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The hexagonal warping effect on transport properties and Goos-Hänchen (GH) lateral shift of electrons on
the surface of a topological insulator with a potential barrier is investigated theoretically. Due to the warped
Fermi surface for incident electron beams, we can expect two propagating transmitted beams corresponding to
the occurrence of double refraction. The transmitted beams have spin orientations locked to their momenta so
one of the spin directions rotates compared to the incident spin direction. Based on a low-energy Hamiltonian
near the Dirac point and considering Gaussian beams, we derive expressions for calculating lateral shifts in the
presence of warping effect. We study the dependence of transmission probabilities and GH shifts of transmitted
beams on system parameters in detail by giving an explanation for the appearance of large peaks in the lateral
shifts corresponding to their transmission peaks. It is shown that the separation between two transmitted beams
through their different GH shifts can be as large as a few micrometers, which is large enough to be observed
experimentally. Finally, we propose a method to measure the GH shift of electron beams based on the transverse
magnetic focusing technique in which, by tuning an applied magnetic field, a detectable resonant path for
electrons can be induced.
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I. INTRODUCTION

Topological insulators (TIs) are nonmagnetic insulators
with conducting surface states as a consequence of the non-
trivial topology of their bulk band structure, which in turn
results from strong spin-orbit interaction. The surface states
contain an odd number of spin-helical Dirac cones and are
protected against any disturbance that maintains time-reversal
symmetry [1–3]. In the vicinity of the Dirac point, the elec-
tron states can be well-described by massless Dirac equation,
whereas at energies far enough away from the Dirac point,
a distortion induced by surface spin-orbit coupling deforms
the Fermi surface into a hexagonal snowflake shape [4–6].
This effect, called hexagonal warping, has been confirmed
by angle-resolved photoemission spectroscopy [5]. Since the
surface states close to the Fermi level play a decisive role in
the electronic properties of two-dimensional (2D) materials,
the hexagonal warping can affect transport properties on the
surface of TIs. Therefore, the warping effect and also, topo-
logically, protection of surface states may lead to a variety of
interesting properties which are important from the viewpoint
of fundamental physics as well as device applications [7–18].

It is well-known that the totally reflected light beam from
a dielectric interface undergoes a lateral displacement from
the position predicted by the geometrical optics. The study
of this phenomenon, which is known as the Goos-Hänchen
(GH) shift [19], has been developed to partial reflections and
also transmitting configurations [20–23]. When an electron
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beam is incident on a boundary separating two regions of dif-
ferent densities, the reflected/transmitted beam undergoes a
GH shift similar to a light beam crossing a boundary between
materials with different optical indices. Accordingly, the GH
shift of electrons in condensed matter systems [24–28], es-
pecially in Dirac materials [29–46], has been extensively
studied.

The GH shift and transverse displacement, called the
Imbert-Fedorov (IF) shift, of a light beam on the surface of
some Dirac materials, such as graphene and Weyl semimetals,
have also been investigated [47,48]. The results showed that
the optical beam shifts provide a possible scheme for direct
measurement of the parameters in these materials [47,48].
Moreover, it was shown that the electronic IF shift can be
utilized to characterize Weyl semimetals [42]. On the other
hand, the results of electronic beam shifts (EBSs) suggest
a generation of nanoelectronic devices based on transition
metal dichalcogenides [36–38] and Weyl semimetals [42,43].
Therefore, the study of EBSs on TIs along with the ability
of measuring EBSs can potentially provide applications in
characterizing the parameters of TIs as well as the fabrication
of new TI-based nanodevices.

In this paper, we investigate the propagation of electrons
through a square potential barrier on the surface of a TI by
considering the hexagonal warping effect. We show that due
to the warped Fermi surface, an electron wave impinging onto
the barrier can have two transmitted waves, propagating with
different momenta and hence in different directions, much like
the double refraction of light in anisotropic crystals, demon-
strating another opticslike property of electrons. We derive
a formula for calculation of GH shifts of two transmitted
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beams in the presence of hexagonal warping. We show that
the beams can be separated spatially due to their different
GH shifts, while at the same time they have different spin
orientations due to their different momenta. However, due to
the difficulty in producing well-collimated electron beams, the
GH shift in electronic systems has not been measured so far
[49].

We present a proposal for experimentally measuring the
GH shift based on the transverse magnetic focusing (TMF)
technique in which, by applying a transverse magnetic field,
one can focus the motion of electrons/holes in the ballis-
tic regime [50–52]. The TMF has been used to study the
shape of Fermi surfaces [52], Andreev reflection [52,53],
spin-orbit interaction [54], the angle-resolved transmission
probability in graphene [55], and imaging electron trajectories
[53,56–58], as well as proposing a method for measuring
warping strength in TIs [16].

In this proposal, by applying a transverse magnetic field on
the incident region, the impact point and also incident angle
of electrons at the first interface are controlled, similar to the
experiment of Ref. [55] and also the proposal in Ref. [16]. The
variation of transverse magnetic field applied on the transmis-
sion region induces a resonant conduction path (measured as
a voltage peak) by which the entry point of electrons at the
second interface is determined, and hence the GH shift can be
measured.

The paper is organized as follows. We introduce our
model and formalism for obtaining transmission probability
in Sec. II, where the scattering wave functions in the presence
of warping effect and the transmission properties of incident
electron waves are discussed in detail. In Sec. III, we calculate
the GH shift of electron beams and the spatial beam separation
is investigated. In Sec. IV, we present our proposal for mea-
suring the electronic GH shift based on the TMF phenomenon.
We conclude our findings in Sec. V.

