand the result
to first order in the derivative ∂k to obtain an effective Hamil-
tonian. The latter can then be simply expressed in terms of
harmonic oscillator creation and annihilation operators, a† and
a associated with the variable k [44,45], as

heff(k) = Q†h(k)Q = 2
√

ε

(
0 a†

a 0

)
, (25)

a = k√
ε

+
√

ε

2
∂k . (26)

The spectrum of the effective Hamiltonian is [29]

εn = sign(n)
√

4ε|n|. (27)

This spectrum is the same as that of graphene, treated within
the massless-Dirac-fermion approximation, in a uniform mag-
netic field [46]. The eigenstates of h(k) are

ψn(k) ≈

⎧⎪⎨
⎪⎩

Qϕ0(k)|+〉, n = 0,

Q√
2

(
sign(n)ϕ|n|(k)

ϕ|n|−1(k)

)
, |n| � 1,

(28)

where

ϕn(k) = a†n

√
2nn!πε

e−k2/ε (29)

are the harmonic-oscillator eigenstates. By using the above
effective solutions, we can construct the approximate expres-
sion of ϕ(θ ) (see Appendix C). In Fig. 2(d), we see that the
effective expression ϕ(θ ) is extremely close to the matrix di-
agonalization result. We show more comparisons for different
values of ε > 2 in Fig. 8 in Appendix C.

IV. EVOLUTION OF MAJORANA ZERO MODES
FOR A 2π ROTATION

We now move to study the process of rotating Majorana
zero modes on a disk by calculating their dynamical evolution
in a uniformly rotating magnetic field. Hence, we focus on the
following time-dependent Schrödinger equation:

i
∂ψ (θ, t )

∂t
= Hedge(θ ; φ(t ))ψ (θ, t )

= ω0[−pθσz − 2ε sin (θ − ωt )σy]ψ (θ, t ), (30)

where Hedge(θ ; φ(t )) is defined in Eq. (14), and the angle
φ(t ) rotates uniformly with angular velocity ω. In this case

the evolution operator can be exactly solved as follows (for
further details see Appendix D):

U α (φ) = exp (−ipθφ) exp {−iφ[αh(θ ) − pθ ]}. (31)

Here the parameter α is defined as the ratio of spectral spac-
ing, Eq. (7), and the rotation frequency, ω0/ω, and h(θ ) is
defined in Eq. (16). This parameter controls the adiabaticity
of the evolution; the larger α is, the more adiabatic the motion
becomes, and α = 0 corresponds to the sudden approxima-
tion.

One of the ways to analyze the nature of the motion is
the overlap between the final state after a 2π rotation and
the initial state, which we assume is one of the zero modes.
More specifically, we define the overlap between the final state
and the initial zero mode ψ0 within the J1 subspace as A0 =
〈ψ0|Û α (2π )|ψ0〉. If we start from a Majorana zero mode, the
overlap between the final state and the initial Majorana zero
mode can be related to A0 as〈

ψm
1/2

∣∣Û α (2π )
∣∣ψm

1/2

〉 = Re{A0(α)}, (32)〈
ψm

1

∣∣Û α (2π )
∣∣ψm

2

〉 = Im{A0(α)}, (33)〈
ψm

2

∣∣Û α (2π )
∣∣ψm

1

〉 = −Im{A0(α)}. (34)

Since U α (φ) is generated by pθ and h(θ ), which do not couple
the two sets J1 and J2, we limit the calculation to J1. Here we
set ε = 5, jmax = 48 + 1/2. We show the resulting overlap
A0(α) in Fig. 3. For small α (ω0  ω), we see that Re{A0}
is very close to 1. This is due to the fact that the system
cannot respond quickly enough to the rapid rotation of the
magnetic field, so the state has not evolved when the magnetic
field comes back to its original value. In the α > 1 region
where ω < ω0, A0 converges to −1 gradually as α increases,
which corresponds to the π phase shift that always appears
for particles with half-integer angular momentum after an
adiabatic 2π rotation. Surprisingly, we can see mild oscilla-
tions of Re{A0} in the α > 1 region which reveal nonadiabatic
tunneling to excited states. We discuss this point further in the
next section.

