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Thin films of topological nodal line semimetals as a candidate for efficient thermoelectric converters
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Thermoelectric materials have attracted significant interest owing to their wide range of applications, such as
power generators and refrigerators. Along with the evaluation of Bi2Te3 and its alloys, the search for materials
that show good thermoelectric performance has risen considerably. The efficiency of thermoelectric conversion
is quantified by the figure of merit, ZT , and ZT greater than unity has been considered as a target. For a
large ZT , acquiring a large Seebeck coefficient and a reduction of phonon thermal conductivity are significant
given its definition. In this work, we propose that a thin film of topological nodal line semimetals can be a
new and promising thermoelectric material. We also discuss the correlation effect and spin current induced by
the temperature gradient. The obtained results give various insights into the quest for the best thermoelectric
materials.
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I. INTRODUCTION

Exploring materials for efficient thermoelectric conver-
sion has been a central issue in achieving sustainable energy
solutions [1,2]. In particular, from a global environmental
perspective, there is an urgent pursuit of materials that can
efficiently generate electricity from waste heat. Driven by
increasing demand, much effort has been directed toward the
search for materials with a high figure of merit (ZT ) [see
Eq. (3)], and there have also been numerous theoretical stud-
ies discussing its physical limits [3–11]. Examples include
bismuth telluride alloys, which are widely used as a thermo-
electric device under 500 K and show ZT ∼ 1 at around room
temperature [12], and lead telluride alloys, for which high ZT
reaching ∼2.2 at 915 K is reported [13–15]. However, the use
of tellurium included in both materials has problems due to
its toxicity and rarity. Although many candidate materials that
show a large ZT have been found recently, with the exception
of tellurium [16,17], the discovery of other promising materi-
als is still highly anticipated.

One of the strategies for improving thermoelectric perfor-
mance is lowering dimension. Thin films of thermoelectric
materials offer a good platform to investigate in such a low-
dimensional effect [18–20]. To date, two mechanisms are
proposed for the enhancement of ZT in thin films. One is
to use the quantum size effect, which can lead to an in-
crease in the density of states (DOS) around Fermi energy
[21,22]. When the thickness of the film is comparable to the
effective de Broglie wavelength of electrons, their motion is
restricted in the two-dimensional plane, yielding a remarkable
change in the DOS. Theoretically, Mahan and Sofo proposed
that a sharp and large DOS leads to an improvement in the
Seebeck coefficient [23], and many experiments also sup-
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port this prediction [24–28]. For example, in high-quality
Pb1−xEuxTe/PbTe multiple quantum wells, the figure of merit
ZT > 1.2, several times larger than the bulk value [24]. A
recent study showed that ZT > 2.4 is expected in a high-
density two-dimensional electron gas confined in a unit-cell
layer thickness of SrTiO3 [27]. The second mechanism is
to use the phonon-blocking/electron-transmitting nature of
superlattices. To maximize the figure of merit, the phonon
thermal conductivity is largely suppressed because of the
acoustic mismatch between superlattice components. This ef-
fect is experimentally confirmed: ZT ∼ 2.4 at 300 K in p-type
Bi2Te3/Sb2Te3 superlattices [18].

In this paper, we propose that the aforementioned two key
factors to enhance ZT , i.e., the sharp DOS near the Fermi en-
ergy and reducing lattice contributions to the thermal current,
are simultaneously realized in topological semimetals.

Starting from the Weyl and Dirac semimetals, the interest
in topological semimetals has been extended to those with
line nodes, namely, topological nodal line semimetals (TNLS)
[29–37]. It is known that there are two types of explanations
for TNLS—the orbital basis and the spin basis. In the orbital
basis TNLS, the nodal line structure appears independent of
the spin degree of freedom, and we assume the spin-orbit cou-
pling is weak. Meanwhile, the spin basis TNLS has a strong
spin-orbit coupling, and thus the spin degree of freedom is
essential for the nodal line. The first material realization of
TNLS is ZrSiS and PbTaSe2, where ZrSiS is explained well
by the orbital basis and PbTaSe2 by the spin basis [34,36].
Thereafter, many materials, such as the Ca2As and Ag2S fam-
ily, have been examined (both are the orbital basis) [38,39].
A notable property of TNLS is that they possess drumhead
surface states. The nature of their dispersion is less dispersive
than those of the bulk bands and their two-dimensionality
yields a sharp and large DOS at the Fermi energy. Further-
more, it is expected that these surface states are robust against
disorder because they are topologically protected. Thus we
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FIG. 1. (a) Schematic of the tight-binding model on the primitive
tetragonal lattice for TNLS [42]. Yellow (green) spheres describe
the A(B) sublattice with s(pz) orbitals and four different types of
transfer integral are denoted by t1-t4. (b) Band dispersions of the
bulk Hamiltonian at kz = 0 with EA

0 = −EB
0 = −1.5, t1 = 0.5, t2 =

−0.5, t3 = 0.3, and t4 = −0.2. The nodal line is depicted by a black
solid line.

could reduce the phonon thermal conductivity while keeping
the electron contributions unchanged. We study the thermo-
electric transport properties of the thin films of TNLS to find
the large ZT of over 10. Moreover, we discuss the possibility
of surface magnetism and a spin current [40,41].

II. MODEL

We construct a simple tight-binding model on the primitive
tetragonal lattice as an example for the orbital basis TNLS.
Similar results of the large Seebeck coefficient will be ob-
tained in any TNLS. As schematically shown in Fig. 1(a), we
assume that each primitive cell hosts two sublattices A and B,
which possess s and pz orbitals, respectively, and four types
of transfer integrals t1-t4 are considered. The Hamiltonian is
given by

H =
∑

i,σ,α=A,B

Eα
0 cα†

iσ cα
iσ +

∑
〈i, j〉,σ

(
t1cA†

iσ cA
jσ + t2cB†

iσ cB
jσ + H.c.