II. THEORETICAL MODEL AND DOUBLE REFRACTION

Surface states of TIs with a single Dirac cone are generally
described by the Hamiltonian (h̄ = 1),

H = υF k · (ẑ × σ ) + λ

2
(k3

+ + k3
−)σz, (1)

where k = (kx, ky) is the wave vector of the electron, σ is
the Pauli matrix vector, k± = kx ± iky, and ẑ is a unit vec-
tor normal to the surface. υF and λ are the Fermi velocity
and warping parameter, respectively. The linear term in k
being similar to that of graphene, with the exception that
σ represents the real spin of electron and cubic terms in
the Hamiltonian, are responsible for the hexagonal warp-
ing effect. This Hamiltonian, which neglects the multiorbital
structure of surface states, is considered as a minimal model
preserving given C3v symmetries [4,18]. Among different TIs,
Bi2Te3 is found to have strong warping effect with Fermi
velocity υF = 2.55 eV Å and the hexagonal warping param-
eter λ = 250 eV Å3 that we consider here in the calculations
[4,10]. The eigenvalues of Eq. (1) give the upper and lower
bands in k space as

E±(k) = ±
√

(υF k)2 + w2(k), (2)

FIG. 1. (a) The Dirac cone of fermions with Fermi energy EF =
1.6E0 on the surface of Bi2Te3 by including the hexagonal warping
effect. (b) The constant-energy contours of Dirac cone at different
energies measured from the Dirac point.

where w(k) = λkx(k2
x − 3k2

y ). We have depicted the Dirac
cone of fermions [Eq. (2)] and several constant energy con-
tours (CECs) in Figs. 1(a) and 1(b), respectively. The energy
of the CEC is expressed in terms of E0 =

√
υ3

F /λ, which
is the characteristic energy introduced by hexagonal warp-
ing. At E � E0, the warping effect is negligible and the
CEC exhibits a circular shape. As the energy exceeds the
critical value Ec =

√
7

6
3
4

E0 ≈ 0.69E0, the CEC deforms into a

hexagonal shape, with inflection points satisfying the relation
( ∂kx

∂ky
)E = ( ∂2kx

∂2ky
)E = 0. With further increasing E , the rounded

tips of the hexagon become sharper and the CEC exhibits a
snowflake shape. The eigenspinors of Hamiltonian Eq. (1) can
be written as

χ (k, E±)eik·r = 1

N±(k)

(±(E±(k) + w(k))
υF (ikx − ky)

)
eik·r, (3)

where N±(k) are the normalization coefficients and the sub-
script +(−) corresponds to the upper (lower) band in Eq. (2).
Note that the interaction between surface states and bulk states
can be ignored since the surface Dirac point on TIs such as
Bi2Te3 is closer to the bulk valence band than to the bulk
conduction band [5].

Now, we consider the propagation of electrons on the
surface of TI scattered by a potential barrier V (y) = V0 for
0 � y � d and V (y) = 0 elsewhere (see Fig. 2). Such a barrier
can be produced by a gate electrode deposited on top of the TI
surface. We note that the electron transport in the y direction
is coherent. Also, due to the translational invariance in the
x direction, kx is a good quantum number, and hence the
Fermi energy EF of the electron is conserved in the scatter-
ing process. In zero potential regions for given EF and kx,
equation E+(k) = EF is quartic in terms of ky and its roots
determine the y components of electron Fermi momentum. It
gives two real symmetric roots and two imaginary symmetric
roots in the case of EF < Ec, indicating that an incoming
electron wave with an arbitrary incident angle θ has one prop-
agating reflected wave and one propagating transmitted wave
[see Fig. 2(a)] as it is a normal case for most conventional
materials. For EF > Ec, the CEC has concave segments and
consequently, as shown in Fig. 2(b), there exists a critical
incident angle θc beyond which the equation E+(k) = EF has
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FIG. 2. Scattering processes when an incident electron is re-
flected and transmitted from the barrier with width d and height V0

as shown on top of (a) in the cases of (a), (b) single and (c) double
refractions. The insets show the CEC at (a) EF < Ec, (b) EF > Ec,
θ < θc, and (c) EF > Ec, θ > θc. The green (red) circles on CECs
indicate propagating electronlike (holelike) states. Also, the GH shift
�tr1 of beam 1 with the same momentum as that of the incident beam
and GH shift �tr2 of beam 2 with different momentums compared to
the incident beam are shown.

four symmetrical real roots. This means that for an incoming
electron wave, there exist two propagating reflected waves
(double reflection) and simultaneously two propagating trans-
mitted waves (double refraction) [see Fig. 2(c)]. When θ < θc,
similar to the case of EF < Ec, single refraction happens as
can be seen in Fig. 2(b). We should note that at θ > θc, the
Fermi momenta with bigger absolute values along the y axis
are parallel to their corresponding group velocities defined by
υy = ( ∂E

∂ky
)kx , therefore the corresponding states are electron-

like. In contrast, the Fermi momenta with smaller absolute
values are antiparallel to their corresponding group velocities,
indicating holelike propagating states. In the barrier region,
the roots of ky are obtained from the equation E+(k) + V0 =
EF depending on the amounts of EF ,V0, and incident angle
θ . They can be real, complex, or two real roots and two
imaginary roots.

To obtain transmission probability and for future purposes,
we write the generic scattering states for given EF ,V0, and

θ = arctan(| kx
ky,1

|) as

ψ (y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

χ (ky,1, EF )eiky,1y + r1χ (−ky,1, EF )e−iky,1y

+r2χ (ky,2, EF )eiky,2y, y � 0
∑4

n=1 anχ (k′
y,n, EF − V0)eik′

y,ny, 0 � y � d

t1χ (ky,1, EF )eiky,1(y−d )

+t2χ (−ky,2, EF )e−iky,2(y−d ), y � d ,

(4)

where χ (ky,1, EF ) is the incident state with Fermi momentum
ky,1, r1(r2) is the reflection amplitude corresponding to the
Fermi momentum −ky,1(ky,2), and t1(t2) is the transmission
amplitude corresponding to the Fermi momentum ky,1(−ky,2),
while an is the scattering amplitude corresponding to the mo-
mentum k′

y,n in the barrier region. As can be seen in Fig. 2,
at EF > Ec and θc < θ < π

3 (θ > π
3 ), ky,1 is a positive elec-

tronlike (negative holelike) momentum and ky,2 is a positive
holelike (negative electronlike) momentum, while for θ < θc,
ky,1 is a positive real root and ky,2 is a negative imaginary
root. In the case of EF < Ec, however, for every incident
angle θ , ky,1 is a positive real root and ky,2 is a negative
imaginary root.

