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Spontaneous orbital magnetization of mesoscopic dipole dimers
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Ensembles of gold nanoparticles present a magnetic behavior which is at odds with the weakly diamagnetic
response of bulk gold. In particular, an unusual ferromagnetic order has been unveiled by several experiments.
Here we investigate if the combined effect of orbital magnetism of conduction electrons and interparticle dipolar
interaction can lead to magnetic ordering. Using different model systems of interacting mesoscopic magnetic
dipoles, together with a microscopic description of the electron dynamics within the nanoparticles, we find that
a spontaneous magnetic moment may arise in dimers of metallic nanoparticles when the latter are characterized
by a large orbital paramagnetic susceptibility.
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I. INTRODUCTION

It is well established that bulk gold, when subject to an
external magnetic field, has a diamagnetic behavior. Such a
magnetic response is the result of orbital motion, with the
largest contribution arising from core electrons (Langevin-
Larmor diamagnetism), and a small component associated
with conduction electrons (Landau diamagnetism), together
with non-negligible spin (Pauli) and orbital (Van Vleck) para-
magnetic contributions [1].

Numerous puzzling experiments have reported over the
past two decades that assemblies of gold nanoparticles encap-
sulated with organic ligands can present either a paramagnetic
behavior [2–9], a diamagnetic response larger than the one of
the bulk [4,7,10–12], or, even more surprisingly, a ferromag-
netic instability [6,7,9–11,13–19].1

Recently, the paramagnetic behavior of relatively dilute
samples of noninteracting gold nanoparticles has been the-
oretically elucidated in terms of orbital magnetism of the
confined conduction electrons [21]. Such an effect is a purely
quantum-mechanical phenomenon, which in the bulk gives
rise to the Landau diamagnetic susceptibility [22]

χL = − e2kF

12π2m∗c2
. (1)

Here, e is the elementary charge, m∗ is the effective mass
of the conduction electrons,2 kF is the Fermi wave vector,
and c is the speed of light in vacuum.3 While in typical

1For a review, see Ref. [20], which discusses the magnetic behav-
ior of gold nanoparticle ensembles, which is quite variable among
different experiments.

2Here and in what follows, we identify the bare electron mass me

and the effective mass m∗, as they have similar values for gold (m∗ �
1.1 me).

3Throughout this paper we use cgs units. Note that the (dimen-
sionless) magnetic susceptibilities in SI and cgs units, χSI and χ ,
respectively, are connected through the relation χSI = 4πχ .

bulk metals χL represents a minute contribution to the overall
magnetic response (e.g., for gold χL = −2.9 × 10−7, while
χbulk = −2.7 × 10−6 [1]), the situation is totally different for
constrained geometries [23]. Indeed, in particles with nano-
metric dimensions, the quantization of energy levels can lead
to a very large orbital response with a zero-field susceptibility
(ZFS) |χ | � |χL| that can be either paramagnetic (χ > 0) or
diamagnetic (χ < 0), depending on the size of the individual
nanoparticle [21,24–26]. Moreover, the orbital response is
temperature dependent and paramagnetic peaks appear, whose
height increases for decreasing temperature T . When an aver-
age over nanoparticle sizes is performed and when the dipolar
interactions between each orbital magnetic moment are ne-
glected, the response of the ensemble is paramagnetic [21], in
rather good quantitative agreement with the experimental data
of Refs. [2–4].

The large diamagnetic response measured in certain sam-
ples, and in particular in the experiment of Ref. [12], has
been tentatively accounted for by Imry [27] in terms of
Aslamazov-Larkin superconducting fluctuations [28] that per-
sist at temperatures way above the critical one. However,
the proposal of Ref. [27] is one to two orders of magnitude
smaller than that measured in Ref. [12]. An alternative the-
oretical proposal by Murzaliev, Titov, and Katsnelson [29]
invoked the spin-orbit coupling, which is important for gold
atoms, as a mechanism turning the ensemble-averaged para-
magnetic response into a diamagnetic one. However, it has
been recently shown [30] that the extrinsic spin-orbit cou-
pling due to the discontinuity of the electrostatic potential
at the nanoparticle surface, as well as other relativistic and
geometric effects, only lead to a small correction to the
individual-particle ZFS calculated in Ref. [21].

There have been several attempts to interpret the ferro-
magnetic response measured in certain samples invoking the
formation of covalent bonds between the atoms residing at
the surface of the nanoparticles and the ligands around it [10],
the Fermi-hole effect involving the surface atoms alone [4,5],
or electronic orbits circling around single domains of ligands
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[31]. However, these interpretations have been ruled out by
later experiments [19,20], and a mechanism explaining the
observed ferromagnetic instability is still highly sought after.

Motivated by this long-standing puzzle of condensed mat-
ter physics, here we investigate if the large orbital magnetism
of individual nanoparticles, as calculated in Ref. [21], to-
gether with the magnetic dipole-dipole interaction between
the nanoparticles, can be at the origin of magnetic order and
the emergence of a large total magnetic moment. Indeed,
since each nanoparticle can carry a huge magnetic moment
at relatively weak applied fields (typically up to three orders
of magnitude larger than the Bohr magneton μB = eh̄/2mec,
even at room temperature), one cannot exclude that interparti-
cle interactions may play a role for the magnetic properties of
the samples.

Treating the long-range and anisotropic dipolar interac-
tions of permanent magnetic moments in a lattice constitutes a
formidable computational task that can result in ferromagnetic
transitions in particular geometries [32–35]. The problem of
a macroscopic and disordered ensemble of metallic nanopar-
ticles (as it is most likely the case in the experiments of
Refs. [2–19]) is even more challenging because the magnetic
moments do not have a uniform magnitude, but they result
from the response to the local field according to a highly
fluctuating susceptibility.

Instead of tackling the precise experimental situation
(many details of which are unknown), in this paper we in-
vestigate the magnetic instability of a dimer of nanoparticles,
which constitutes the building block of any realistic sample.
Using a microscopic description of the conduction electron
dynamics within each individual nanoparticle we show that,
surprisingly, a magnetization with aligned magnetic moments
can appear at very low temperature when the individual
nanoparticles composing the dimer are both paramagnetic.