)

+ t3
∑

〈i, j〉,σ

(
ηi jc

A†
iσ cB

jσ + H.c.
) + t4

∑
〈〈i, j〉〉,σ

(
cB†

iσ cB
jσ + H.c.

)
.

(1)

Here cα†
iσ (cα

iσ ) is a creation (annihilation) operator of elec-
trons of α sublattice with spin σ in the i-th unit cell; Eα

0 is
a one-body potential of each sublattice. Note that the spin
degree of freedom σ represents the real spin of electrons.
The sign factor ηi j = 1(−1) if the site i and j belongs to
the same (different) layer owing to a symmetry requirement.
Note that the transfer integral t4 is not necessary for describing
TNLS. This term is introduced to make each band dispersive
because, when t4 = 0, one of the bands becomes exactly flat
in the entire Brillouin zone. Hereafter we set EA

0 = −EB
0 =

−1.5, t1 = 0.5, t2 = −0.5, t3 = 0.3, and t4 = −0.2. Through-
out the remainder of this paper, the energy scales are in units
of eV.

In this tight-binding model, we can find the nodal line with
a spin degeneracy (e.g., Dirac nodal line) protected by the
time-reversal and inversion symmetry (see Appendix A). In
addition, the mirror plane existing on the x-y plane guarantees
the nodal loop on the kx-ky plane [Fig. 1(b)]. Therefore the
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FIG. 2. Band structures of a 10-layer film of TNLS for the type
I truncation along the high-symmetry points of the Brillouin zone.
The coordinates (kx, ky) are defined as � = (0, 0), M = (π, 0), M′ =
(0, π ), and X = (π, π ), respectively. The dashed lines describe the
position of the Fermi energy. The right panel shows the DOS, and
the red arrow indicates a sharp behavior supported by drumhead flat
surface states.

drumhead surface states are expected to appear on the (001)
surface. To discuss its effect on thermoelectric transport, we
consider thin films with two different types of truncations:
In type I truncation, the top surface is terminated by a sub-
lattice B layer and in type II by a sublattice A layer. The
bottom surface is terminated by a sublattice A layer for both
cases. Hereafter we focus on the type I truncation case and
the explanation for type II, which does not have the sur-
face states, is given in the Appendix B. Figure 2 shows the
band structure of a 10-layer film along the high-symmetry
points of the Brillouin zone and its DOS. We approximate the
DOS by the following formula: D(E ) = ∑

n,k δ(E − εn
k ) =∑

n,k lim	→0
	/π

(E−εn
k )2+	2 , where n is a band index and we set

	 = 0.01t1 in the numerical calculation. We find that drum-
head surface states are realized, whose flatness leads to a sharp
DOS near the Fermi energy. Note that the flatness of the drum-
head surface state is not guaranteed by the symmetry, and
significant bending of it will reduce the DOS. However, our
theories remain valid if the bending is not severe. The disper-
sion of the surface states is mainly determined by parameters
such as the one-body potential and the transfer integrals. In
the presence of the charge-neutral condition, the surface states
tend to appear near the Fermi level, so the feasibility of flat
surface bands is guaranteed to some extent. Additionally, we
believe that the flat surface state in real materials is plausible.
For instance, an analysis on a tight-binding model for a TNLS
Ca3P2 derived from ab initio DFT calculations indicated the
presence of a flat surface state and a sharp DOS peak associ-
ated with it [43].

III. LINEAR-RESPONSE THEORY

The linear responses of the electrical current Je and thermal
current JQ to the electric field E and temperature gradi-
ent ∇T are given as Je = L11E + L12(−∇T /T ) and JQ =
L21E + L22(−∇T /T ), where Li j are thermoelectric transport
coefficients. L11 is the electric conductivity σ . The Seebeck
coefficient S and the thermal conductivity κe due to electrons
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are represented as

S = L12

T L11
= L12

T σ
, κe = 1

T

(
L22 − L12L−1

11 L21
)
. (2)

The efficiency of thermoelectric energy converters is evalu-
ated by a dimensionless figure of merit:

ZT = S2σ

κ
T, (3)

where κ is the total thermal conductivity of contributions from
electrons κe and phonons κph. In the following, we consider
only κe, so that our ZT is the maximum (or most optimistic)
value. This assumption is justified by the following reasons.
It is well known that introducing impurities or defects sup-
presses the phonon propagation. In TNLS, the surface states
are expected to be robust against disorder unless they exist on
the surface or break the time-reversal symmetry because of
their topological nature. In principle, the disorder or impurity
breaks the inversion symmetry, which protects the surface
states. However, it does not matter as long as its effect is weak.
Meanwhile, if there exists much of an amount of disorders
on the surface, the surface states will be broken because the
wave function of the surface states is mainly composed of
surface atoms. Thus we consider a situation where the surface
is clean and there exist disorders or impurities in the bulk. In
this paper, we incorporate the effect of bulk disorders through
relaxation time τ . We anticipate that bulk disorders will have
a greater impact on the phonon transport relaxation time than
on electron transport relaxation time because the contribution
from surface electrons, which are unaffected by bulk disor-
ders, is dominant in electron transport while the contribution
from the bulk is dominant in phonon transport. Therefore if we
introduce a certain amount of nonmagnetic impurities in the
bulk and reduce the phonon propagation, we can reduce κph

while L12, because the surface states are unchanged. Although
the extent to which the introduction of impurities suppresses
the phonon thermal conductivity depends on the materials, ne-
glecting κph in ZT is reasonable because of the first theoretical
proposal. We will provide a brief quantitative estimation on
this matter later.