The eigenvalue equation (H + V (y))ψ (y) = Eψ (y) corre-
sponding to the Hamiltonian Eq. (1) is a second-order partial
differential equation with respect to y due to the warping
effect. Therefore, by applying boundary conditions of conti-
nuity of ψ (y) and its first derivative with respect to y at the
two interfaces y = 0 and y = d , the reflection and transmis-
sion amplitudes, and also the scattering amplitude an can be
determined. The transmission probability which is defined as
the ratio of the y component of the probability current density
of the transmitted waves and that of the incident wave can
be expressed in terms of the transmission amplitudes and the
y component of the corresponding group velocities as T =
T1 + T2 = |t1|2 + υy (−ky,2,EF )

υy (ky,1,EF ) |t2|2 in the case of double refrac-

tion and T = T1 = |t1|2 in the case of single refraction [59,60].
In these relations, T denotes the total transmission probabil-
ity, while T1 (T2) represents the transmission probability of
the transmitted wave with the same (different) momentum as
(from) the incident wave momentum.

We have shown in Fig. 3 the contour plot of the trans-
mission probability as a function of incident angle and the
potential barrier height for two different Fermi energies EF <

Ec and EF > Ec. At EF < Ec, there is only one propagating
transmitted wave whose probability at the typical Fermi en-
ergy of 0.15 eV and the barrier width d = 500 Å is shown
in Fig. 3(a). As can be seen, there is a region with two
boundaries inside where the total internal reflection (TIR)
takes place. The boundaries represent the geometrical loca-
tions of a critical angle θTIR = θTIR(V0) such that when the
incident angle reaches θTIR, all four waves inside the barrier
region become evanescent. Therefore, at a sufficiently wide
barrier, TIR begins. To obtain an expression for θTIR, first
we consider equation E+(k) + V0 = EF which is quadratic in
terms of k2

y . By solving the discriminant of this equation, the
kx value corresponding to θTIR can be obtained. Replacing kx

in equation E+(k) = EF , we obtain the corresponding ky of
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FIG. 3. Calculated transmission probability T1 versus θ and V0

for incident electrons on a potential barrier of width d = 500 Å at
Fermi energy (a) EF = 0.15 eV < Ec and (b) EF = 0.3 eV > Ec.
(Ec � 0.18 eV).

θTIR, resulting in θTIR = arctan (kx/ky). The obtained analyti-
cal expression for θTIR is complicated. Therefore, we have not
presented the resulting expression here. Instead, we explain
below how θTIR occurs and behaves as a function of V0. At
EF = 0.15 eV and the typical value V0 = 0.05 eV, the CECs
in the incident and barrier regions are shown in Fig. 4(a).
The size of the CEC in the barrier region (determined by
|V0 − EF |) is smaller than the size of the CEC in the incident
region. The line kx = cte, corresponding to the incident angle
θ , represents the conservation of kx in the electron scattering
process. As shown in Fig. 4(a), at a small incident angle θ , the
line kx = cte intersects the CEC of the barrier region at two
points, representing two real wave numbers of propagating
electrons inside the barrier region. With increasing θ , the
corresponding line kx = cte moves upward until it touches the
CEC of the barrier region at a single point, indicating that
the incident angle θ reaches the critical angle θTIR. When θ

exceeds θTIR, the line of kx = cte can no longer intersect the

FIG. 4. (a) Solid curves represent CECs in the incident and
barrier regions for EF = 0.15 eV and |V0 − EF | = 0.1 eV. The black
(red) dashed line shows the conservation of transverse momentum kx

in the scattering process at incident angle θ (θTIR). (b) The CEC in
the incident region corresponds to EF = 0.3 eV. The value of V0 is
chosen such that the maximum of kx on the CEC of the barrier region
is bigger than the kx value on CEC of the incident region at θ = π/2,
i.e., θTIR > θc. Due to the warped CEC in the incident region, TIR is
confined in the interval of θTIR < θ < θ ′.

CEC of the barrier region, meaning that all k′
y,n are complex

and, consequently, TIR begins. With increasing V0, the size of
CEC in the barrier region decreases and hence the critical an-
gle becomes smaller. As V0 approaches EF , the critical angle
at which all k′

y,n become complex approaches zero. However,
due to the Klein tunneling effect (see discussion below) which
prohibits backscattering near the normal incident angle, TIR
cannot start at θ = 0◦ [see Fig. 3(a)] [61]. When V0 exceeds
EF , the size of CEC in the barrier region increases as well
as the critical angle, until |V0 − EF | reaches EF . From now
on, since the size of CEC in the barrier region becomes larger
than that of the CEC in the incident region, TIR does not form
at any incident angle.