Because of the drastic change in behavior of the overlap we
observe when moving from the high-frequency region to the
low-frequency region, we see that α = 1, where ω = ω0, is
a potential critical point. To understand this potential phase
transition of the overlap A0(α), we now resort to Floquet
analysis for the periodically driven topological superconduc-
tor and study the spectrum of the one-cycle evolution operator
[33,34,47]. The Floquet Hamiltonian can be defined through
the 2π rotation evolution operator U α (2π ) as

hα
F (θ ) = i

2π
ln U α (2π ) = αh(θ ) − pθ + 1

2
, (35)

where the factor 1/2 represents the minus sign introduced by
the left exponential in Eq. (31). We now diagonalize the Flo-
quet Hamiltonian and denote the eigenvalues (quasienergies)
as εα

n .
We calculate the Floquet spectrum through a numerical

matrix diagonalization within J1. To study the behavior of
the quasienergies near α = 1, we show several curves with
quasienergy close to 0 for α ranging from 0 to 1.2 in Fig. 3(b)
and also present the α dependence of ε0 in Fig. 3(c). As we
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FIG. 3. (a) The frequency-dependent overlap A0 between the
final state and the initial zero mode. (b) and (c) Quasienergy spectrum
of the evolution operator Û α (2π ) as α changes. There are two distin-
guishable dynamic regions: a high-frequency region (α < 1, ω > ω0)
and a low-frequency region (α > 1, ω < ω0). (b) The quasienergy
spectrum gap closes at α = 1. (c) A stable π mode is present for all
α exceeding 1.

increase α from 0, we see that the quasienergy gap closes
at α = 1 and that a new mode appears at fixed quasienergy
1/2, and thus phase π , in the quasienergy spectrum when α

exceeds 1. From the Floquet perspective, the collapse of the
quasienergy spectrum gives the critical point for the dynami-
cal phase transition related to the evolution of the zero modes.
The π -phase mode in the low-frequency region (large α)
provides the mechanism by which the zero mode obtains the
adiabatic π -phase shift for a 2π rotation. The transition point
at α = 1 gives the upper bound of the frequency by which
we can preserve the Majorana zero modes under rotation as
ω0/h̄ = �exp/(h̄kF R) [ω0 is defined in Eq. (8)].

By application of the angle translation operator exp ipθφ

to the wave function, which takes its argument θ to θ + φ, we
have

i
∂ψ[θ + φ(t ), t]

∂t
= ω

[
hα

F (θ ) − 1

2

]
ψ[θ + φ(t ), t]

= [−pθ (ωI + ω0σz )

− 2ω0ε sin θσy]ψ[θ + φ(t ), t]. (36)

This equation shows that the Hamiltonian in the comoving
frame is ω[hα

F (θ ) − 1
2 ]. Thus, the Floquet π mode of hF is

the zero mode of this Hamiltonian. For small ω, the solutions
to the domain-wall model contain soliton states made up of
two counterpropagating chiral states, with the soliton located
at the points where the Dirac mass term changes sign. How-
ever, when ω exceeds ω0, both left-hand and right-hand chiral
states propagate in the same direction and the domain-wall
bound state disappears. In fact, a similar dynamic model has
been used to describe moving domain-wall solitons in an
infinite line [29,32,42]. In Ref. [29], the authors studied the
exact spectrum of the boosted model through a global Lorentz
transformation in a flat metric. Unfortunately, the same global
transformation fails in our reduced 1D model with circular
geometry. Thus, we resort to a Floquet analysis. Note that our
analysis can be applied not only to intercalated Bi2Se3 but also
to generic Dirac-type models in a disk geometry.

V. NONADIABATIC CORRECTIONS TO TUNNELING IN
THE LOW-FREQUENCY REGION

In this section, we use second-order perturbation theory
[48,49] to interpret the frequency dependence of the oscilla-
tions of A0 in the low-frequency (large α) regime and show
that they can be related to nonadiabatic tunneling in the coro-
tating frame.

To approach this problem, we work in the k representation
as set out in Eqs. (23)–(31) and work in a comoving reference
frame, Eq. (36). As before, we simplify the algebra by trans-
forming the evolution operator by the operator Q, Eq. (24), so
that the result can be expressed in terms of harmonic oscilla-
tor creation and annihilation operators. Using time-dependent
perturbation theory, we expand the transformed evolution op-
erator to second order in 1/α and find

Q† exp −iφ[αh(k) − pθ (k)]Q

≈ Ũφ + i
∫ φ

0
dφ1Ũφ−φ1

√
ε(a + a†)Ũφ1

−
∫ φ

0
dφ1

∫ φ1

0
dφ2Ũφ−φ1ε(a + a†)Ũφ1−φ2 (a + a†)Ũφ2 ,

(37)

where

Ũφ = exp −iαφheff(k). (38)

Operating with the above effective evolution operator on the
initial zero mode ψ0, we have

exp −iφ[αh(θ ) − pθ ]ψ0 ≈
1∑

n=−1

an(φ)ψn, (39)

a0(φ) = 1 − sin 2(αε1φ/2)

2α2
, (40)

a1(φ) = 1 − e−iαε1φ

2
√

2α
= a∗

−1(φ). (41)