In the simplest approximation or constant relaxation time
approximation, the electric conductivity along the x direction
is given by

L11 = 4τe2

h̄2V

∑
n,k

∂εn
k

∂kx

∂εn
k

∂kx

[− f ′(εn
k

)]
, (4)

where n is a band index, τ is a relaxation time, e(<0) is the
electron charge, and f (ε) = 1/(e(ε−μ)/kBT + 1) is the Fermi
distribution function with chemical potential μ. In the thin
film case, the summation over k is in the two-dimensional
space (see Appendix C for the detailed derivation). To cal-
culate the thermoelectric transport coefficients, we use the
following relations derived from the Boltzmann equation
[44–47],

L12 = 4τe

h̄2V

∑
n,k

∂εn
k

∂kx

∂εn
k

∂kx

[ − f ′(εn
k

)](
εn

k − μ
)
,

L22 = 4τ

h̄2V

∑
n,k

∂εn
k

∂kx

∂εn
k

∂kx

[ − f ′(εn
k

)](
εn

k − μ
)2

. (5)
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FIG. 3. Chemical potential dependence of the thermal coeffi-
cients in the thin films of TNLS at around room temperature (kBT =
2.5 × 10−2). (a) Seebeck coefficient. (b) Figure of merit. Red, green,
and blue solid lines describe the result for 5-layer, 10-layer, and
20-layer films with the type I truncation, respectively. (Inset) Layer-
number (N
) dependence of S and ZT , where the chemical potential
is set at the Fermi energy.

The derivations are microscopically justified when we do not
take into account the phonon heat current originating from the
phonon drag and heat currents due to a long-range Coulomb
interaction or electron–phonon interactions [48–50] and when
the relaxation rate � = h̄/2τ is very small compared with εn

k .

IV. THERMOELECTRIC TRANSPORT
PROPERTIES OF TNLS

Figure 3(a) shows the chemical potential dependence of
the Seebeck coefficient with various thickness at around room
temperature, kBT = 2.5 × 10−2. The red, green, and blue
solid lines represent the result for 5-layer, 10-layer, and 20-
layer films with the type I truncation, respectively. A large
Seebeck coefficient is observed near the Fermi energy and it
becomes larger as the film gets thinner (see the inset, where N


is the number of layers). We note that the wave function is well
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localized at the top and bottom layers and the penetration into
the bulk is negligible; thus the “surface state” is well defined
even for the 5-layer film.

Figure 3(b) shows the corresponding ZT with κph being
neglected. We find giant ZT with more than 13 for the type
I 5-layer film, which is five times larger than Bi2Te3/Sb2Te3

superlattices. Note that the peak position is almost identical to
the Fermi energy of the half-filled system.

When μ = 0, the sharp DOS peak due to the drumhead
surface states is below the chemical potential so that the
sign of S is positive (holelike). As μ increases, S changes
its sign to negative (electronlike), which is probably due to
the DOS peak above the chemical potential. As shown in
Appendix B, in the type II truncation case where there is no
drumhead surface states, a similar behavior of S as a function
of μ is observed, but with small absolute values. This means
that the existence of the drumhead surface states strongly
enhances the absolute value of S and ZT .

The dependence on the number of layers N
 is shown in the
inset, where the chemical potential is set at the Fermi energy.
The Seebeck coefficient S [inset of Fig. 3(a)] monotonically
decreases, while ZT [inset of Fig. 3(b)] hits the maximum at
N
 = 5 and then decreases as the film thickens. The behavior
for N
 � 5 is approximated as S ∼ N−1


 and ZT ∼ N−2

 , re-

spectively. These results are roughly explained by the band
structures for each layer size. In thin films, the DOS peak
at around the Fermi energy is conspicuous compared with
the DOS peak in thick films because the DOS originating
from the bulk bands is not so large. This sharp DOS peak
contributes to the large Seebeck effect and to the giant figure
of merit. However, when the film is too thin, i.e., N
 < 5,
the finite-size gap becomes large and the surface states are
not distinguishable from the bulk bands, which leads to an
almost zero conductivity and a disappearance of the DOS
peak. Therefore ZT becomes small.

Here we provide a rough comparison to the real materials.
In ZrSiS hosting of a Dirac nodal line around the � point
in the Brillouin zone similar to our model, it is reported that
the phonon contribution to the thermal conductivity is almost
ten times larger than the electron contribution [51]. Thus the
obtained ZT would be a tenth of our results, i.e., at most
ZT ∼ 1. However, we will be able to improve this value to
some extent in the dirty limit. It should be noted that the
extent to which the impurities reduce the thermal conductivity
is unknown, and experimental confirmation is required.

V. SURFACE MAGNETISM AND SPIN CURRENT

Next we discuss the effect of electron correlation. Because
of the large DOS at the surface of the type I film, the Coulomb
interaction is strongly screened and an on-site Hubbard type
interaction, HU = ∑

i,α=A,B Uαnα
i↑nα

i↓ well describes the ef-

fects of correlation. Here nα
iσ = cα†

iσ cα
iσ is a number operator.

In this paper, we evaluate the effects of the Hubbard interac-
tion in an unrestricted Hartree–Fock approximation. Quantum
fluctuation, which is not taken into account here, is expected
to just reduce magnetic moments and not to change the results
qualitatively.