As can be seen in Fig. 3(a), the barrier remains perfectly
transparent at incident angles close to the normal incidence
θ = 0◦, regardless of the amount of V0. This process is known
as Klein tunneling [62] and originates from spin conservation
[63], since nonmagnetic barriers cannot change the spin direc-
tion of incident electrons in a scattering process. On the other
hand, at almost normal incidence, the spin states of incident
wave and propagating reflected wave are orthogonal [this can
be easily deduced from Eq. (3)]. Therefore, backscattering is
forbidden and electrons can transmit perfectly. By increasing
θ , the spin states of incident and propagating reflected waves
are no longer orthogonal and hence the electron reflection
is allowed. Now we consider the case of oblique incidence.
When a wave impinges on the barrier at a given θ �= 0, a part
of wave transmits into the barrier and is multiply reflected
at the two interfaces y = 0 and y = d , therefore interference
happens. As V0 increases from zero, the size of CEC in the
barrier region changes, and hence, the acquired phase k′

yd
of propagating waves inside the barrier region will change,
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causing oscillations in transmission probability. Whenever
the waves interfere constructively, the Fabry-Pérot resonances
with T (θ �= 0) = 1 appears. As V0 reaches a value at which
the line kx = cte becomes tangent to the CEC of barrier region
[see Fig. 4(a)], the TIR begins. It continues until the line
kx = cte again becomes tangent to the CEC, but this time at
an amount of V0 > EF . With further increasing V0, oscillations
appear again in the transmission spectrum. Moreover, similar
to the Schrödinger-type electrons, when the potential height is
less than Fermi energy (corresponds to an n-n′-n junction),
the incident electrons generally pass through the potential
barrier with larger transmission probabilities, compared to the
case of V0 > EF (corresponds to an n-p-n junction). Also,
we should mention that for θ > 80◦ the group velocity of
electrons vy = ( ∂E

∂ky
)kx = −vx( ∂kx

∂ky
)E � 0 [see CEC in incident

region in Fig. 4(a)]. Therefore, the electron transmission be-
comes very small at V0 = 0. However, at some V0 values, T
can be considerably magnified due to the interference effect.
It is important to point out that for validity of the minimal
continuum model described by Hamiltonian Eq. (1), both EF

and |V0 − EF | must be considered less than 0.4 eV [5,10].
However, in Fig. 3(a), we terminate V0 at 0.4 eV as at larger
values no more features can be observed.

The CEC of zero-potential regions is warped at EF > Ec,
and hence two transmitted waves can propagate. The transmis-
sion probability T1 at EF = 0.3 eV and with the same barrier
width value as that in Fig. 3(a) is depicted in Fig. 3(b). First,
we consider a given V0 at which the size of the CEC in the
barrier region is small enough compared to the CEC of the
incident region. Similar to Fig. 4(a), as θ increases from zero,
the corresponding line kx = cte moves upward and, conse-
quently, the acquired phase k′

yd of propagating electron waves
inside the barrier region will change, resulting in oscillations
in T1 and also Fabry-Pérot resonances in the constructive
interference. When θ reaches θTIR, the line kx = cte touches
the CEC of the barrier region at a single point, that is, the
start of TIR. The TIR extends to π/2 because for θ > θTIR

the constant kx line can no longer intersect the CEC of the
barrier region. Now, we consider an amount of V0 at which
the size of CEC in the barrier region is close enough to the
CEC of incident region, so the maximum of kx in the barrier
region is larger than kx at θ = π/2 in the incident region [see
Fig. 4(b)]. In this case, when θ exceeds θTIR, the correspond-
ing constant kx line will start to intersect the CEC of the barrier
region one more time at an angle θ ′ > π/3. Therefore, the
TIR terminates at θ ′ and will not extend to π/2. This happens
at V0 < 0.03 eV and 0.57 eV < V0 < 0.6 eV in Fig. 3(b). At
almost normal incident angle, the Klein tunneling happens,
regardless of V0 value, similar to Fig. 3(a). However, at a
given oblique incident angle θ �= 0 when V0 varies outside the
TIR region, the size of CEC in the barrier region changes and
hence the acquired phase k′

yd of the propagating waves inside
the barrier region may also change, causing an oscillatory
behavior in T1, similar to the behavior of Fig. 3(a). Since
(∂kx/∂ky)E approaches zero as θ reaches 62◦ [see the CEC
in the incident region in Fig. 4(b)], vy and, consequently T1

are very small, independent of V0 values. On the other hand,
the transmission probability T2 (not shown here) is zero at
θ < θc = 54.7◦, while it has the same features as T1 at θ > θc,
regardless of V0 values.

FIG. 5. Calculated transmission probabilities (a) T1 and (b) T2

versus θ and d for incident electrons with Fermi energy EF = 0.3 eV
on a potential barrier of V0 = 0.7 eV.

The transmission probabilities T1 and T2 for the two trans-
mitted waves 1 and 2 as functions of incident angle θ and the
barrier width d , at EF = 0.3 eV and V0 = 0.7 eV are shown
in Figs. 5(a) and 5(b), respectively. Since |V0 − EF | > EF , the
TIR does not occur and for a given d value at almost normal
incident angle, the Klein tunneling with perfect transmission
probability for T1 happens, as shown in Fig. 5(a). As θ is
increased from zero, the acquired phase k′

yd of the propa-
gating waves inside the barrier region changes. This causes
oscillations in T1, emerging Fabry-Pérot resonances when
constructive interference takes place. If d varies at a fixed
oblique incident angle, the acquired phase k′

yd will change
so T1 again exhibits oscillations and Fabry-Pérot resonances
can emerge. Here, θc = 54.7◦ is the same as that in Fig. 3(b)
because θc depends only on EF . When θ exceeds θc, T2 in
Fig. 5(b) takes nonzero values and shows oscillations due to
the change of acquired phase k′

yd , with varying θ or d . In the
vicinity of θ = 62◦, both T1 and T2 are very small for the same
reason explained in Fig. 3(b).
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III. GOOS-HÄNCHEN SHIFT AND BEAM SPLITTING

The GH shift for a plane wave of electrons is not detectable
due to its infinite spatial width. Therefore, to calculate the
GH lateral shift, we consider a beam of electrons instead of
a plane wave. We model an incident electron beam by using a
Gaussian wave packet of surface states as