In the above equations, ε1 = √
4ε is the energy gap between

the zero mode and the lowest positive-energy state. Since
the transition probabilities obey |a0(φ)|2 ≈ 1 − (|a1(φ)|2 +
|a−1(φ)|2), the nonadiabatic tunneling in the low-frequency
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FIG. 4. A comparison between the exact diagonalization results
and the effective results for |A0| [see Eq. (42)] in the region α > 4.
The blue line is the effective result, while the orange dashed line is
the matrix diagonalization result. The insert shows the local max-
imums in the main figure, which are high-fidelity points with low
error.

regime mostly happens between ψ0 and ψ±1 as defined in
Eq. (28). Using the result, Eq. (39), we can obtain an effective
expression of the overlap A0 for a full one-cycle rotation,

A0 = −a0(2π ) = −1 + sin 2(αε1π )

2α2
. (42)

This equation accurately describes the behavior of the
frequency-dependent oscillation in the overlap A0(α). The
minus sign originates from the antiperiodic boundary condi-
tions on the wave function. We compare the results of a matrix
diagonalization and the effective theory in Fig. 4. We can see
that the results obtained with the two methods are very close.
In the inset of Fig. 4, we show the highest and lowest points
of the curve A0. The deviation between exact diagonalization
and effective results in Fig. 4 is about 0.1%. From Eq. (42),
we can see that the nonadiabatic error can be almost 0 when
the rotation period of magnetic field is an integer multiple of
the frequency-independent period 2π/(

√
4εω0).

This result can be understood as follows. In the corotating
frame, the time-dependent evolution is governed by Eq. (36).
The term −pθ in hF can make the initial zero mode tunnel
to other eigenstates of the equilibrium Hamiltonian. Also, the
transition amplitude between the initial zero mode and the
final state is equal to 1 − ω2 sin 2(

√
4εω0t/2)/(2ω2

0 ) and van-
ishes when the t is an integer multiple of the tunneling period,
i.e., in the perturbative and adiabatic regime (in the case with
ε = 5, the region starts at about α > 4), at frequencies

ων (�φ) =
√

4εω0�φ

2πν
, (43)

with ν an integer, the final state after one full rotation of the
magnetic field has an overlap of −1 with the initial state. For
a 2π rotation (�φ = 2π ), the integer ν should be larger than
18 within the regime α > 4. Since ν is large, the difference
of the two nearest-neighbor high-fidelity frequencies can be
approximated as ων (2π ) − ων+1(2π ) ≈ √

4εω0/ν
2.

VI. PARAMETER ESTIMATION AND CONCLUSIONS

In order to see how realistic our theoretical approach is,
we need to estimate the parameters of the model. From
Refs. [12,14,15,50–52], we estimate �exp = 0.6 meV and
kF = 0.1 Å−1. For a device size of R = 10 μm, we determine
the dimensionless parameters as λ = 104, γ = �2

exp/(2ε̄2
F ) =

4.5 × 10−6, and ωc = ω0/h̄ ≈ 91.2 MHz. To obtain a zero
mode, one needs ε > 2, which in turn implies that the in-plane
magnetic field should be larger than B0 = 4ω0/μe ≈ 4 mT.
For ε = 5 as used in the main text, the corresponding mag-
netic field is about 10 mT. In this case, when the rotation
frequency exceeds ωc = 91.2 MHz, Majorana π modes ap-
pear and the region where we can perform quasiadiabatic 2π

rotations is α > 4, corresponding to ω < ωc/4 ≈ 22.8 MHz.
Since the difference of the two nearest-neighbor high-fidelity
frequencies is about 407/ν2 MHz and ν is larger than 18, we
require the frequency width of the rotating magnetic field to
be smaller than 0.315 MHz.

In conclusion, we have made progress on two issues. First,
we show through a rigorous process how to reduce a 2D
Hamiltonian of a second-order p-wave superconductor with
disk geometry to a 1D Hamiltonian for edge space and build
an effective model to give the approximated analytical so-
lution, which improves on the results in Ref. [12] and also
allows us to study the evolution in detail. Second, we show
that the separation between diabatic and adiabatic motion
of rotating Majorana zero modes in the system exhibits an
interesting dynamical phase transition at α = 1. Beyond this
transition point, we have been able to give a detailed numer-
ical and analytical analysis of the approach to adiabaticity.
Thus, the effective matrix model studied here, with its simple
solution, could be of further interest.