Our paper is outlined as follows. In Sec. II we briefly
present our model of a metallic nanoparticle dimer interacting
through the long-range magnetic dipolar coupling. In Sec. III
we first consider the case of a linear orbital response which
is valid for weak effective magnetic fields and find the on-
set of a magnetic order with aligned (antialigned) magnetic
moments, when both nanoparticles are paramagnetic (diamag-
netic). Since the above-mentioned linear-response approach
results in an unphysical magnetization above a critical value
of the ZFS, in Sec. IV we remedy for this issue by considering
a model in which the orbital response of the nanoparticles
saturates at large magnetic fields as typically occurs, and thus
find that both ordered magnetic phases are stable. We then
adopt in Sec. V the microscopic quantum-mechanical model
developed in Refs. [21,24,26] and demonstrate that a magnetic
order with aligned magnetic moments can be reached at very
low temperature, while the antialigned configuration remains
elusive. We conclude in Sec. VI.

In Appendix A we briefly describe the microscopic model
used in Sec. V to characterize the magnetic response of an
individual nanoparticle, signaling the different behavior that
can be obtained when varying the temperature or the nanopar-
ticle size. In order to support the approach that disregards the
thermal fluctuations of the magnetization of the nanoparticles,
we present in Appendix B a model calculation describ-
ing the equilibrium properties of a mesoscopic dimer. In

FIG. 1. Sketch of a dimer of spherical metallic nanoparticles of
radii a1 and a2 spaced by a center-to-center distance d and with,
respectively, zero-field orbital susceptibilities χ1 and χ2, under the
influence of an applied magnetic field H.

Appendix C we extend some of our results to a chain of
nanoparticles and show that the mutual dipolar interactions
between the magnetic moments increase the temperature be-
low which magnetic order may arise.

II. NANOPARTICLE DIMER MODELING

We consider a dimer of spherical metallic, nonmagnetic
nanoparticles with radii ai (i = 1, 2). The dimer is aligned
along the z axis, and we call d the center-to-center inter-
particle distance (see Fig. 1). Each individual nanoparticle is
assumed to carry a magnetic moment Mi due to the orbital
response to the effective field Hi seen by nanoparticle i. The
functional form of

Mi = Mi(Hi, ai, T ) (2)

depends on the model adopted to describe the electron dynam-
ics within each nanoparticle, one example of it being given in
Appendix A. This choice is crucial and will be thoroughly dis-
cussed in the sequel. The total magnetic moment per particle
(TMMPP) of the dimer reads m = ∑2

i=1 Mi/2. The effective
magnetic field

Hi = H +
2∑

j=1
( j �=i)

3ẑ(ẑ · M j ) − M j

d3
(3)

acting on the ith nanoparticle is given by the external applied
field H and the contribution generated by the other nanoparti-
cle through the magnetic dipole-dipole interaction.4 Here and
in the sequel of the paper, hats designate unit vectors.

Expressions (2) and (3) thus represent a system of equa-
tions for the expectation values of the magnetizations Mi

that must be solved self-consistently. In such an approach,
one disregards fluctuations of the magnetization around its
thermal expectation value, assuming that the latter is the result

4Note that we consider interparticle separation distances d � 3a so
that we can disregard higher multipolar terms in the interaction. Such
a criterion was numerically verified in Ref. [36] for oscillating elec-
tric dipoles in the context of localized surface plasmon resonances
and used in Refs. [37–39] when, similar to this work, a nanoparticle
dimer was considered as the building block of larger assemblies. The
induced field in Eq. (3) is evaluated at the nanoparticle center, since
that value corresponds to the averaged field over its spherical volume
[40].
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FIG. 2. Sketch of the magnetic response of the dimer with (red arrows) and without (green arrows) dipolar interactions for (a)–(c) transverse
and (d)–(f) longitudinal applied field H. An arrow represents the magnetic moment of the ith nanoparticle pointing in the direction of Mi, and
its length is proportional to |Mi|.
of a large number of contributions, consistent with the large
magnetizations of hundreds of Bohr magnetons μB that can
occur in an individual nanoparticle [21] (see also Appendix A,
and in particular Fig. 7). A heuristic model for the magnetic
behavior of two paramagnetic systems including thermal fluc-
tuations presented in Appendix B points to the validity of the
approach based on Eqs. (2) and (3).

For notational simplicity we will assume in what follows
that the two nanoparticles have nearly identical sizes, a1 ≈
a2 = a, but they still may have different ZFSs χ1 and χ2.
Indeed, as we show in Appendix A, a difference |a1 − a2| of
the order of k−1

F ∼ 1 Å may induce a radical change in the
magnetic susceptibility.

III. LINEAR RESPONSE APPROACH

It is first instructive to consider that each nanoparticle re-
mains in the linear regime, so that the magnetic moment of the
ith nanoparticle is given by

Mi = VχiHi, (4)

with V = 4πa3/3 the nanoparticle volume and Hi the
effective magnetic field (3). It is then straightforward to
solve the system of equations (3) and (4), and we find for
the TMMPP the expression m = V↔

χH, where the diagonal

zero-field susceptibility tensor is given by

↔
χ =

⎛
⎝χ xx 0 0

0 χ yy 0
0 0 χ zz

⎞
⎠, (5)

with

χσσ = 1

2

(
χ1 + χ2 − ησ

8π
3 χ1χ2

(
a
d

)3

1 − η2
σ

16π2

9 χ1χ2
(

a
d

)6

)
, σ = x, y, z. (6)

Here, ησ = 1 for the transverse directions (σ = x, y) and ησ =
−2 for the longitudinal one (σ = z).

Let us now discuss the result of Eq. (6) as a function
of the interparticle distance d . Obviously, for a very large
interparticle distance (d � a), where the dipolar interaction,
which scales as 1/d3, becomes negligible, the ZFS of the
dimer corresponds to the average of the ZFSs of the two
nanoparticles, i.e., limd→∞ χσσ = χ with χ = (χ1 + χ2)/2.
The magnetic configuration of the noninteracting dimer is
depicted by green arrows in Fig. 2 for transverse (left column)
and longitudinal (right column) applied fields H and for the
three cases of interest {χ1 > 0, χ2 > 0} [panels (a) and (d)],
{χ1 < 0, χ2 < 0} [panels (b) and (e)], and {χ1 > 0, χ2 < 0}
[panels (c) and (f)].5 While in the two first cases the magnetic

5Obviously, the case {χ1 < 0, χ2 > 0} is similar to {χ1 > 0, χ2 <

0}.
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response of the dimer follows that of the individual nanopar-
ticles, the response χ in the latter case depends on the relative
importance of χ1 and χ2.