Starting from initial spin configurations with Néel and
ferromagnetic order, we solve the self-consistent equations for

(

(

(

(

SF-I SF-II'
SF-II

(a)

(b)

Seebeck
Thermal-spin
conductivity

FIG. 4. Effects of correlation on the film of TNLS. (a) Phase
diagram of 10-layer film of TNLS with type I truncation in the
U parameter space. SF denotes the SF order and NLS denotes the
nodal line semimetal phase. The magnetic structures for each phase
are shown in Appendix E. The horizontal axis is normalized by
the one-body potential E0. (b) Seebeck and thermal-spin conduc-
tivity. Orange (blue) solid line corresponds to the left (right) axis
and describes the results for the Seebeck coefficient (thermal-spin
conductivity).

the mean-field parameters 〈nα

σ 〉, with 
 being a layer index.

We determine the ground state by comparing the mean-field
energy 〈Hmf〉. Then we calculate the magnetization for each
layer to discuss the surface magnetism. For simplicity, we set
UA = UB = U . As shown in Fig. 4(a), we find five phases as
a function of U , including surface ferromagnetic (SF) orders.
Particularly in the SF-I phase, only the top surface at which
the drumhead surface states localize acquires the magnetic
polarization. The detailed magnetic structures for other phases
are given in Appendix E. Note that the ground state is obtained
from the initial state with Néel order for a full range of U .
The phase boundaries are determined by singular points of the
second differentiation of the mean-field energy ∂2〈Hmf〉/∂U 2.
We comment that a similar SF phase is found in the previous
study for the different TNLS model [40].

Considering that magnetically polarized electrons support
the spin current, we expect that the thermal-spin conductiv-
ity defined below is also enhanced in the SF phases. Note
that the relation Eq. (5) holds even in the presence of the
Hubbard interaction [49]. The spin current Js is defined
as

Js = 1

e
(J↑

e − J↓
e ) =

∑
k,σ

σ

(
∂εkσ

∂ h̄k

)
c†

kσ
ckσ . (6)
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As in the case of the ordinary Seebeck effect, applying a
condition that the electrical current is zero, we obtain

Js = 1

e

2(L↑
11L↓

12 − L↓
11L↑

12)

L↑
11 + L↓

11

∇T

T
≡ A∇T, (7)

where we call A the thermal-spin conductivity [41].
The ordinary Seebeck coefficient and A are shown in

Fig. 4(b). Note that the chemical potential is determined by
the half-filled condition for each U , and the absolute value
of A is proportional to τ , which is assumed to be 10−13 s
in Fig. 4. There is a drastic sign change of S at small U .
This is because the one-body potential energy becomes layer
dependent owing to Coulomb interaction, and thus the en-
ergy shift of the state occurs. As the system enters into an
SF phase, we find a finite thermal-spin conductivity and it
shows an oscillation while the system is in the SF phases.
The positions where the sign changes occur correspond to the
phase transition points. Although the ordinary Seebeck coeffi-
cient shows a similar characteristic behavior, the thermal-spin
conductivity is more sensitive to the change in magnetization.
However, contrary to our expectations, the thermal-spin con-
ductivity hits its maximum in the Néel phase and not in the
SF phase. This is because the difference in the magnetizations
in the A and B sublattices remains quite large in the region
3.0 � U/E0 � 4.0. Note that if the ferromagnetic phase were
stable at large U , the thermal-spin conductivity would be finite
only for the SF phases, as is the case for a one-dimensional
quantum wire [41]. Constructing such a situation and material
realization will be a future perspective.

VI. DISCUSSION AND SUMMARY

To summarize, we have shown that thin films of TNLS are
a promising candidate for thermoelectric converters. Unlike

the usual semiconductors, a peculiar DOS structure due to
the drumhead surface states results in nonvanishing and large
Seebeck coefficient at the Fermi energy. Because the surface
states are robust against disorders in the bulk, we can reduce
the phonon contribution to the thermal conductivity, which
leads to a giant ZT . In our setup, we have found ZT with
more than 13 for the type I 5-layer film. A remarkable point is
that we can easily tune the chemical potential by applying the
gate voltage in the film, and thus we can find the maximum
of ZT experimentally. We have also analyzed the correlation
effect and figured out a nonzero thermal-spin conductivity for
finite U . However, the way to enhance the same is a concern
that still needs to be addressed.

In real materials, Ag2S will be a good candidate for the
realization of the present theoretical prediction, where the
existence of almost flat drumhead surface states is reported
[39]. Thus we expect that a similar situation would be real-
ized in this material and a giant ZT would be obtained for
thin films.
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APPENDIX A: SYMMETRY OPERATORS

The momentum space Hamiltonian corresponding to
Eq. (1) is given by

Hk =
(

EA
0 + 2t1(cos kx + cos ky + cos kz ) 8it3 cos kx

2 cos ky

2 sin kz

2

−8it3 cos kx
2 cos ky

2 sin kz

2 EB
0 + 2t2 cos kz + 4t4 cos kz(cos kx + cos ky)

)
. (A1)

The inversion operator I and the mirror operator mz are repre-
sented by the z component of the Pauli matrix σz.

APPENDIX B: BAND STRUCTURES OF THE TYPE II FILM
AND THERMAL TRANSPORT PROPERTIES

This section describes the band structures for the type II
truncation case in TNLS films and examines their thermal
transport properties. The band structure for the type II case is
shown in Fig. 5(a). The projected bulk nodal line is a gapless
point, as in the type I case. However, in contrast with the
type I case, midgap surface states were not found. We can
explain this difference from the perspective of the topological
materials.