We show that at a set of regularly spaced rotation fre-
quencies we have substantially higher fidelity; by choosing to
work at one of these optimal frequencies, one can dramatically
reduce quasiparticle poisoning and increase the robustness of
the translation of the Majorana states, and thus the manipu-
lation of quantum information in such a device. Our analysis
ignores other sources of errors such as those caused by disor-
der or fluctuations of the magnetic field, etc. These will be the
subject of future work.
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APPENDIX A: SYMMETRY AND WAVE
FUNCTION OF EDGE STATES

The complete expression for the left-hand chiral edge wave
function of a p-wave superconductor with a disk geometry
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is [12]

�+
j (ρ, θ ) = N je

i jθ

(
ei θ

2 f j (ρ)
e−i θ

2 g j (ρ)

)
⊗
(

1
0

)
, (A1)

f j (ρ) = Im{−
√

2γ κ−κ+Jj+1/2(λκ−)Jj+1/2(λκ+ρ)}, (A2)

g j (ρ) = Im
{
κ−(κ2

+ − 1 − Eκ )Jj+1/2(λκ−)Jj−1/2(λκ+ρ)
}
,

(A3)

κ± = (1 − γ ±
√

γ 2 − 2γ + E2
κ

) 1
2 , (A4)

Eκ =
√

(κ2 − 1)2 + 2γ κ2, (A5)

N j =
(

2π

∫ 1

0
ρdρ

[
f 2

j (ρ) + g2
j (ρ)

])− 1
2

. (A6)

The symmetries of the TSC are time reversal and charge
conjugation. The charge-conjugation transformation for the
real-space representation is implemented as

C = −τxK ⊗ sz, (A7)

where the minus sign in C is for later convenience; the spin
matrix −sz in C adds a minus sign to the χ− components in
the Nambu spinor. The time-reversal transformation takes the
form

T = iτyK ⊗ sx. (A8)

The particle-hole and time-reversal symmetries for the model
Hamiltonian without external field are expressed by the rela-
tions

{Ĉ, Ĥ} = 0, (A9)

[T̂ , Ĥ ] = 0, (A10)

where T̂ and Ĉ commute with each other.
Combining T and C, we can define the chiral operator S as

S = TC = τz ⊗ isy, (A11)

{Ŝ, Ĥ} = 0, (A12)

not to mention that the particle-hole symmetry is conserved
with the in-plane Zeeman term.

After applying the in-plane Zeeman field, we break the
time-reversal symmetry, and thus, we need to construct new
operators to characterize the symmetries of the total Hamilto-
nian. We define several additional operators as follows:

X = τ0 ⊗ sz, (A13)

O = T X, (A14)

� = SX = −τz ⊗ sx. (A15)

We then have

[Ô, Ĥ + ĤZ ] = 0, (A16)

{�̂, Ĥ + ĤZ} = 0. (A17)

If we denote the set of chiral edge states as | j, χ〉, satisfying

Ĵz| j, χ〉 = j| j, χ〉, (A18)

then j is a half-integral angular momentum and χ = ± is the
chirality. Under the T̂ , Ĉ, Ô, and �̂ transformations, these
eigenstates change as follows:

T̂ | j, χ〉 = χ | − j,−χ〉, (A19)

Ĉ| j, χ〉 = | − j, χ〉, (A20)

T̂ Ĉ| j, χ〉 = χ | j,−χ〉, (A21)

Ô| j, χ〉 = | − j,−χ〉, (A22)

�̂| j, χ〉 = | j,−χ〉. (A23)

Using Eq. (A20), we find an intertwining relation between
the radial functions f j (ρ) and g j (ρ),

N j f j (ρ) = −N− jg− j (ρ). (A24)

By applying the � transformation, Eq. (A15), we see that we
can decompose the right-handed partner for the wave function
(A1) as

�−
j (ρ, θ ) = ��+

j (ρ, θ )

= −τz ⊗ sxN je
i( j− 1

2 )θ

(
eiθ f j (ρ)

g j (ρ)

)
⊗
(

1
0

)

= N je
i jθ

(−ei θ
2 f j (ρ)

e−i θ
2 g j (ρ)

)
⊗
(

0
1

)
. (A25)

The validity of the reduction of the wave function is based
on large λ expansion to approximate f j (ρ) to the first order
in 1/λ. Using the asymptotic form of the Bessel function, we
have [53]

J	(z) ≈
√

2

πz
cos

(
z − 	π

2
− π

4

)

=
√

2

πz

1

2

[
ei(z− 	π

2 − π
4 ) + e−i(z− 	π

2 − π
4 )],

|z| � 	2 − 1

4
. (A26)

For large λ we have the following approximation:

κ+ ≈ cos ξ + i sin ξ, (A27)

ξ = 1

2
arctan

√
2γ

1 − γ
. (A28)

Since γ is small, we know that the real and imaginary parts
of κ+ are all positive. Thus, we neglect the exponentially
decaying part of J	(z):

J	(z) ≈
√

2

πz

e−i(z− 	π
2 − π

4 )

2
. (A29)
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FIG. 5. Radial wave functions for the chiral edge states �+
j . (a) Exact radial functions with the normalization factor N j f j (ρ ) for −31/2 <

j < 19/2. (b) Effective radial functions for the same parameters. We see that all radial wave functions are very close near ρ = 1, the boundary
of the disk, and are very well approximated by a single effective wave function.