For shorter interparticle distances, to leading order in
(a/d )3 � 1, one can ignore the term ∝ (a/d )6 in the denom-
inator of Eq. (6),6 and write

χσσ � χ + �χσ , �χσ = −ησ

4π

3
χ1χ2

(
a

d

)3

. (7)

The sign of the interaction-induced correction term �χσ thus
depends on both the polarization σ and the sign of the product
χ1χ2. Due to the anisotropy of the dipole-dipole interaction,
the absolute value of �χσ is twice as much in the longitudinal
direction as in the transverse one. In Fig. 2 we represent
by red arrows the magnetic configurations for the different
cases that are slightly modified with respect to the previously
discussed noninteracting situation (green arrows). For a trans-
verse applied field (left column), the antialignment tendency
of the dipolar coupling makes the magnetic response less
paramagnetic when {χ1 > 0, χ2 > 0} than in the noninteract-
ing case [panel (a)], while diamagnetism is reinforced when
{χ1 < 0, χ2 < 0} [panel (b)]. When {χ1 > 0, χ2 < 0} [panel
(c)], interactions increase the ZFS, but the overall response
depends on the sign of χ . For a longitudinally applied mag-
netic field (right column in Fig. 2), the aligning tendency of
the dipolar coupling reinforces (weakens) the paramagnetic
(diamagnetic) response of the dimer when both nanoparticles
are paramagnetic (diamagnetic) [panels (d) and (e), respec-
tively]. In the case where the magnetic susceptibilities of the
individual nanoparticles are opposite [panel (f)], the magnetic
response of the interacting dimer depends on the relative
strength of χ1 and χ2. Nevertheless, the negative �χ z indi-
cates a tendency towards a more diamagnetic response.

Remarkably, when the full expression (6) of the ZFS of
the interacting dimer is considered, and when both nanopar-
ticles are either paramagnetic or diamagnetic (i.e., χ1χ2 >

0), there appears a divergence in χσσ for the polarization-
dependent critical value χ1χ2|c = (9/16π2η2

σ )(d/a)6. Such a
divergence of the ZFS within our linear response approach of
Eq. (4) marks the presence of a magnetic instability. In the
case where the two nanoparticles have opposite magnetic re-
sponses (χ1χ2 < 0), no such instability is present. Assuming
that both nanoparticles have the same ZFS (χ1 = χ2 = χ ), we
obtain the critical susceptibility

χσ
c = 3

4π |ησ |
(

d

a

)3

, (8)

which crucially depends on the interparticle separation
distance (scaled with the nanoparticle radius) as (d/a)3. Con-
sidering an interparticle distance d = 3a, we have χ z

c � 3.22
(χ x,y

c � 6.45) for the longitudinal (transverse) direction. Such
very high values are certainly not attainable in bulk materials,
but we will later discuss if the large orbital magnetic response

6Since in our model of interacting point dipoles the interparticle
distance cannot be smaller than d = 3a [36], we have (a/d )3 �
1/27 � 1.

of finite-size nanoparticles [21] can give enough scope to
observe such a magnetic instability.

The above-mentioned divergence of the dimer ZFS (6),
signaling the presence of a magnetic instability, results in
an infinite magnetization of the dimer at finite external field,
which is obviously unphysical. Such a behavior, following
from the linear response assumption of Eq. (4), is not valid
for large effective magnetic fields Hi. In the following, we
shall introduce a model (before tackling the more realistic
microscopic description of Ref. [21] in Sec. V) which yields
a finite value of the total magnetization of the nanoparticle
dimer, giving much insight into the physics at play.

IV. SATURATING MODEL

In order to remedy for the above-mentioned unphysical
behavior when both nanoparticles have either a paramagnetic
or diamagnetic susceptibility larger (in absolute value) than
χσ

c , we now go beyond the linear response assumption of
Eq. (4), incorporating the fact that the nanoparticle magneti-
zation typically saturates beyond a sufficiently large field (see
Fig. 7 describing microscopic calculations). We then assume
that the magnetic moment Mi of each nanoparticle saturates
for large (effective) magnetic field to some finite value M0,
which for simplicity is taken to be the same for both nanopar-
ticles. We then adopt for the functional form of Mi in Eq. (2)
the expression

Mi = M0 tanh

(VχiHi

M0

)
Ĥi, (9)

which recovers the linear behavior of Eq. (4) when
VχiHi/M0 � 1. The set of self-consistent transcendental
equations (3) and (9) can then be solved numerically using
an iterative method.

Assuming first that χ1 = χ2 = χ and a vanishing external
field (H = 0), we obtain the results of Fig. 3 for the z compo-
nent of the total magnetic moment 2mz = Mz

1 + Mz
2 of the

dimer in the longitudinal direction (red solid line) as a func-
tion of χ [scaled by the critical susceptibility χ z

c from Eq. (8)
found within the linear response approach]. Notably, the only
dependence of the results of Fig. 3 on the crucial parameter
d/a is through the critical susceptibility χ z

c , and the zero-field
total magnetic moment found only depends on the ratio χ/χ z

c .
This is due to the fact that taking H = 0 in the definition χ =
1
V

∂M
∂H |H=0 of the ZFS puts us in the linear regime as long as

there is no spontaneous magnetization. Remarkably, when the
two nanoparticles are paramagnetic (χ > 0), a finite magnetic
moment (at vanishing external field) develops along the lon-
gitudinal direction, when χ is above the critical susceptibility
χ z

c . The magnetic moment eventually saturates to mz = ±M0

for large χ . Of course, there is no symmetry breaking between
the positive and negative magnetization states, since the latter
are degenerate. While in large systems such degenerate states
could be metastable and lead to ferromagnetic behavior, in our
mesoscopic nanoparticle dimer the lifetimes of these states
are not expected to be long enough for the emergence of
a ferromagnetic hysteresis. Nevertheless, a magnetic super-
moment with parallel magnetization of the two nanoparticles
appears. In the presence of thermal fluctuations the resulting
behavior is then superparamagnetic due to the large magnetic
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FIG. 3. Red solid lines: total magnetic moment 2mz = Mz
1 +

Mz
2 of the nanoparticle dimer at zero applied field (H = 0) in the

longitudinal direction obtained within the model of Eq. (9) for an
arbitrary interparticle spacing, as a function of the zero-field suscep-
tibility of the individual nanoparticles χ (assumed to be the same for
both of them) in units of the critical susceptibility χ z

c from Eq. (8).
The dashed blue lines show the magnetic moment of one individual
nanoparticle. The colored background indicates the different mag-
netic phases, i.e., for increasing values of χ : antialigned (in blue),
diamagnetic (in green), paramagnetic (in salmon), and aligned (in
red), and corresponds to the color code in the phase diagram of Fig. 4.

moment that can be oriented when an external field breaks
the degeneracy of the two magnetically ordered states. Such
an orbital-induced superparamagnetic behavior must not be
confused with the one encountered in single-domain nanopar-
ticles made of a ferromagnetic material, where the magnetic
anisotropy energy is too weak so as to ensure a permanent
magnetization, even below the critical temperature [41].