In our model, the band inversion at the � point oc-
curs between two bands with different parities so the
Z2 index [52,53] is calculated as (1; 111). This in-
dex represents a TNLS in a case where spin-orbit
coupling is negligible and a strong topological insulator in a

case where spin-orbit coupling is significant.. In TNLSs, the
Z2 index is directly related to the Zak phase. In this case, the
Zak phases at the surface � point and the surface X points
differ by π . This difference in the Zak phase corresponds to
the difference in the number of occupied bands at the � and
X points. A band localized at the surface [54] actually crosses
the Fermi energy near the gapless points. However, the Zak
phase does not guarantee that the band will be a “midgap” sur-
face state. The detailed energy of the band depends on the sur-
face parameters. In our thin film model, we use the same pa-
rameters as the bulk model, so the band is located at the upper
edge of the bulk occupied band spectrum in the type II case.

However, in realistic materials, the surface parameters may
change when the surface is made. Therefore the surface state
tends to appear as an isolated midgap state. For example, in
our model, the type II film does not have the same number
of A and B sites. In realistic materials, this corresponds to an
imbalance between donors and acceptors. This can change the
one-body potential of the A site on the surface, and the band
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FIG. 5. (a) Band structures of a 10-layer TNLS film with type II truncation along the high-symmetry points of the Brillouin zone. The
coordinates of the high-symmetry points are given in the caption of Fig. 2. The dashed line represents the Fermi energy. The right panel shows
the DOS. (b) Chemical potential dependence of the Seebeck coefficients S and ZT for the type II TNLS film. Red, green, and blue lines
represent the results for 5-, 10-, and 20-layer films, respectively.

localized on the surface at the X point (and M point) can shift
toward the Fermi energy. This is why drumhead surface states
in TNLSs have been experimentally observed and reported in
many previous studies, as explained in the main text.

The thermoelectric transport properties and figure of merit
(ZT ) for type II films with various thicknesses are shown in
Figs. 5(b) and 5(c). The temperature is set to approximately
room temperature, kBT = 2.5 × 10−2. In contrast with the
type I case, the absolute value of S and the layer dependence
are small, which results in a banal value of ZT . However, in
realistic materials, we can expect large values of S and ZT ,
even for the type II case, because of the surface reconstruction
described above.

APPENDIX C: DETAILED DERIVATION OF L11

In this section, we present a detailed derivation of L11.
The electric conductivity L11 under a uniform electric field
is obtained from the equation

L11 = �μν (ω) − �μν (0)

i(ω + iδ)

∣∣∣∣
ω→0

, (C1)

where �μν (ω) = �μν (iωλ)|iωλ→h̄ω+iδ . The quantities ω and
ωn are the frequency and Matsubara frequency, respectively,
and iωλ → h̄ω + iδ describes the analytic continuation. If the
vertex correction is negligible, then

�μν (iωλ) = 1

V

∫ β

0
dτ 〈Tτ ĵμ(τ ) ĵν (0)〉eiωλτ

= − 2e2kBT

h̄2V

∑
n,k

∂εk

∂kμ

G(k, iεn − iωλ)
∂εk

∂kν

G(k, iεn),

(C2)

where the thermal Green’s function within a constant relax-
ation time approximation is

G(k, iεn) = 1

iεn − εk + μ + ih̄
2τ

sgn(εn)
. (C3)

Taking the Matsubara summation using a residue in-
tegral and analytical continuation iωλ → h̄ω + iδ, we
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obtain

�μν (ω) = 2e2

h̄2V

∑
k

∂εk

∂kμ

∂εk

∂kν

∫ ∞

−∞

dε

2π i
f (ε)

× [GR(k, ε)GR(k, ε+) − GA(k, ε)GR(k, ε+)

+ GA(k, ε−)GR(k, ε) − GA(k, ε−)GA(k, ε)].

(C4)

Here, GA(k, ε) = GR∗(k, ε) and ε± = ε ± h̄ω. Therefore

L11 = 1

iω

2e2

h̄2V

∑
k

∂εk

∂kμ

∂εk

∂kν

∫ ∞

−∞

dε

2π i
f (ε)(h̄ω)

×
[

(GR − GA)
∂

∂ε
(GR − GA)

]

= 2e2

π h̄V

∑
k

∂εk

∂kμ

∂εk

∂kν

∫ ∞

−∞
dε

(
−∂ f

∂ε

)
[ImGR(k, ε)]2.

(C5)

Inserting GR(k, ε) = 1/(ε − εk + ih̄/2τ ) and executing a
residue integral finally gives

L11 = 4τe2

h̄2V

∑
k

∂εk

∂kμ

∂εk

∂kν

(− f ′(εk)). (C6)

APPENDIX D: MEAN-FIELD APPROXIMATION

In the mean-field approximation, the Hubbard interaction
is decoupled into

HU ∼
∑

i,α=A,B

Uα

(〈
nα

i↑
〉
nα

i↓ + nα
i↑

〈
nα

i↓
〉 − 〈

nα
i↑

〉〈
nα

i↓
〉)
. (D1)

When we ignore particle number deviations within the same
layer, the mean-field parameters are the layer, sublattice, and
spin indices. Then, the values of the 4N
 parameters are deter-
mined by a self-consistent calculation, where N
 is the number
of layers, and we set N
 = 10.

Once the self-consistent equations are solved, we can de-
fine the magnetization for each layer and sublattice as

Mα

 = 〈

nα

↑

〉 − 〈
nα


↓
〉
, (D2)

where 
 is the index of the layer. Moreover, the full
Hamiltonian can be divided into

H = H↑ ⊕ H↓. (D3)

Then, the thermoelectric transport coefficients Lσ
i j are calcu-

lated using the energy spectrum of Hσ .