Using all the approximations mentioned, we obtain the fol-
lowing asymptotic form of N j f j (ρ):

N j f j (ρ)≈ 1√
4π

f (ρ) = − Ñ√
4πρ

eλ sin ξρ sin [λ cos ξ (1 − ρ)],

(A30)

Ñ =
(∫ 1

0
dρ e2λ sin ξρ sin 2[λ cos ξ (1 − ρ)]

)− 1
2

. (A31)

In order to apply the asymptotic expansion, |λκρ| should be
very large. Taking λ � 1—in effect equivalent to using a
mesoscopic value for R for the small value of kF estimated
in Ref. [12]—and taking γ  1 are sufficient since ρ � 1 (by
definition, ρ = r/R) and κ ∼ 1 in the above setting. We show
the exact results for N j f j (ρ) in Fig. 5(a), and we see that these
are very similar to the approximate results shown in Fig. 5(b).
Thus, for a general eigenstate wave function, we can reduce
it as an unknown angular wave function times the fixed radial
one,

�(ρ, θ ) ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ψ+(θ )

⎛
⎜⎜⎜⎜⎝

ei θ
2√
2

− e−i θ
2√
2

0
0

⎞
⎟⎟⎟⎟⎠− ψ−(θ )

⎛
⎜⎜⎜⎜⎝

0
0

ei θ
2√
2

e−i θ
2√
2

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

f (ρ),

(A32)

where the angular functions ψ±(θ ) can be related to the coef-
ficient c±

j as

ψ+(θ ) = 1√
2π

∑
j

c+
j ei jθ , (A33)

ψ−(θ ) = 1√
2π

∑
j

c−
j ei jθ . (A34)

We can combine ψ±(θ ) as a spinor field in terms of θ , the
one-dimensional variable, as

ψ (θ ) =
(

ψ+(θ )
ψ−(θ )

)
. (A35)

Then the corresponding symmetry operators will be
reduced as

Ĉ → K, (A36)

T̂ → −iσyK, (A37)

X̂ → σz, (A38)

Ô → σxK, (A39)

�̂ → σx. (A40)

APPENDIX B: TIGHT-BINDING MODEL
CALCULATION

As an additional check for the continuum model used in
the main text, we use an effective tight-binding model in
this section. This is not based on the estimated experimental
parameters, but rather on the same dimensionless parameters
used in the main text, which correspond to a large effective
lattice constant to reduce the number of the lattice points of
the wave functions.

For simplicity, we work on a square lattice. First, we write
down the square-lattice Hamiltonian with left-hand chirality
(+1 bulk Chern number) without applying the in-plane mag-
netic field:

H+ = εIx ⊗ Iy ⊗ τz − u(m+ + m− + n+ + n−) ⊗ τz

+ i�[(m+ − m−)τy + (n+ − n−)τx], (B1)

m± =
∑

m

|m ± 1〉〈m|, n± =
∑

n

|n ± 1〉〈n|, (B2)

ε = 4u − 1, u = 1

(akF )2
, � =

√
2γ

2akF
. (B3)

Here a is the lattice constant, (m, n) denotes a lattice point
with coordinates (x = ma, y = na), and for convenience the
Hamiltonian is scaled by the energy factor ε̄F .
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FIG. 6. Numerical results of the tight-binding model. In panel (a) we show the energy levels of the left-hand chiral eigenstates and the
midgap left-hand edge states. The latter is shown in more detail in the inset, where we now label the states by angular momentum. We have
checked the relative deviation �c = |Eexact − Eeff|/|Eeff| in panel (b). We can see that �c is between 1% and 5%. We show the two components of
the wave function of the | j = 3/2, +〉 edge state in panel (c). These are either purely real or purely imaginary. We see that the nodal structures
in panel (c) are consistent with the analytical formula, Eq. (A1).

In our calculation, we use the following lattice parameters
for γ = 1/16:

ε = 15, a = 1, u = 1

k2
F

= 4,

� = 1√
8
, λ = kF R = 50. (B4)

We construct an approximate disk system with radius R =
100 and solve for the 200 states with the energy closest to
0—largely in-gap edge states. We show the related results in
Fig. 6. In Fig. 6(a), we can see that there is a clear set of in-gap
edge states between the bulk states. As we have discussed
in the main text, these edge states can be characterized by
the total angular momentum j. In the continuum model, we
find that the largest allowed angular momentum number | jmax|
is the half-integer below λ

√
1 − γ /2. For the case λ = 50,

| jmax| should be 48 + 1/2. In the tight-binding calculation, the
total number of edge states is about 91 and the corresponding
range of j is [−46 + 1/2, 46 + 1/2]. Additionally, we find
that the absolute values of the dimensionless energies of bulk
states start at 0.343 12, which is very close to the predicted
minimum