As can be seen from the results displayed in Fig. 3, when
both nanoparticles are diamagnetic, there is no net magneti-
zation for all negative values of χ . However, the inspection of
the magnetic response of each individual nanoparticle (dashed
blue lines in Fig. 3) shows that an antialigned order develops
when χ < −χ z

c . For |χ | < χ z
c , there is no finite magnetization

at zero field and the magnetic response of the dimer follows
that of the individual nanoparticles: it is paramagnetic (dia-
magnetic) for 0 < χ < χ z

c (−χ z
c < χ < 0), as expected from

the discussion in Sec. III [see in particular Fig. 2, panels (d)
and (e), respectively].

From the result (8), one could expect the appearance of a
magnetic moment in the transverse direction (i.e., with mx,y �=
0) at susceptibilities χ above (in absolute value) χ

x,y
c = 2χ z

c .
However, at such large values of χ , both magnetic moments
are already at saturation in the z direction, so that the model
of Eq. (9) yields mx,y � 0.

Equipped with the above information, the self-consistent
equations (3) and (9) reduce to

Mz
i

M0
= tanh

(
χ

χ z
c

Mz
j

M0

)
(i �= j), (10)

where symmetry dictates that |Mz
i | = |Mz

j |. When Mz
i =

Mz
j , the graphical solution of Eq. (10) leads to a magnetic

−2 −1 0 1 2
−2

−1

0

1

2

χ1/χ
z
c

χ
2
/χ

z c

aligned

anti-aligned

para

dia

FIG. 4. Phase diagram for the magnetic order in a dimer of
nanoparticles in the longitudinal direction at vanishing external field
(H = 0) obtained numerically by solving Eqs. (3) and (9). The
diamagnetic (in green) and paramagnetic regions (in salmon) are
separated by the dashed line when the interparticle interaction is
considered and by the thin gray line χ2 = −χ1 when interactions are
neglected. The blue and red regions correspond to the phases with
antialigned and aligned orders, respectively.

order with parallel magnetic moments for χ > χ z
c , with Mz

i =
mz � ±M0

√
3(χ/χ z

c − 1) for χ → χ z
c
+ (see Fig. 3). When

Mz
i = −Mz

j , an antialigned magnetic order (for which mz =
0) develops for χ < −χ z

c with Mz
i � ±M0

√−3(χ/χ z
c + 1)

for χ → −χ z
c
−.

Let us now consider the more general case in which the
ZFSs of the individual nanoparticles are different, i.e., χ1 �=
χ2. By solving numerically the set of self-consistent equa-
tions (3) and (9) for H = 0, we find the phase diagram of
Fig. 4 which displays the magnetic phase in the longitudinal
direction7 as a function of χ1 and χ2. The behavior along
the diagonal χ1 = χ2 is described in Fig. 3. The solid black
lines delimitate the regions of the {χ1, χ2} plane where a mag-
netic order develops (aligned moments for {χ1 > 0, χ2 > 0}
and antialigned for {χ1 < 0, χ2 < 0}). The functional form
of such solid lines can be inferred from the linear model
discussed in Sec. III and is given by χ1χ2 = (χ z

c )2. The dashed
line in Fig. 4 marks the separation between the paramag-
netic and diamagnetic responses of the dimer. Here, also, the
functional form of the separation is determined by the linear
model, and corresponds to χ zz = 0 [cf. Eq. (6)]. Interestingly,
when χ1 and χ2 have opposite signs, the system tends to be

7In our iterative algorithm, when the magnetization of the dimer
converges to zero, we subsequently apply a very weak external mag-
netic field so as to determine whether the magnetic response is para-
or diamagnetic.
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FIG. 5. (a) Main panel (paramagnetic behavior): zero-field susceptibility of a single nanoparticle as a function of temperature for kFa =
ζ1,36 � 42.97 (red line), kFa = ζ6,26 � 52.91 (blue line), and kFa = ζ5,37 � 62.13 (green line). The dashed black line corresponds to the critical
susceptibility χ z

c [cf. Eq. (8)] for an interparticle distance d = 3a. Inset (diamagnetic behavior at low temperature): same as the main panel for
kFa = 42.4 (orange line) and kFa = 42.7 (violet-gray line). (b) z component of the total magnetic moment per particle mz at zero applied field
(H = 0) as a function of temperature for three values of kFa for which both nanoparticles of the dimer have a paramagnetic response.

more likely diamagnetic than paramagnetic. This can also be
understood in terms of the linear response model, where in this
case the interaction-induced term �χ z in Eq. (7) is negative
[cf. Fig. 2(f)].

In the following, we will consider a more realistic, mi-
croscopic model [21] of the orbital magnetic response of
a nanoparticle subject to an (effective) external field, and
demonstrate that the transition to a magnetically ordered
aligned phase might be experimentally achievable, while the
antialigned one remains elusive.

V. MICROSCOPIC DESCRIPTION OF THE ELECTRON
DYNAMICS

The saturating model discussed in the previous section
imposes an arbitrary magnetic moment M0 at saturation, as
well as the form (9) of the individual nanoparticle magnetiza-
tion. In order to gauge the relevance of the above-discussed
magnetic instabilities, it is important to relax the previous
assumptions and consider the magnetic moments arising from
the conduction electron orbital motion within each nanopar-
ticle. In Appendix A we present the ZFS and the finite-field
magnetization of individual nanoparticles, focusing on their
temperature and size dependence. As illustrated in Fig. 6(a),
upon relatively modest changes of the particle radius (of the
order of k−1

F ∼ 1 Å), the ZFS at room temperature oscillates
between paramagnetic and diamagnetic values which are typi-
cally much larger than |χL|. For lower temperatures [Figs. 6(b)
and 6(c)], the paramagnetic component of the ZFS is signaled
by large peaks associated with the highly degenerate H = 0
spectrum of a spherical nanoparticle, which stick out from a
smooth diamagnetic background.