(a) (b)

FIG. 6. (a) Correlation U dependence of the surface and bulk
magnetization. The blue solid (dashed) line describes the result for
the sublattice A layer at the surface (bulk), and the orange lines
describe the corresponding results for the sublattice B layer. Here
we adopt 
 = 10 as the surface layer and 
 = 5 as the bulk layer.
The inset shows an extended view around the phase transition points,
and the phase boundaries are also presented. (b) Magnetization of
each layer. Top: SF-I phase (U/E0 = 2.47). Bottom: SF-II phase
(U/E0 = 2.67). The black squares (red circles) show the magneti-
zation of sublattice A (B).

APPENDIX E: MAGNETIC STRUCTURES FOR THE FIVE
PHASES IN A TNLS FILM WITH CORRELATIONS

Figure 6(a) shows the correlation dependence of the sur-
face and bulk magnetization. When U is small, the system
remains in the nodal line semimetal state, and does not exhibit
finite magnetization. Subsequently, it enters into a SF phase,
which we call the SF-I phase at U/E0 = 2.38. In this phase,
the magnetization of one side of the surface increases, and
that of the other layers remains small [see the top panel of
Fig. 6(b)]. It should be noted that the wave function of the
drumhead surface states localize at the B sublattice of the 
 =
10 layer, which indicates that only the drumhead surface states
are magnetically polarized. Then, we encounter two phase
transitions at U/E0 = 2.56, 2.59. Although the differences in
the features of these two phases, which we name SF-II’ and
SF-II, respectively, are unclear, we find that the magnetization
of both sides of the surface is more conspicuous than that of
the bulk in the SF-II phase [see the bottom panel of Fig. 6(b)].
As U increases, not only the surface magnetization but also
the bulk magnetization grows, and the system enters into the
Néel ordered phase at U/E0 = 2.87. We note that even in this
Néel ordered phase, the amplitude of magnetization for each
layer is not uniform and a similar property of deviation to
the SF phases remains, but the difference between the surface
magnetization and the bulk magnetization is reduced.

[1] G. Chen, M. S. Dresselhaus, G. Dresselhaus, J.-P. Fleurial, and
T. Caillat, Recent developments in thermoelectric materials,
Int. Mater. Rev. 48, 45 (2003).

[2] J. He and T. M. Tritt, Advances in thermoelectric materials
research: Looking back and moving forward, Science 357, 6358
(2017).

085406-7

https://doi.org/10.1179/095066003225010182
https://doi.org/10.1126/science.aak9997


HOSOI, TATEISHI, MATSUURA, AND OGATA PHYSICAL REVIEW B 105, 085406 (2022)

[3] G. A. Slack and V. G. Tsoukala, Some properties of semicon-
ducting IrSb3, J. Appl. Phys. 76, 1665 (1994).

[4] B. C. Sales, D. Mandrus, and R. K. Williams, Filled Skut-
terudite antimonides: A new class of thermoelectric materials,
Science 272, 1325 (1996).

[5] D. Mandrus, B. C. Sales, V. Keppens, B. C. Chakoumakos, P.
Dai, L. A. Boatner, R. K. Williams, J. R. Thompson, T. W.
Darling, A. Migliori et al., Filled skutterudite antimonides:
Validation of the electron-crystal phonon-glass approach to new
thermoelectric materials, MRS Proc. 478, 199 (1997).

[6] D.-Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C.
Kannewurf, M. Bastea, C. Uher, and M. G. Kanatzidis,
CsBi4Te6: A high-performance thermoelectric material for low-
temperature applications, Science 287, 1024 (2000).

[7] K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher,
T. Hogan, E. K. Polychroniadis, and M. G. Kanatzidis, Cubic
AgPbmSbTe2+m: Bulk thermoelectric materials with high figure
of merit, Science 303, 818 (2004).

[8] G. Tan, F. Shi, S. Hao, L.-D. Zhao, H. Chi, X. Zhang, C.
Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis,
Non-equilibrium processing leads to record high thermoelectric
figure of merit in PbTe/SrTe, Nat. Commun. 7, 12167 (2016).

[9] L. D. Hicks and M. S. Dresselhaus, Effect of quantum-well
structures on the thermoelectric figure of merit, Phys. Rev. B
47, 12727 (1993).

[10] L. D. Hicks and M. S. Dresselhaus, Thermoelectric figure of
merit of a one-dimensional conductor, Phys. Rev. B 47, 16631
(1993).

[11] D. Bayerl and E. Kioupakis, Theoretical limits of thermoelectric
figure of merit in n-type TiO2 polymorphs, Phys. Rev. B 91,
165104 (2015).

[12] H. J. Goldsmid, Bismuth telluride and Its alloys as materials for
thermoelectric generation, Materials 7, 2577 (2014).

[13] Y. Pei, A. LaLonde, S. Iwanaga, and G. Jeffrey Snyder, High
thermoelectric figure of merit in heavy hole dominated PbTe,
Energy Environ. Sci. 4, 2085 (2011).

[14] Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G. J. Snyder,
Convergence of electronic bands for high performance bulk
thermoelectrics, Nature (London) 473, 66 (2011).

[15] K. Biswas, J. He, I. D. Blum, C.-I. Wu, T. P. Hogan,
D. N. Seidman, V. P. Dravid, and M. G. Kanatzidis, High-
performance bulk thermoelectrics with all-scale hierarchical
architectures, Nature (London) 489, 414 (2012).