√
2γ − γ 2 ≈ 0.3480. We then compare the relative

error �c = |Eexact − Eeff|/|Eeff| between the numerical results
and the effective expression Eeff = ∓√

2γ j/λ in Fig. 6(b).
We find that this error is between 1% and 5%. Finally, we
show the wave function of a left-hand edge state with j = 3/2
in Fig. 6(c) to check the validity of Eq. (A1). Recalling that
expression, we see that �e

↓ is proportional to ei( j+1/2)θ , while
�h

↑ is proportional to ei( j−1/2)θ . The wave function we show
in Fig. 6(c) clearly has the right nodal structures along the θ

direction determined by j.

Based on H+ we can obtain the time-reversal partner block
of it and construct the TSC Hamiltonian with an in-plane
Zeeman field:

H(φ) = H+ ⊕ H− + HZ (φ), (B5)

H− = −iτyH∗
+iτy

= −εIx ⊗ Iy ⊗ τz + u(m+ + m− + n+ + n−) ⊗ τz

+ i�[(m+ − m−)τy + (n+ − n−)τx], (B6)

HZ (φ) = EZIx ⊗ Iy ⊗ [cos (φ)τx ⊗ sx − sin (φ)τy ⊗ sx].
(B7)

The components of the complete state are ordered as(∣∣�e
↓
〉 ∣∣�h

↑
〉 −∣∣�h

↓
〉 ∣∣�e

↑
〉)
. (B8)

In order to make a comparison between the tight-binding
model and the continuum model possible, we take ε =
5, which yields EZ = EZ/ε̄F = 2ε

√
2γ /λ = 1/(10

√
2). The

actual numerical magnitude of the eigenenergies for the ap-
proximate zero modes is about 10−8, which is so close to 0
that we can regard them as absolute zero modes. Also, the first
and second excited energies from the tight-binding method are
about 0.03 and 0.042, respectively, while the effective predic-
tion shows

√
2γ (4ε)/λ ≈ 0.0316 and

√
2γ (8ε)/λ ≈ 0.0447

derived from Eq. (25) in the main text. We show the energy
levels around zero energy in Fig. 7(a), where two zero modes
localize in the middle of the spectrum. For the square-lattice
tight-binding calculation with a limited number of lattice
points, the edge of the disk is not a perfect circle. Therefore,
we see the energy levels deviate slightly as φ increases in
the region φ ∈ [0, π/4] in Fig. 7(b). However, the deviation
is small enough for us to ignore.
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FIG. 7. Numerical results from the square-lattice model for the
topological superconductor under the influence of an in-plane Zee-
man field. (a) Low-energy spectrum of the square-lattice TSC under
the in-plane Zeeman field which is oriented in the x direction.
(b) Several eigenenergies for different orientational angles. (c) Prob-
ability density of the Majorana zero mode �m

1 . (d) Probability density
of the Majorana zero mode �m

2 .

Last, we draw the probability density of the two Majorana
zero modes when φ = 0 in Figs. 7(c) and 7(d). The probability
density is defined as

ρ(r) = ∣∣�e
↓(r)

∣∣2 + ∣∣�h
↓(r)

∣∣2 + ∣∣�e
↑(r)

∣∣2 + ∣∣�h
↑(r)

∣∣2. (B9)

APPENDIX C: ANGULAR WAVE FUNCTION OF
MAJORANA ZERO MODE

In this Appendix, we give the expressions of the angular
wave functions of the two Majorana zero modes. We can
expand the zero-mode wave functions in the two subspaces
J1 and J2 as

ψ0(θ ) =
∑

k

c+
2k− 1

2
ei(2k−1/2)θ |+〉 + c−

2k+ 1
2
ei(2k+1/2)θ |−〉,

(C1)

ψ∗
0 (θ ) =

∑
k

c+
2k− 1

2
e−i(2k−1/2)θ |+〉 + c−

2k+ 1
2
e−i(2k+1/2)θ |−〉,

(C2)

where k is an integer. Translating θ to θ + π , we see that they
obey the following relations:

ψ0(θ + π ) = iσzψ0(θ ), (C3)

ψ∗
0 (θ + π ) = −iσzψ

∗
0 (θ ). (C4)

According to the definition given in Eqs. (19) and (20) of the
Majorana zero modes, we have

ψm
1 (θ + π ) = −σzψ

m
2 (θ ), (C5)

ψm
2 (θ + π ) = σzψ

m
1 (θ ). (C6)

Applying Eq. (18), we can express them as

ψm
1 (θ ) = ψ+

0 (θ ) + ψ−
0 (θ )√

2

(
1
1

)

= 2Re{ψ+
0 (θ )}√
2

(
1
1

)