The maximum values of |χ | obtained at room tempera-
ture are considerably smaller than the critical susceptibility
(8) leading to the emergence of magnetic order. The higher
susceptibilities obtained for lower temperatures advocate for
a systematic study of the conditions under which the critical
susceptibility can be reached. Towards this goal we show in
the main figure of Fig. 5(a) the evolution of the ZFS [cf.

Eq. (A5) in Ref. [21]] with temperature for a few values
of kFa (some of them in the range shown in Fig. 6): kFa =
ζ1,36 � 42.97 (red line), kFa = ζ6,26 � 52.91 (blue line), and
kFa = ζ5,37 � 62.13 (green line) for which the ZFS is param-
agnetic.8 The inset in Fig. 5(a) presents the case of kFa = 42.4
for which the ZFS is diamagnetic in the temperature interval
considered (orange line) and that of kFa = 42.7 for which
the ZFS evolves from diamagnetic to paramagnetic as tem-
perature increases (violet-gray line). As can be seen from the
main panel of Fig. 5(a), the paramagnetic ZFS dramatically
increases with decreasing temperature, following a Curie-type
law χ = C(a)/T , with C(a) a temperature-independent pref-
actor which depends on a. In the diamagnetic case [inset of
Fig. 5(a)], the temperature dependence of the ZFS is much less
pronounced, and the attained values of χ � −(2/5)(kFa)2|χL|
in the leading order of kFa � 1 at low temperature [30]
remain much smaller (in absolute value) than in the paramag-
netic case. Interestingly, for certain sizes (see the violet-gray
solid line in the figure), the magnetic behavior can turn from
paramagnetic at high temperatures to diamagnetic at lower
temperatures, as can be inferred from the displayed results for
the ZFS in Fig. 6.

The previously discussed values of the ZFS in the diamag-
netic case at low temperature are much smaller (in absolute
value) than the required critical susceptibility −χ z

c needed to
observe an antialigned magnetic order in the dimer. However,
in the paramagnetic case, at very low temperatures (i.e., be-
low T/TF ∼ 10−7, corresponding to around 6 mK for gold),
the ZFS can exceed χ z

c [which is shown by a dashed black
line in Fig. 5(a) for an interparticle distance d = 3a], such
that a magnetically ordered phase with aligned moments may
emerge.

8Here, ζnl is the nth zero of the spherical Bessel function of the first
kind jl (z), and is related to the electronic eigenenergies at vanishing
magnetic field, which locate the position (as a function of kFa) of the
paramagnetic peaks of the ZFS; see Appendix A for further details.
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FIG. 6. Colored solid lines: zero-field susceptibility as a function
of the nanoparticle radius a (scaled with the Fermi wave vector
kF) for (a) T/TF = 5 × 10−3 (corresponding to room temperature
for gold), (b) T/TF = 5 × 10−4, and (c) T/TF = 5 × 10−5. The thin
dashed black lines correspond to χ = 0. In panel (c), the vertical
thin gray lines indicate the zeros ζnl of the spherical Bessel func-
tions [ jl (kFa) = 0] for which one has a paramagnetic peak of the
susceptibility.

To check the above hypothesis, we solve the set of self-
consistent equations (2) and (3) using the microscopically
calculated individual magnetic moment from Eq. (A4) in
Ref. [21], and find the results of Fig. 5(b) for the TMMPP
mz of the dimer in the longitudinal direction at zero applied
field (H = 0), for nanoparticle sizes that correspond to the
ZFS shown in panel (a) of the figure and for an interparticle
distance d = 3a.9 As can be seen from the figure, a sponta-
neous magnetization appears below a critical temperature that

9We have checked numerically, using our iterative solution to the
system of self-consistent equations (2) and (3) discussed above [to-
gether with Eq. (A4) in Ref. [21]], that the magnetization at vanishing

corresponds to the crossing of the dashed line representing
χ z

c for d = 3a and the displayed ZFSs, thus confirming the
existence of a stable magnetically ordered aligned phase. The
values attained by mz at a temperature approaching the abso-
lute zero can be as large as approximately a thousand times
the Bohr magneton μB for the considered nanoparticle sizes,
and may thus be experimentally detectable.

VI. CONCLUSIONS

Several experimental works have reported over the past two
decades anomalous magnetic response of macroscopic assem-
blies of gold nanoparticles coated with organic ligands [2–19].
Motivated in particular by the occurrence of the yet unex-
plained ferromagnetic behavior [6,7,9–11,13–19], we have
posed the question whether the combined effects of largely
enhanced orbital magnetism (due to strong quantum confine-
ment [21]) and dipolar interactions can lead to ferromagnetic
order. Attempting to answer this question, we have focused
on the building block of any realistic sample, i.e., a dimer of
spherical nanoparticles.

Using first a linear-response approach, where the magnetic
moment of each nanoparticle in the dimer is proportional
to the local magnetic field (i.e., the applied one plus that
generated by the other nanoparticle), and secondly a model
in which each magnetic moment saturates at large fields, we
have unveiled the existence of both a magnetically ordered
aligned phase (when both particles present a large paramag-
netic ZFS), and an antialigned magnetic order (when the two
particles have a large diamagnetic ZFS). For weaker ZFSs,
we have shown that interactions tend to favor a diamagnetic
behavior. Thirdly, using the microscopic quantum description
of Ref. [21], we have demonstrated that the transition to the
aligned phase may be experimentally observable at cryogenic
temperatures and for precise nanoparticle sizes (where the
individual paramagnetic ZFSs are way above the Landau sus-
ceptibility), while the antialigned order seems unlikely to be
reached.

The mesoscopic dipoles with very large magnetic moments
were treated with a purely energetic approach, neglecting ther-
mal fluctuations. The validity of such an approach is supported
by the heuristic model of Appendix B, where the thermal
equilibrium of a dimer of interacting particles with variable
magnetic moments results in a superparamagnetic behavior
beyond a critical value of the interaction.

While we limited our analytical and numerical calculations
to center-to-center interparticle distances d larger than 3a
(where a is the nanoparticle radius), where the static magnetic
dipolar interactions are dominating and where we have shown
that the critical susceptibility above which a magnetic moment
at zero applied field appears and scales as (d/a)3, we expect
that, for d < 3a, the critical value would further decrease.
However, a reliable description in such a regime would require

applied field in the transverse direction is always zero. The results
displayed in Fig. 5(b) are then obtained imposing mx,y = 0, which
greatly facilitates the numerical calculations and improves its ac-
curacy, as it boils down to a straightforward root finding for the
unknown variable mz.
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the inclusion of multipolar interactions, which is beyond the
scope of the present work.