ψin(r) =
∫ +∞

−∞
dkx f (kx − kx0 )χ (ky,1 (kx ), EF )ei(kxx+ky,1 (kx )y),

(5)

where f (kx − kx0 ) = (
√

2π�kx )−1e−(kx−kx0 )2/2�2
kx shows the

Gaussian angular distribution of width �kx around cen-

tral incident angle θ0 = arctan(| kx0
ky,1

|). Analogously, the wave
functions of transmitted electron beams can be written as

ψtr1 (r) =
∫ +∞

−∞
dkx f (kx − kx0 )t1(kx )

×χ (ky,1 (kx ), EF )ei(kxx+ky,1 (kx )(y−d )) (6)

and

ψtr2 (r) =
∫ +∞

−∞
dkx f (kx − kx0 )t2(kx )

×χ (−ky,2 (kx ), EF )ei(kxx−ky,2 (kx )(y−d )). (7)

For the well-collimated electron beams, f (kx − kx0 ) is
sharp around kx0 such that the spinor components χ± =| χ± |
×eiϕ±

can be converted into an exponential form and approx-
imated by keeping the first two terms of the Taylor expansion
of its exponent around kx0 as

χ±(ky,1 (kx )) = exp[ln χ±(ky,1 (kx ))]

� χ±(ky,1 (kx0 )) exp{[ |χ̇
±(ky,1 (kx0 ))|

|χ±(ky,1 (kx0 ))|
+ iϕ̇±(ky,1 (kx0 ))](kx − kx0 )}, (8)

where ϕ̇±(ky,1 (kx0 ))(|χ̇±(ky,1 (kx0 ))|) denotes the derivative of
ϕ±(ky,1 (kx ))(|χ±(ky,1 (kx ))|) with respect to kx, evaluated at
kx = kx0 . Substituting Eq. (8) into Eq. (5), using the ap-
proximation ky,1 (kx ) � ky,1 (kx0 ) + k̇y,1 (kx0 )(kx − kx0 ) and then
evaluating the integral, we obtain the spatial form of the com-
ponents of the incident beam as

ψ±
in (r) = χ±(ky,1 (kx0 ))

× e−[x+ϕ̇±(ky,1 (kx0 ))+k̇y,1 (kx0 )y]2�2
kx

/2

× eγ ±2
/2�2

kx eiγ ±ϕ̇±(ky,1 (kx0 ))

× ei[(ky,1 (kx0 )+γ ± k̇y,1 (kx0 ))y+(kx0 +γ ± )x], (9)

where γ ± = �2
kx

|χ̇±(ky,1 (kx0 ))|
|χ±(ky,1 (kx0 ))| . As can be seen from the second

factor in Eq. (9), the incident beam has a Gaussian shape and
the peak location of its upper and lower components at the
interface y = 0 is given by x±

in = −ϕ̇±(ky,1 (kx0 )). Therefore,
the average location of incident beam at the interface y = 0
can be expressed as

x̄in = −ϕ̇+(ky,1 (kx0 ))|χ+(ky,1 (kx0 ))|2

− ϕ̇−(ky,1 (kx0 ))|χ−(ky,1 (kx0 ))|2. (10)

It is worth mentioning that the last factor in Eq. (9) shows
that the propagation direction of incident-beam components
deviates from the central angle θ0 by the amount of δ± ≈
tan δ± ≈ γ ±

ky,1 (kx0 ) . This deflection is due to the warping effect,

as in the absence of warping, |χ±| is constant and δ± = 0.
Moreover, the third factor in Eq. (9) reveals that the magnitude
of the incident beam is adjusted by warping as well.

By comparing Eqs. (6) and (7) with Eq. (5), we can write
an expression for the transmitted beam components, similar to
Eq. (9), by the substitutions χ± 
→ χ±t1(2), ϕ± 
→ ϕ± + ϕt1(2) ,
and |χ±| 
→ |χ±||t1(2)| in Eq. (9) where ϕt1(2) represents the
phase of transmission amplitude t1(2). Therefore, the trans-
mitted beams find also Gaussian shapes just like the incident
beam. The average locations of the transmitted beams at the
interface y = d read as

x̄tr1 = −ϕ̇+(ky,1 (kx0 ))|χ+(ky,1 (kx0 ))|2 − ϕ̇t1 (kx0 )

− ϕ̇−(ky,1 (kx0 ))|χ−(ky,1 (kx0 ))|2 (11)

and

x̄tr2 = −ϕ̇+(−ky,2 (kx0 ))|χ+(−ky,2 (kx0 ))|2 − ϕ̇t2 (kx0 )

− ϕ̇−(−ky,2 (kx0 ))|χ−(−ky,2 (kx0 ))|2. (12)

The GH lateral shift �tr is defined as the displacement of
the peak of transmitted beam at the interface y = d relative
to the peak of incident beam at the interface y = 0 [23] (see
Fig. 2) which is different from classical prediction of electron
optics, i.e., Snell’s shift d tan θ ′, where θ ′ is the refraction
angle. Therefore, the GH shift of the transmitted beam 1(2)
with the same (different) momentum as (from) that of the
incident beam can be obtained from Eqs. (10)– (12) as

�tr1 = −ϕ̇t1 (kx0 ) (13)

and

�tr2 = −ϕ̇t2 (kx0 ) − ϕ̇−( − ky,2 (kx0 ))|χ−( − ky,2 (kx0 ))|2

+ ϕ̇−(ky,1 (kx0 ))|χ−(ky,1 (kx0 ))|2. (14)

In deriving Eq. (14), we have used ϕ̇+(ky,1 (kx0 )) =
ϕ̇+(−ky,2 (kx0 )) = 0 because in the case of double refraction,
upper spinor components in zero potential regions are real.
The spatial splitting between the two beams will occur when
they have different GH shifts. In this case, the spatial separa-
tion between the two beams is given by δ�tr = �tr1 − �tr2 .