= ϕ(θ )
|+〉 + |−〉√

2
, (C7)

ψm
2 (θ ) = σzψ

m
1 (θ − π )

= ϕ(θ − π )
|+〉 − |−〉√

2
. (C8)

Note that ϕ(θ ) is an even function. We find that the one-
dimensional reduced wave functions of the two Majorana zero
modes can be expressed by Jacobi � functions [54]:

ψm
1 (θ ) = Nε�2

(
θ

2
, e− 1

4ε

) |+〉 + |−〉√
2

, (C9)

ψm
2 (θ ) = Nε�2

(
θ − π

2
, e− 1

4ε

) |+〉 − |−〉√
2

= Nε�1

(
θ

2
, e− 1

4ε

)−|+〉 + |−〉√
2

. (C10)

The � functions are defined as follows:

�1(z, q) =
∞∑

n=−∞
qn+ 1

2 ei(2n+1)z, (C11)

�2(z, q) =
∞∑

n=−∞
(−1)nqn+ 1

2 ei(2n+1)z. (C12)

Note that �1(z, q) is an odd function of z while
�2(z, q) is even. We have drawn several curves of ϕ(θ ) =
Nε�2(θ/2, e−1/(4ε) ) for the cases ε = 2, 3, 4, and 5 in Fig. 8.

When neglecting the boundary condition ψ (θ + 2π ) =
−ψ (θ ), we can linearize the Dirac mass term (∝ sin θ ) in
h(θ ) [defined in Eq. (16)]. This corresponds to placing one
Majorana zero mode around θ = 0 while placing the other one
at infinity. Then the Hamiltonian can be written as

h(θ ) ≈ −pθσz − 2εθσy

= 2
√

ε

[
i
ã†

2

(
1
1

)
(−1 1) − i

ã

2

(−1
1

)
(1 1)

]
, (C13)

where

pθ = i(ã† − ã)
√

ε (C14)

and

θ = ã† + ã

2
√

ε
. (C15)

The above equations define the operator ã as ã = √
εθ +

ipθ /(2
√

ε), which satisfies [ã, ã†] = 1. By applying this to the
general symmetric wave function ϕ(θ )(|+〉 + |−〉), we find a
zero energy state when ãϕ(θ ) = 0, and this gives the solution

ϕ(θ ) ∝ e−εθ2
. (C16)

Thus we see ϕ(θ ) is a Gaussian function with width 1/
√

2ε.
Hence, the ground state of the Hamiltonian (C13), i.e., the

085417-11



YANG, PRINCIPI, AND WALET PHYSICAL REVIEW B 105, 085417 (2022)

FIG. 8. The angular function ϕ(θ ) of the Majorana zero mode when ε = 2 (a), ε = 3 (b), and ε = 4 (c). We can see that the effective
results are close to the matrix diagonalization results for these cases. Note that the zero modes appear after ε exceeds 2.

Majorana zero mode, can be expressed as

ψm
1 (θ ) ∝ e−εθ2 |+〉 + |−〉√

2
. (C17)

The energies of the two Majorana modes are exactly 0 when
the two are far away from each other and do not have any
overlap. Using Eq. (C6), we can find that the second Majorana
zero mode is located around θ = π and has the form

ψm
2 (θ ) ∝ e−ε(θ−π )2 |+〉 − |−〉√

2
. (C18)

If we look at a system with both Majorana zero modes present
(at θ = 0 and θ = π ), the overlap between these two can
give a tunneling splitting, thus adding to the energy. Thus, to
suppress this splitting, the angular width of the two Majorana
should be small enough corresponding to large ε.

APPENDIX D: EVOLUTION OF THE
MAJORANA QUASIPARTICLE

1. Evolution of the Bogoliubov–de Gennes quasiparticle

The Heisenberg equation for the quasiparticle of our driven
TSC in the Fock representation is

dγ
†
BdG(t )

dt
= −i[Ĥsc(φ(t )), γ †

BdG(t )]. (D1)

The Hamiltonian Ĥsc(φ) is constructed by H(φ) in Eq. (B6):

Ĥsc(φ) = ε̄F

2
C†H(φ)C = 1

2
Hσ1σ2

r1r2τ1τ2
(φ)c−τ1

r1σ1
cτ2

r2σ2
, (D2)

cτ
rσ =

{
crσ , τ = 1.

c†
rσ , τ = −1.