Interestingly, when one considers a linear chain of identical
paramagnetic nanoparticles, the critical ZFS above which one
may observe magnetic order and a spontaneous magnetization
decreases with increasing chain length, and saturates to a
plateau which is about a factor of two smaller than in the
case of a dimer (see Appendix C). This tendency favoring the
alignment of the mesoscopic magnetic moments in the longi-
tudinal configuration follows from the increase of the number
of neighbors and may facilitate the experimental observation
of the spontaneous orbital magnetization.

It is worth mentioning that we do not expect our pre-
dictions to be restricted to the spherical nanoparticle shape,
as many other three-dimensional classically integrable ge-
ometries such as cuboids [24,26], half-spheres [30,42], or
cylinders [43] present a large orbital magnetic susceptibil-
ity, similar to the case of two-dimensional semiconducting
heterostructures [23]. It should however be noticed that clas-
sically chaotic ballistic systems present a somewhat weaker
orbital response [44], so that a regular nanoparticle geometry
is to be favored for the observation of the effects we studied
here.

The experimental detection of our theoretical predictions
requires both very precise nanofabrication and detection tech-
niques, as well as the use of cryogenic temperatures. On the
one hand, there has been many recent advances in the elabo-
ration of atomically precise ligand-protected Au clusters [45]
(notably with a large paramagnetic response [9]). On the other
hand, the recent proposal of Ref. [46] for detecting the mag-
netic response of single nanoparticles using superconducting
quantum interference devices may be extended to the dimers
and chains considered in this work.

Due to the above-mentioned stringent experimental re-
quirements for observing in nanoparticle dimers the ap-
pearance at very low temperature of an interaction-induced
spontaneous magnetization and a reinforced diamagnetic
phase, it is quite unlikely that the present mechanism can
explain the experiments of Refs. [2–19] on three-dimensional
assemblies of nanoparticles. Indeed, such experiments are
performed with particles that present a relatively large size
dispersion. Moreover, the samples are most likely disordered,
which induces magnetic frustration. Finally, some of these
experiments reported a ferromagnetic instability up to room
temperature. The interpretation of the unusual magnetic be-
havior of gold nanoparticle assemblies thus remains an open
problem.
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APPENDIX A: ZERO-FIELD SUSCEPTIBILITY AND
FINITE-FIELD MAGNETIC MOMENT OF AN INDIVIDUAL

NANOPARTICLE

Here we summarize the physical assumptions and repro-
duce some quantum-mechanical results used in Ref. [21] to
obtain the orbital magnetic response of a single spherical
metallic nanoparticle useful for the discussion carried in the
main text.

In a nutshell, the model of Ref. [21] considers a spherical
nanoparticle of radius a where the ionic background is treated
as a positively charged jellium. The inclusion of electron-
electron interactions at mean-field level leads to an effective
self-consistent potential for the valence electrons that can be
approximated by a hard-wall potential [47]. The considered
size of the nanoparticle is such that electronic correlations and
disorder effects can be disregarded. The spin-orbit coupling as
well as other relativistic corrections are neglected since they
do not participate significantly in the magnetic response [30].
The ligands surrounding the nanoparticles are ignored, since
they do not seem to play a significant role in the experimental
results [20].10,11

The model above described, when treating perturbatively
the diamagnetic term of the corresponding Hamiltonian, re-
sults in the ZFS given by Eq. (A5) in Ref. [21] and presented
in Fig. 6. There we show the ZFS as a function of the nanopar-
ticle radius a (scaled with the Fermi wave vector kF) for three
different temperatures (scaled with the Fermi temperature TF):
T/TF = 5 × 10−3, which corresponds to the case of gold at
room temperature [Fig. 6(a)], T/TF = 5 × 10−4 [Fig. 6(b)],
and T/TF = 5 × 10−5 [Fig. 6(c)]. At room temperature, one
can see on Fig. 6(a) that the ZFS oscillates as a function of
the nanoparticle size between para- and diamagnetic values
that are much larger (in absolute value) than the Landau
susceptibility χL given in Eq. (1). Since the ZFS of bulk
gold is of the order of 10 χL, the quantum confinement of
the electronic eigenstates has already a sizable effect on the
magnetic response of the nanoparticle at room temperature.
When the temperature is lowered by one order of magni-
tude [Fig. 6(b)], paramagnetic peaks on top of a diamagnetic
background [of the order of −(2/5)(kFa)2|χL| [30]] start
to develop around certain values of kFa. For the displayed

10In the model of Ref. [21], the slight difference between the
applied field H and the magnetic induction B = H + 4πM, with
M = M/V the magnetization density within the nanoparticle, is not
taken into account, as 4πM � H , even when the magnetic moment
reaches values as large as M ∼ 103μB, as is the case, e.g., in the
results displayed in Fig. 7.

11The number of electrons N � 4(kFa)3/9π in each particle being
fixed, one should in principle work within the canonical ensemble
when determining the magnetic response of individual nanoparticles,
as is the case in this paper. Working with the grand-canonical en-
semble introduces relative errors of the order of N−1/2, which are
negligible for not too small nanoparticles. The canonical corrections
become important for an ensemble of nanoparticles, where the aver-
age over different sizes can lead to a vanishing grand-canonical result
[21], as is the case for persistent currents in mesoscopic rings [48]. In
this work, dealing with a nanoparticle dimer, we are not concerned
with these corrections.
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FIG. 7. Colored solid lines: magnetic moment M as a function
of the cyclotron energy h̄ωc ∼ H (scaled with the Fermi energy EF)
for T/TF = 5 × 10−3 (blue lines), T/TF = 5 × 10−4 (green lines),
and T/TF = 5 × 10−5 (red lines). The thick (thin) lines correspond
to kFa = ζ1,36 � 42.97 (kFa = 42.4) for which the zero-field suscep-
tibility is paramagnetic (diamagnetic); see Figs. 5 and 6.

nanoparticle sizes, such peaks can attain values of the ZFS
that are one order of magnitude larger than the typical values
at room temperature. At even lower temperature [Fig. 6(c)],
these paramagnetic peaks are two orders of magnitude larger
than the typical values of χ obtained at room temperature
and coincide with kFa = ζnl . Here, ζnl corresponds to the nth
zero of the spherical Bessel function of the first kind jl (z)
[see the thin gray vertical lines in Fig. 6(c)] and determines
the zero-field spectrum characterized by the principal (n) and
angular momentum (l) quantum numbers [21].