The electron spin orientation can be obtained from
Eq. (3) as s = 〈σ〉 = E−1

+ ( − υF ky, υF kx,w(k)), indicating
the spin-momentum locking of surface electrons in TIs,
due to the spin-orbit coupling. Consequently, the spin di-
rection of transmitted beam 2 is rotated relative to the spin
direction of both transmitted beam 1 and incident beam by
the amount of α = arccos(s1 · s2), where s1 and s2 are spin
orientations of transmitted beams 1 and 2, respectively.

Due to the warping term, �tr1(2) cannot be derived in
compact analytical expressions. Therefore, these quantities
are calculated numerically using Eqs. (13) and (14). Typical
results for GH shifts and the corresponding transmission prob-
abilities are shown in Figs. 6 and 7. The parameters are chosen
to avoid TIR and that two transmitted beams propagate.
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FIG. 6. (a), (b) Calculated transmission probabilities T1,2 (blue
curves) and the GH shifts �tr1,2 (red curves) in transmission as a
function of θ . (c) The spatial separation δ�tr (blue curve) and the
angle difference α (red curve) between spin orientation of transmitted
beams. The parameters are EF = 0.35 eV, V0 = 0.72 eV, and d =
490 Å.

Figures 6(a) and 6(b) show the transmission probabilities and
the corresponding GH values of the two transmitted beams
1 and 2 in terms of incident angle. Due to the interference
effect, T1,2 show an oscillatory behavior and some sharp max-
ima and minima appear for both transmitted beams. In fact,
by changing the incident angle, the acquired phase (k′

yd) of
every propagating wave along the barrier region varies, which

FIG. 7. (a), (b) Calculated transmission probabilities T1,2 (blue
curves) and the GH shifts �tr1,2 (red curves) in transmission as a
function of barrier width d . (c) The spatial separation δ�tr between
transmitted beams. The parameters are EF = 0.3 eV, V0 = 0.65 eV,
and θ = 59◦.

leads to the oscillation of transmission probabilities. The peak
positions of the two beams are almost the same. The corre-
sponding GH shifts (red lines) of the two beams exhibit some
strong peaks beside the usual ones with positive and negative
values. To explain qualitatively the behavior of lateral shifts
and the occurrence of their peaks, we rewrite the formula (13)
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and (14) [64] as

�tr =
d

dkx
tan ϕt

1 + tan2 ϕt
, (15)

where tan ϕt = Im[t (kx )]/Re[t (kx )]. We approximate
Re[t (kx )] and Im[t (kx )] around a given point kx0 by
retaining the first and second terms of their Taylor
expansion as Re[t (kx )] � aR + bR(kx − kx0 ) and Im[t (kx )] �
aI + bI (kx − kx0 ), where aR, bR, aI and bI are coefficients of
the expansions. By inserting these approximations in Eq. (15),
we obtain

�tr = aRbI − aI bR

|t (kx )|2 . (16)

Moreover, by approximating d
dkx

|t (kx )| � aRbR+aI bI
|t (kx )| , Eq. (16)

can be written as

�tr = aRbI − aI bR

(aRbR + aI bI )2
(

d

dkx
|t (kx )|)2. (17)

From Eqs. (16) and (17), the local properties of �tr in
the vicinity of a given point kx0 , and hence θ0 can be stud-
ied. According to Eq. (17), the absolute value of �tr at any
point depends on the absolute value of the slope of trans-
mission probability at that point. By approaching the sharp
maxima and minima points in the blue curves, the slope of
T1,2 rapidly finds very large values. Therefore, the absolute
values of the corresponding GH shifts near these points in
the red curves suddenly increase, creating sharp maxima and
minima. The sign of the GH shift is determined by the sign
of the numerator in Eq. (17). Some deep minima (not exactly
zero) for T1 and T2 appear in Figs. 6(a) and 6(b), especially
for T2, i.e., |t (kx )| ≈ 0. According to Eq. (16), the absolute
value of the corresponding lateral shifts at these points can
become large and, therefore, local maxima appear at these
points, as seen in red curves. Spatial separation between the
two beams and the angle between their spin orientations as
a function of incident angle are shown in Fig. 6(c) with blue
and red curves, respectively. One can see that at the given an-
gle window, δ�tr exhibits several pronounced positive peaks,
which make the observation of well-separated beams prac-
tically more feasible. Note that although at these points the
transmission probabilities are far from the perfect splitter case
with T1 = T2 = 0.5, these values are practically considerable.
As an example, for the incident angle θ = 76.3◦ at which the
obtained transmission probabilities for the two beams are 0.2
and 0.11 [see Figs. 6(a) and 6(b)], the spatial separation is
about 6.5μm, which is large enough to measure experimen-
tally. At this point, the angle between spin orientations of the
two beams is 77.8◦.

The transmission probabilities of the two transmitted
beams and the corresponding GH shifts in terms of barrier
width d are depicted in Figs. 7(a) and 7(b). By varying the
width of the barrier, the acquired phase, k′

yd , changes, and
hence, T1 and T2 oscillate by revealing several sharp maxima
and deep minima. We note that k′

y does not change at a fixed
incident angle. The behavior of GH shifts in Figs. 7(a) and
7(b), compared to their corresponding transmission probabil-
ities, are similar to the behavior of GH shifts in Fig. 6(a)
and 6(b), compared to their corresponding transmissions. That

means, near the sharp maxima of transmission probabilities
where their slope rapidly increases with d , the absolute of
the corresponding GH shifts increases as well. Also, near the
deep minima of transmission probabilities where |t (d )| ≈ 0,
the absolute of the corresponding lateral shifts can be large.
Such a similarity is explained as follows: The dependence
of transmission coefficients, and hence their phases on d , is
through the exponential functions eik′

y,nd , when the boundary
conditions of continuity of the wave function in Eq. (4) and its
derivative at the interface y = d are applied. Consequently, the
dependence of GH shifts on d should be through exponential
functions eik′

y,nd as well. On the other hand, the dependence
of transmission coefficients as well as GH shifts on kx(θ )
comes from eik′

y,nd and also from other terms which vary slowly
compared to the exponential functions. Therefore, when
d changes, the dependence of GH shift on the transmission
probability will be similar to the dependence of GH shift on
the transmission probability when kx or θ changes.