[16] B. Hinterleitner, I. Knapp, M. Poneder, Y. Shi, H. Müller,
G. Eguchi, C. Eisenmenger-Sittner, M. Stöger-Pollach, Y.
Kakefuda, N. Kawamoto, Q. Guo, T. Baba, T. Mori, S. Ullah,
X.-Q. Chen, and E. Bauer, Thermoelectric performance of a
metastable thin-film Heusler alloy, Nature (London) 576, 85
(2019).

[17] D. Byeon, R. Sobota, K. Delime-Codrin, S. Choi, K. Hirata,
M. Adachi, M. Kiyama, T. Matsuura, Y. Yamamoto, M.
Matsunami, and T. Takeuchi, Discovery of colossal Seebeck
effect in metallic Cu2Se, Nat. Commun. 10, 72 (2019).

[18] R. Venkatasubramanian, E. Siivola, T. Colpitts, and B.
O’Quinn, Thin-film thermoelectric devices with high room-
temperature figures of merit, Nature (London) 413, 597
(2001).

[19] T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge,
Quantum dot superlattice thermoelectric materials and devices,
Science 297, 2229 (2002).

[20] T. C. Harman, M. P. Walsh, B. E. laforge, and G. W. Turner,
Nanostructured thermoelectric materials, J. Electron. Mater. 34,
L19 (2005).

[21] M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee,
D. Z. Wang, Z. F. Ren, J.-P. Fleurial, and P. Gogna, New direc-
tions for low-dimensional thermoelectric materials, Adv. Mater.
19, 1043 (2007).

[22] J. Mao, Z. Liu, and Z. Ren, Size effect in thermoelectric mate-
rials, npj Quantum Mater. 1, 1 (2016).

[23] G. D. Mahan and J. O. Sofo, The best thermoelectric, Proc. Natl.
Acad. Sci. USA 93, 7436 (1996).

[24] T. C. Harman, D. L. Spears, and M. J. Manfra, High thermo-
electric figures of merit in PbTe quantum wells, JEM 25, 1121
(1996).

[25] L. D. Hicks, T. C. Harman, X. Sun, and M. S. Dresselhaus,
Experimental study of the effect of quantum-well structures on
the thermoelectric figure of merit, Phys. Rev. B 53, R10493
(1996).

[26] T. C. Harman, D. L. Spears, and M. P. Walsh, PbTe/Te super-
lattice structures with enhanced thermoelectric figures of merit,
J. Electron. Mater. 28, L1 (1999).

[27] H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta,
T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono,
and K. Koumoto, Giant thermoelectric Seebeck coefficient of
a two-dimensional electron gas in SrTiO3, Nat. Mater. 6, 129
(2007).

[28] R. Y. Wang, J. P. Feser, J.-S. Lee, D. V. Talapin, R.
Segalman, and A. Majumdar, Enhanced thermopower in PbSe
nanocrystal quantum dot superlattices, Nano Lett. 8, 2283
(2008).

[29] A. A. Burkov, M. D. Hook, and L. Balents, Topological nodal
semimetals, Phys. Rev. B 84, 235126 (2011).

[30] M. Phillips and V. Aji, Tunable line node semimetals, Phys.
Rev. B 90, 115111 (2014).

[31] C. Fang, Y. Chen, H.-Y. Kee, and L. Fu, Topological nodal line
semimetals with and without spin-orbital coupling, Phys. Rev.
B 92, 081201(R) (2015).

[32] H. Weng, Y. Liang, Q. Xu, R. Yu, Z. Fang, X. Dai,
and Y. Kawazoe, Topological node-line semimetal in three-
dimensional graphene networks, Phys. Rev. B 92, 045108
(2015).

[33] R. Yu, H. Weng, Z. Fang, X. Dai, and X. Hu, Topological Node-
Line Semimetal and Dirac Semimetal State in Antiperovskite
Cu3PdN, Phys. Rev. Lett. 115, 036807 (2015).

[34] M. Neupane, I. Belopolski, M. M. Hosen, D. S. Sanchez, R.
Sankar, M. Szlawska, S.-Y. Xu, K. Dimitri, N. Dhakal, P.
Maldonado, P. M. Oppeneer, D. Kaczorowski, F. Chou, M. Z.
Hasan, and T. Durakiewicz, Observation of topological nodal
fermion semimetal phase in ZrSiS, Phys. Rev. B 93, 201104(R)
(2016).

[35] J. Hu, Z. Tang, J. Liu, X. Liu, Y. Zhu, D. Graf, K. Myhro, S.
Tran, C. N. Lau, J. Wei, and Z. Mao, Evidence of Topological
Nodal-Line Fermions in ZrSiSe and ZrSiTe, Phys. Rev. Lett.
117, 016602 (2016).

[36] G. Bian, T.-R. Chang, R. Sankar, S.-Y. Xu, H. Zheng, T.
Neupert, C.-K. Chiu, S.-M. Huang, G. Chang, I. Belopolski,
D. S. Sanchez, M. Neupane, N. Alidoust, C. Liu, B. Wang, C.-C.
Lee, H.-T. Jeng, C. Zhang, Z. Yuan, S. Jia et al., Topological
nodal-line fermions in spin-orbit metal PbTaSe2, Nat. Commun.
7, 10556 (2016).