In Fig. 7 we show the magnetic moment M [cf. Eq. (A4)
in Ref. [21]] as a function of the cyclotron energy h̄ωc =
h̄eH/m∗c (scaled with the Fermi energy EF)12 and for the
three temperatures considered in Fig. 6, displaying M for
two values of kFa considered in Fig. 5 (kFa = 42.4, thin solid
lines, diamagnetic ZFS, and kFa = ζ1,36 � 42.97, thick solid
lines, paramagnetic ZFS). The linear response of M at weak
magnetic field follows the above-discussed behavior of the
ZFS as a function of temperature in both the paramagnetic
and diamagnetic cases (see Fig. 5). For larger applied fields,
M can present a nonmonotonic behavior as a function of H ,
with typical values of several hundreds of the Bohr magneton
μB.

APPENDIX B: MAGNETIC ORDER IN A MODEL OF TWO
INTERACTING PARAMAGNETIC NANOPARTICLES

In this Appendix we discuss a heuristic model of two
interacting paramagnetic systems. We aim at approaching the
situation of orbital magnetism in metallic nanoparticles where
a large number of electrons contribute to the magnetic mo-
ment which is relatively insensitive to thermal fluctuations.
We thus go beyond the usual description of paramagnetism
where the magnetization results from the combined effect of

12For gold nanoparticles, the maximal value of h̄ωc/EF considered
in Fig. 7 corresponds to a very large magnetic field of H = 9.2 ×
105 G.

an external field and thermal fluctuations on magnetic mo-
ments of fixed absolute value. Within our model, we find a
transition to a large magnetic moment even in the absence
of an external field, in analogy with the behavior found and
discussed in the main text.

1. Magnetic response of a single nanoparticle with variable
magnetic moment

We start by considering a heuristic model for a single
nanoparticle with a magnetic moment M that can vary in both
absolute value and orientation. In an external magnetic field
H, the magnetization-dependent contribution to the energy is
assumed to have the form

E1(M, H) = γM2 − M · H. (B1)

The first term on the right-hand side of the above equation
describes a preference for a low magnetic moment, whose
strength is governed by the parameter γ > 0, and the sec-
ond term is the usual Zeeman potential energy. For a single
nanoparticle it is straightforward to calculate the partition
function as an integral over all values of M, expressed in
spherical coordinates by the absolute value M = |M| and the
associated polar and azimuthal angles, θ and φ, respectively,
as

Z1 =
∫ ∞

0
dMM2

∫ π

0
dθ sin θ

∫ 2π

0
dφ e−βE1(M,H)

=
(

π

βγ

)3/2

exp

(
βH2

4γ

)
. (B2)

The expectation value of the magnetic moment at thermal
equilibrium along the direction z of the magnetic field is then
given by

〈Mz〉 = H

2γ
. (B3)

Remarkably, this expectation value and the corresponding
magnetic susceptibility

χ1 = 1

V
∂〈Mz〉

∂H

= 1

2Vγ
(B4)

are independent of the temperature, and determined solely by
the parameter γ . In such a model, the origin of the param-
agnetic behavior is the magnetic-field induced absolute value
of the magnetic moment rather than the usual orientation of
a fixed modulus moment by the Zeeman term, in competition
with thermal fluctuations in the case of a fixed modulus mo-
ment.13 The fluctuations of the magnetic moment M around
its expectation value (B3) are thus weak at low temperatures,
even if the magnetization is small.

13A temperature dependence will occur when the modulus of the
magnetic moment is limited by an upper bound M0. Equation (B4)
remains nevertheless a good approximation for the ZFS, provided√

βγM0 � 1.
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2. Magnetic behavior of two interacting moments

We now consider the magnetic behavior of a dimer of
nanoparticles placed at a distance d along the z axis (see
Fig. 1), each of them described by the heuristic model of the
previous Sec. B 1, and coupled by the dipole-dipole interac-
tion energy originating from their magnetic moments

V (M1,M2) = M1 · M2 − 3Mz
1Mz

2

d3
. (B5)

The magnetization-dependent part of the total energy of such
a dimer, subject to an external magnetic field H, can then be
written in the form

E2(M1,M2, H) = E1(M1, H) + E1(M2, H)

+ V (M1,M2) (B6)

as a function of the magnetic moments M1 and M2 of
the two individual nanoparticles, and where E1 is defined in
Eq. (B1).

The partition function of the dimer model system can then
be written as an integral over the absolute values Mi and the
solid angles �i = {θi, φi} of the magnetic moments (i = 1, 2)
as

Z2 =
∫ M0

0
dM1 M2

1

∫ M0

0
dM2 M2

2

×
∫

d�1

∫
d�2 e−βE2(M1,M2,H). (B7)

As discussed in Sec. IV, the existence of a saturation value of
the magnetization is expected on physical grounds, and this is
why in the above equation we introduced an upper limit M0

in the integrals over the magnitude of the magnetic moments.
We assume that the external magnetic field is applied along
the z direction and introduce the reduced magnetic moments
μi = Mi/M0. Then, an analytical evaluation is possible for
two of the six integrals in Eq. (B7), and the partition function
Z2 can be expressed as

Z2(h, K,C) = 4π2M6
0

∫ 1

0
dμ1 μ2

1 e−Cμ2
1

∫ 1

0
dμ2 μ2

2 e−Cμ2
2

×
∫ +1

−1
du1 ehμ1u1

×
∫ +1

−1
du2 ehμ2u2 e2Kμ1μ2u1u2

× I0

(
Kμ1μ2

√(
1 − u2

1

)(
1 − u2

2

))
(B8)

in terms of four integrals that can be calculated numerically.
We have defined the temperature-dependent dimensionless
parameters h = βM0H , K = βM2

0/d3, and C = βγM2
0,

while I0(z) denotes the modified Bessel function of the first
kind and of order 0.

A similar integral with an additional factor of μ1 in the
integrand, normalized with the partition function Z2, allows
us to compute the expectation value 〈M1〉, related to the
magnetic moment of the first nanoparticle in the dimer. In
the absence of an external field, H = 0, such an expectation
value vanishes since any positive contribution to the integral
is compensated by a symmetrical negative one.
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−0.5

0

0.5

1

K/C = (γd3)−1

M
z 1
/
M

0

0 2 4 6 8 10

P1(Mz
1/M0)

FIG. 8. Probability density in thermal equilibrium of the z com-
ponent of the magnetic moment of the first nanoparticle of the dimer
as a function of the interaction strength parameter K , scaled with C.
The distributions, that are shown in vertical cuts in color scale, have
been evaluated at low temperature such that C = 50.