Spatial separation between the two electron beams as a
function of d is shown in Fig. 7(c). One can see that at
d ∼ 775 Å, the separation between the two beams is almost
10μm and the transmission probabilities of T1 and T2 are ∼0.5
and 0.2, respectively [see Figs. 7(a) and 7(b)]. Also, the abso-
lute value of δ�tr peaks between 720 Å and 800 Å exhibits a
considerable width, similar to T1 and T2. Moreover, the angle
between spin orientations of two beams is 59.1◦, which is
independent of d and can be obtained by the values of EF

and θ . Therefore, our findings reveal that TIs with hexagonal
warping effects can be utilized to design an electron beam
splitter with the ability of spatial separation as large as a
few micrometers with a high chance of observation of the
well-separated beams.

In this paper, we focused on a barrier with interfaces along
the x direction (�K direction in k space) which resulted in
double refraction and double GH shifts of electron beams.
If the barrier extends along the y direction (�M direction),
due to the highly anisotropic nature of hexagonally warped
Fermi surface, triple refraction [10,59] and consequently triple
GH shifts can emerge. The occurrence of double and triple
GH shifts in different directions can be a signature of a
hexagonally warped Fermi surface, while they do not occur
in other cases such as trigonally or tetragonally warped Fermi
surfaces. Also, observing gaps in the GH shift measurements
in terms of electron energy can indicate the existence of an
energy gap in the band structure of materials [38]. Never-
theless, determining whether the shape of the Fermi surface
can be identified with GH shift measurements requires more
research. It is worth mentioning that in Weyl semimetals, it
has been shown that the GH and IF shifts of a reflected beam
from a gapped medium can provide a probe of the topological
Fermi arc at the reflecting surface [46].

IV. A PROPOSAL FOR GH SHIFT MEASUREMENT

To the best of our knowledge, the GH shift in electronic
systems has not been experimentally measured yet due to
the smallness of GH shift values and the difficulty in pro-
ducing a well-collimated electron beam [49,65]. Although
the magnitude of the GH shift in total reflection from a
single-interface (step potential) is about a Fermi wavelength
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FIG. 8. Schematic view showing the procedure of GH shift mea-
surement. The cyclotron radius ri in incident region, fixed by both
transverse magnetic field Bi and the Fermi energy, determines the
incident angle θ and also the impact point of electron trajectory at
the interface y = 0. A varying transverse magnetic field Bt induces
a resonant path with a specific radius rt which determines the entry
point of electron at the interface y = d .

of the electron which impedes its direct measurement, it can
be enlarged by considering a system acting as a waveguide
which causes accumulation of shifts in multiple reflection of
electron beams from the waveguide boundaries [29,36,38,65].
Also, in the process of transmitting electrons through poten-
tial barrier/well, transmission resonances can occur which
enhance the GH shift value considerably [33,34,37,38,43,66].
Note that similar and other mechanisms for amplifying optical
GH shifts are considered in literature (see Refs. [67,68]). On
the other hand, to directly measure GH shift values, we need a
collimator to generate the collimated electron beam and then
detect the transmitted/reflected beam from the interface by lo-
cal gates. Although various proposals for electron collimation
in 2D materials [69–73] and surface states of TIs [14,72] are
suggested, a decent production of narrow and well-collimated
electron beams in such materials has not been attained yet
[55,74–76].

Despite the lack of efficient collimation, Chen et al. [55]
achieved a direct measurement of angle-dependent transmis-
sion probability based on TMF measurement scheme. They
applied a transverse magnetic field on electrostatically defined
n-n′ (p-n) junction on graphene and measured the transresis-
tance proportional to the transmission of electrons between
an injection electrode (at n side) and a collection electrode
(at n′ side), while sweeping magnetic field and gate voltage
of n′ side. In this way, they reached a map in which the first
and higher-order resonant peaks appeared. Moreover, using a
semiclassical Billiard model, they performed a simulation of
electron trajectories whose result was well-matched with that
of experimental data. As a result, they reverse-engineered the
first-order resonant transport by considering a trajectory for
electrons similar to the one that we consider in Fig. 8, which
clearly gives the peak positions observed in the experiment as
well as in the simulation.

Here, by applying a similar TMF measurement scheme, we
propose a procedure for electrons’ GH shift measurement on
the surface of a TI junction, as schematically shown in Fig. 8.
We consider a positive GH shift which mostly occur in the
n-n′-n case. Before explaining the procedure, we give a brief

discussion about survivability of surface states in the presence
of a transverse magnetic field. In a TMF phenomenon, it is
assumed that the motion of electrons is ballistic, following
the classical trajectories [50–52]. This is justified when the
electron mean free path le is larger than the width of the
device in the x direction as well as the separation between
the electrodes and interfaces (li and lt ). The length of le is
estimated 120 nm for surface electrons in Bi2Te3 [77]. When
the surface classical electrons are subjected to a transverse
magnetic field B, they follow circular cyclotron orbits with
radius r = EF /(evF B) given by Lorentz force, where e is
the charge of electron. If the system is treated quantum me-
chanically, these orbitals get quantized into Landau levels,
giving rise to chiral edge states. However, when the magnetic
field is not too high, the Landau levels undergo a collapse
transition and the edge states can be avoided [17,78]. To match
our procedure with the above-mentioned experiment [55], we
consider electrons with low Fermi energy in the incident and
transmission regions with a circular shape of energy contour
similar to that of graphene, which makes an accurate control
of electron trajectories in the presence of magnetic field [16].
In the barrier (n′) region, there is no magnetic field and the
warping effect can be remarkable for large enough V0 values.
Under a transverse magnetic field Bi, applied on incident
electrons injected from a narrow injection electrode, located
at the bottom of this region, the electrons undergo a cyclotron
motion with radius ri = EF