085406-8

https://doi.org/10.1063/1.357750
https://doi.org/10.1126/science.272.5266.1325
https://doi.org/10.1557/PROC-478-199
https://doi.org/10.1126/science.287.5455.1024
https://doi.org/10.1126/science.1092963
https://doi.org/10.1038/ncomms12167
https://doi.org/10.1103/PhysRevB.47.12727
https://doi.org/10.1103/PhysRevB.47.16631
https://doi.org/10.1103/PhysRevB.91.165104
https://doi.org/10.3390/ma7042577
https://doi.org/10.1039/c0ee00456a
https://doi.org/10.1038/nature09996
https://doi.org/10.1038/nature11439
https://doi.org/10.1038/s41586-019-1751-9
https://doi.org/10.1038/s41467-018-07877-5
https://doi.org/10.1038/35098012
https://doi.org/10.1126/science.1072886
https://doi.org/10.1007/s11664-005-0083-8
https://doi.org/10.1002/adma.200600527
https://doi.org/10.1038/npjquantmats.2016.28
https://doi.org/10.1073/pnas.93.15.7436
https://doi.org/10.1007/BF02659913
https://doi.org/10.1103/PhysRevB.53.R10493
https://doi.org/10.1007/s11664-999-0198-4
https://doi.org/10.1038/nmat1821
https://doi.org/10.1021/nl8009704
https://doi.org/10.1103/PhysRevB.84.235126
https://doi.org/10.1103/PhysRevB.90.115111
https://doi.org/10.1103/PhysRevB.92.081201
https://doi.org/10.1103/PhysRevB.92.045108
https://doi.org/10.1103/PhysRevLett.115.036807
https://doi.org/10.1103/PhysRevB.93.201104
https://doi.org/10.1103/PhysRevLett.117.016602
https://doi.org/10.1038/ncomms10556


THIN FILMS OF TOPOLOGICAL NODAL LINE … PHYSICAL REVIEW B 105, 085406 (2022)

[37] M. Hirayama, R. Okugawa, T. Miyake, and S. Murakami, Topo-
logical Dirac nodal lines and surface charges in fcc alkaline
earth metals, Nat. Commun. 8, 14022 (2017).

[38] I. Tateishi, Nodal lines and mapping to mirror Chern numbers
in Ca2As family, Phys. Rev. B 102, 155111 (2020).

[39] H. Huang, K.-H. Jin, and F. Liu, Topological nodal-line
semimetal in nonsymmorphic Cmce-phase Ag2S, Phys. Rev. B
96, 115106 (2017).

[40] J. Liu and L. Balents, Correlation effects and quantum oscil-
lations in topological nodal-loop semimetals, Phys. Rev. B 95,
075426 (2017).

[41] M. Ogata and H. Fukuyama, Theory of spin seebeck effects in
a quantum wire, J. Phys. Soc. Jpn. 86, 094703 (2017).

[42] K. Momma and F. Izumi, Vesta 3 for three-dimensional visu-
alization of crystal, volumetric and morphology data, J. Appl.
Crystallogr. 44, 1272 (2011).

[43] Y.-H. Chan, C.-K. Chiu, M. Y. Chou, and A. P. Schnyder, Ca3 P2

and other topological semimetals with line nodes and drumhead
surface states, Phys. Rev. B 93, 205132 (2016).

[44] G. D. Mahan, Many-Particle Physics (Plenum Press, New York,
1990).

[45] A. Sommerfeld and H. Bethe, Elektronentheorie der Metalle,
Handbuch der Physik (Springer, Berlin, Heidelberg, 1933),
Vol. 24/2.

[46] N. F. Mott and H. Jones, The Theory of the Properties of Metals
and Alloys (Oxford University Press, Oxford, UK, 1936).

[47] A. H. Wilson, The Theory of Metals (Cambridge University
Press, Cambridge, UK, 1936).

[48] M. Jonson and G. D. Mahan, Electron-phonon contribution to
the thermopower of metals, Phys. Rev. B 42, 9350 (1990).

[49] H. Kontani, General formula for the thermoelectric trans-
port phenomena based on Fermi liquid theory: Thermoelectric
power, Nernst coefficient, and thermal conductivity, Phys. Rev.
B 67, 014408 (2003).

[50] M. Ogata and H. Fukuyama, Range of validity of sommerfeld–
bethe relation associated with seebeck coefficient and phonon
drag contribution, J. Phys. Soc. Jpn. 88, 074703 (2019).

[51] G. Hussain, X. Rao, N. Li, W. Chu, X. Liu, X. Zhao, and X.
Sun, Electron transport in Dirac nodal-line semimetal ZrSiS,
Phys. Lett. A 384, 126938 (2020).

[52] L. Fu and C. L. Kane, Topological insulators with inversion
symmetry, Phys. Rev. B 76, 045302 (2007).

[53] Y. Kim, B. J. Wieder, C. L. Kane, and A. M. Rappe, Dirac Line
Nodes in Inversion-Symmetric Crystals, Phys. Rev. Lett. 115,
036806 (2015).

[54] D. Vanderbilt and R. D. King-Smith, Electric polarization as a
bulk quantity and its relation to surface charge, Phys. Rev. B 48,
4442 (1993).

085406-9

https://doi.org/10.1038/ncomms14022
https://doi.org/10.1103/PhysRevB.102.155111
https://doi.org/10.1103/PhysRevB.96.115106
https://doi.org/10.1103/PhysRevB.95.075426
https://doi.org/10.7566/JPSJ.86.094703
https://doi.org/10.1107/S0021889811038970
https://doi.org/10.1103/PhysRevB.93.205132
https://doi.org/10.1103/PhysRevB.42.9350
https://doi.org/10.1103/PhysRevB.67.014408
https://doi.org/10.7566/JPSJ.88.074703
https://doi.org/10.1016/j.physleta.2020.126938
https://doi.org/10.1103/PhysRevB.76.045302
https://doi.org/10.1103/PhysRevLett.115.036806
https://doi.org/10.1103/PhysRevB.48.4442