(D3)

Using the PHS and the hermiticity, Hσ1σ2
r1r2−τ1−τ2

= Hσ1σ2∗
r1r2τ1τ2

=
Hσ2σ1

r2r1τ2τ1
, and the anticommutation relation of electrons op-

erators, {cτ
rσ , cτ ′

r′σ ′ } = δr,r′δσ,σ ′δ−τ,τ ′ , we obtain the following
equation:

i
∂〈r1, τ1, σ1|ψ (t )〉

∂t
= Hσ1σ2

r1r2τ1τ2
〈r2, τ2, σ2|ψ (t )〉, (D4)

i
∂|ψ (t )〉

∂t
= |r1, τ1, σ1〉Hσ1σ2

r1r2τ1τ2
〈r2, τ2, σ2|ψ (t )〉. (D5)

If we define

H = |r1, τ1, σ1〉Hσ1σ2
r1r2τ1τ2

〈r2, τ2, σ2|, (D6)

then we can have the time-dependent Schrodinger equation for
the quasiparticle wave function, which is equivalent to the
Heisenberg equation:

i
d|�(t )〉

dt
= H (φ(t ))|�(t )〉, (D7)

φ̇(t ) = ω(t ). (D8)

2. Derivation of the evolution operator in both approaches

To derive an analytical expression for the evolution opera-
tor, we first rewrite the Zeeman term as

HZ (φ) = EZG(φ)τx ⊗ sxG†(φ), (D9)

G(φ) =
(

eiφ/2 0
0 e−iφ/2

)
⊗ s0. (D10)

Remember that the Hamiltonian for the disk system in the
long-wave approximation can be written as

G†(φ)H (r, φ)G(φ) = H (r′, 0), (D11)

r′ = R2D(φ)r = r[cos (θ − φ), sin (θ − φ)]. (D12)

Here R2D(φ) is the operator that implements a two-
dimensional clockwise rotation over an angle φ. We now
apply the transformation G†(φ) (D10) to the wave function to
obtain the time-dependent equation in a comoving framework,

i
∂� ′(r′(r, t ), t )

∂t
=
[

H (r′, 0) − iG†(φ)
∂G(φ)

∂t

]
� ′(r′, t )

=
[

H (r′, 0) + ω(t )

2
τz ⊗ s0

]
� ′(r′, t ),

(D13)

and

� ′(r, θ − φ, t ) = G†(φ)�(r, θ, t ). (D14)

We see that

∂� ′(r′(r, t ), t )

∂t
= ∂� ′(r, θ, t )

∂t
− ω(t )

∂� ′(r, θ, t )

∂θ
, (D15)

i
∂� ′(r, θ ′, t )

∂t

=
[

H (r, θ ′, 0) + ω(t )

2
τz ⊗ s0 + iω(t )

∂

∂θ ′

]
� ′(r, θ ′, t ),

(D16)
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which can be summarized as

i
∂� ′(r, θ, t )

∂t
= [H (r, θ, 0) − ω(t )Jz(θ )]� ′(r, θ, t ). (D17)

In this equation, Jz(θ ) = (−i∂θ − 1
2τz ) ⊗ s0 [see Eq. (2)].

For a constant rotation frequency of ω(t ) = ω, the operator
H (r, θ, 0) − ωJz(θ ) on the right-hand side of Eq. (D17) is
independent of t ; so, we can directly integrate the equation and
obtain the evolution operator

U ′(r, t ) = exp {−it[H (r, θ, 0) − ωJz(θ )]}. (D18)

Thus, �(r, θ, t ) becomes

�(r, θ, t ) = G(φ)ψ ′(r, θ − φ, t )

= e−∂θ φG(φ)U ′(φ)�(r, θ, 0). (D19)

Therefore, the one-period evolution operator is

U2π (r) = exp

{
i2π

[
−αh(r) + Jz(θ ) − 1

2

]}
, (D20)

h(r) = λ√
2γ

H(r, φ = 0). (D21)

Using the decomposition in Eq. (A32), we can approximately
reduce this operator from 2D to 1D, and we see the one-period
evolution is described by the reduced Floquet Hamiltonian

hF = αh(θ ) − pθ (θ ) + 1
2 . (D22)

We can also derive the one-dimensional evolution operator
through the reduced equation

i
∂ψ (θ, t )

∂t
= ω0[−pθσz − 2ε sin (θ − ωt )σy]ψ (θ, t ). (D23)

After a unitary transformation exp (ipθφ) to translate θ →
θ + φ, we have

i
∂ψ ′(θ, φ)

∂φ
= [αh(θ ) − pθ ]ψ ′(θ, φ), (D24)

ψ ′(θ, φ) = exp (ipθφ)ψ (θ, φ). (D25)

This evolution equation is actually equivalent to Eq. (36)
in the main text. From this we can determine the evolution
operator as

U (φ) = exp

[
−i

(
pθ − 1

2

)
φ

]
exp [−iφhF (θ )], (D26)

hF (θ ) = αh(θ ) − pθ (θ ) + 1

2
. (D27)

[1] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das
Sarma, Non-Abelian anyons and topological quantum compu-
tation, Rev. Mod. Phys. 80, 1083 (2008).
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