The corresponding numerically evaluated probability den-
sity in thermal equilibrium P1 of having a magnetic moment
Mz

1 is shown in Fig. 8 for C = 50 as a function of the in-
teraction strength parameter K , scaled with the value of C.
While the probability density remains symmetric around zero
magnetic moment in the z direction, a striking change in be-
havior occurs when the interaction strength increases beyond
the value at which γ d3 = 1. While the probability density of
the magnetization of the first nanoparticle has large values
around zero magnetization below the interaction threshold,
such a quantity exhibits two peaks for saturated magnetic mo-
ments in positive and negative z direction above the threshold.
Therefore, Fig. 8 presents, at the qualitative level, a similarity
with the χ > 0 sector of Fig. 3 discussed in Sec. IV. Re-
membering that within our model the ZFS of a single particle
(B4) is given by χ1 = (2Vγ )−1, the threshold corresponds to
a value of the susceptibility of χ1,c = d3/2V , and coincides
with the value of Eq. (8) found in Sec. III for the critical
susceptibility χ z

c in the z direction. Above the threshold, we
observe the emergence of an interaction-induced magnetic
moment that corresponds to aligned and saturated moments
of the two dipoles. If one adds an external magnetic field,
this large total moment will then result in a superparamagnetic
behavior.

Our heuristic model, allowing for a variable magnetic mo-
ment in each nanoparticle, demonstrates the reduced role of
thermal fluctuations at equilibrium, with the corresponding
ordering of mesoscopic dimers beyond a critical value of
the interparticle interaction. Such a behavior should be con-
trasted with the case of a dimer constituted by two interacting
magnetic moments of fixed magnitude, where the magnetic
response is always paramagnetic and increasing the interpar-
ticle interaction continuously increases the magnetic stiffness
of the system.
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FIG. 9. Red dots: critical susceptibility χ z
c,N [scaled by the dimer

result χ z
c ; see Eq. (8)] as a function of the number N of nanoparticles

in the chain above which aligned magnetic moments appear in the
longitudinal direction. Black dashed line: asymptotic value of the
critical zero field susceptibility for large N , χ z

c,∞ = χ z
c /2ζ (3) �

0.42χ z
c , where ζ (3) � 1.2 is Apéry’s constant. Inset: sketch of a

chain of N identical spherical metallic nanoparticles with radius
a and zero-field paramagnetic susceptibility χ > 0, separated by a
center-to-center distance d .

APPENDIX C: MAGNETIC ORDER IN THE
LONGITUDINAL DIRECTION OF A CHAIN

OF PARAMAGNETIC NANOPARTICLES

The finite magnetic moment at vanishing applied magnetic
field found in the longitudinal configuration using the micro-
scropic model of Sec. V [see in particular Fig. 5(b)] in the
case of a nanoparticle dimer with individual paramagnetic
ZFSs calls for a more systematic study of such an instabil-
ity as a function of system size. Therefore, we search for
the conditions favoring the ordered phase with finite mag-
netic moments. In this Appendix, we thus extend the results

obtained for a mesoscopic dimer to the case of a linear chain
comprising N identical metallic nanoparticles aligned along
the z axis, with a radius a, and separated by a center-to-center
distance d , as sketched in the inset of Fig. 9. The nanoparticles
are assumed to have the same size and thus the same orbital
ZFS (see Appendix A), which we take to be paramagnetic
(χ > 0).

Within the linear-response approach of Sec. III, the set of
self-consistent equations (3) and (4) can be straightforwardly
generalized to the case of N interacting nanoparticles. This
leads for vanishing external magnetic field (H = 0) and for
the longitudinal configuration (σ = z) to the system of linear
equations

Mz
i − χ

χ z
c

N∑
j=1

(i �= j)

Mz
j

|i − j|3 = 0 (i = 1, . . . ,N ), (C1)

where Mz
i is the z component of the magnetic moment of the

ith nanoparticle in the chain. The set of equations (C1) defines
an N × N matrix and has nonvanishing solutions Mz

i �= 0
only if its determinant is zero, thus determining the critical
susceptibility χ z

c,N above which aligned magnetic moments
appear in the chain of N nanoparticles.

In Fig. 9 we display our results for χ z
c,N as a function of

N by red dots. As can be seen from the figure, χ z
c,N decreases

as a function of N to reach a plateau for which it is about
a factor of two smaller than the critical ZFS of the dimer
χ z

c [cf. Eq. (8)]. While the plateau is approached for modest
values of N , an analytic result can be obtained in the limit
N � 1. Performing the Fourier transform of Eq. (C1), it is
straightforward to demonstrate that the saturating value of
χ z

c,N is given by χ z
c,∞ = χ z

c/2ζ (3) � 0.42χ z
c , where ζ (3) is

Apéry’s constant. Such an asymptotic value of the critical ZFS
is shown by a dashed line in Fig. 9. The tendency favoring
the appearance and the alignment of the magnetic moments in
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FIG. 10. Colored dots: z component of the zero-field total magnetic moment per particle mz
N = ∑N

j=1 Mz
j/N (scaled with the Bohr

magneton μB) as a function of the chain length N and for increasing temperature T (in units of the Fermi temperature TF) obtained using the
microscopic quantum-mechanical model of Sec. V and Appendix A. The parameters are kFa = ζ1,36 � 42.97 and d = 3a. In the figure, the
solid lines are guides to the eyes.
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the longitudinal configuration is a consequence of the increase
of the number of other particles with which one nanoparticle
within the chain interacts through the long-range magnetic
dipolar coupling.

To gauge the relevance of the above considerations de-
duced from the linear-response approach, we now adopt
the microscopic quantum-mechanical model of Sec. V (see
Appendix A for details) and show in Fig. 10 the TMMPP
mz

N = ∑N
j=1 Mz

j/N resulting from such a model. As can be
seen from Fig. 10, the spontaneous TMMPP (i.e., for H = 0)

increases as a function of N . Moreover, it can be concluded
from the results of Fig. 10 that, as expected, lower temper-
atures favor the appearance of aligned magnetic moments
within the chain.

As discussed at the end of Appendix B, we stress here
the difference between the above considered case of a chain
of mesoscopic dipoles with that of microscopic moments,
where thermal fluctuations prevent, at finite temperature, the
appearance of long-range order for infinite one-dimensional
systems with short-range interactions [49].
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