eυF Bi
. With some simple calculations,

the impact point of electrons and their incident angle at the
interface y = 0 can be determined as xi = √

li(2ri − li ) and
θ = arctan( ri−li

xi
), respectively, where li is the distance be-

tween the injection electrode and the interface (see Fig. 8).
Now we apply an independent transverse magnetic field Bt

on the transmission region. Bt bends the transmitted electrons’
path down the device into a cyclotron orbit. If the electrons
enter the collection electrode placed at the bottom of this
region, a peak in the transresistance between the injection
and collection electrodes (or corresponding voltage) will oc-
cur. Therefore, by tuning Bt in the experiment, it is possible
to obtain the amount of Bt and the corresponding radius
rt = EF

eυF Bt
for which a resonance in magnetic focusing takes

place. Having rt and knowing the angle of incoming electrons
(equal to the incident angle) into this region and the distance
lt between the collection electrode and the interface y = d ,
after some straightforward algebraic computations, one can
determine the position of the entry point of electrons at the
interface y = d as xt = rt cos θ +

√
r2

t − (lt − rt sin θ )2. Fi-
nally, the GH shift can be obtained by �tr = xt − xi.

It is important to note that there is a correspondence be-
tween the variables used in Chen et al.’s experiment [55] and
the variables in our proposal. In their experiment, the same
magnetic field B is applied to both incident and transmission
regions, and the magnetic field B as well as the gate voltage
of the transmission region are varied. Also, the angle of entry
of electrons into the transmission region (θ ′) is different from
the incident angle θ . Moreover, θ ′ is a function of θ according
to the Snell’s law sin θ ′ = ((EF − Vi )/(EF − Vt )) sin θ , where
Vi and Vt are the gate voltage of incident and transmission
regions, respectively. In our proposal, different magnetic fields
Bi and Bt are applied to the incident and transmission regions,
respectively. The gate voltage of the barrier region is fixed,
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while Bi and Bt are variable during the experiment. On the
other hand, the transmitted electrons enter the transmission
region with the same angle as the incident angle θ but with
a lateral shift �tr which is a function of the incident angle.
Because of such correspondences, we expect that the electrons
contributing in the transresistance peak to be those elec-
trons that leave the injection electrode vertically, just like the
Chen et al. experiment [55].

The above discussion can be presented in a general form
as follows. Consider the electrons that leave the injection
electrode with arbitrary injection angle β (with respect to
y axis) at a given Bi. The incident angle of these electrons
can be calculated as θ = arcsin(sin β − li/ri ). At a fixed Bt ,
due to the dependence of impact point of electrons on the
interface at y = 0 and also �tr to θ , the electrons reach the
edge of the device (y axis) in the transmission region at a
position that depends on their injection angle β. Calculating
the derivative of θ with respect to β, we obtain dθ/dβ =
cos β/

√
cos2 β + 2(li/ri ) sin β − l2

i /r2
i whose magnitude is

zero at β = π/2. This means that the electrons which leave
the injection electrode in the small vicinity of angle β = π/2
have the same incident angle θ , and hence the same lateral
shift �tr, resulting in the largest density of electrons at a
point on the edge of the device in the transmission region.
By sweeping the magnetic field Bt , rt is varied, so at a fixed
collection electrode position, a peak in transresistance belong-
ing to the electrons that leave the injection electrode vertically,
appears. By tuning Bt on larger amounts, the cyclotron radius
rt is reduced, so the electrons can reach the collection elec-
trode after one or more specular reflection from the interface
and/or the edge of the device, leading to the formation of the
next peaks [52].

Although the present proposal of GH shift measurement
was applied to the surface state of Bi2Te3 consisting of a
single nondegenerate Dirac cone, this approach can also be
utilized in 2D conventional systems such as graphene and
other single-layer hexagonal crystals. Nevertheless, in mate-
rials consisting of multivalleys, multirefraction can appear,

making the observation of the GH shift more complicated than
the present paper. Moreover, surface states of TIs are topolog-
ically protected against nonmagnetic perturbations compared
to the conventional surface states which are sensitively depen-
dent on the geometry of surface structure.

Since in most Dirac materials the GH shift is spin and/or
valley dependent, which originates from spin-orbit coupling
[36–38,40,66,79], the measurement of the GH shift can pro-
vide the possibility of fabrication of spin/valley devices based
on EBSs.

V. CONCLUSION

In summary, we studied theoretically the influence of a
hexagonal warping effect on the transport properties and
lateral shifts of electrons at the surface of a TI n-n′-n (n-p-n)
junction. It is shown that double refractions occur when the
Fermi energy and incident angle of electron beams exceed
their critical values. We establish an expression for calculating
GH shift values and show that a deflection of the propagation
direction of beams from their central propagation directions
appears due to the hexagonal warping effect. The dependence
of lateral shifts and the corresponding transmissions on sys-
tem parameters such as incident angle, height, and the width
of potential barrier are carefully examined. We show that
the system can produce two spatially separated beams with
different spin orientations as a result of the GH effect. There-
fore, our findings provide an alternative way to construct an
electron beam splitter on the basis of TI junctions. Using the
physics of TMF phenomenon, we also introduce a procedure
for experimentally measuring the GH shift of electron beams
in 2D electronic systems which may pave a new route in
spin/valleytronics.
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