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Nonreciprocal photocurrent in the nonlinear response of two-dimensional models
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Monolayer two-dimensional crystalline systems with broken inversion symmetry have shown unique optical
response properties. We calculate the nonreciprocal photocurrent in the nonlinear response of two-dimensional
models involving the Berry connection in the presence of impurity scattering processes. Our results are based
on quantum kinetic theory, where we calculate the nonequilibrium distribution function of the valence and
conduction bands. We find that the significant current peak emerges at the interband absorption threshold in the
electron-doped system and that the peak is remarkably sensitive to the electron density as well as the effective
band masses. The current originates from trigonal warping and increases when the warping hopping parameter
increases as well the band masses. A nonlinear Hall response is equally obtained for certain model Hamiltonian
parameters. Our findings provide an alternative platform for nonlinear light-matter interaction engineering.

DOI: 10.1103/PhysRevB.105.085403

I. INTRODUCTION

The study of nonlinear electromagnetic responses [1–3]
in materials can be extremely good as a classification tool
and to probe material properties and has received much
attention [4–10]. Nonlinear responses typically require sys-
tems that lack inversion symmetry, allowing an asymmetric
photoexcitation of carriers, and to stimulate extraordinary
discoveries like nonreciprocal currents [11–15] and Hall ef-
fects [16–23] in time-reversal invariant systems. The recent
activities are motivated by the state-of-art experimental de-
velopments because the generation of terahertz harmonics up
to the seventh order has been reported in graphene at room
temperature [24–27].

It is worthwhile exploring approaches to photocurrent
generation beyond conventional solar cells based on p-n junc-
tions and magnetic elements [28,29]. A promising alternative
source of photocurrent is the photovoltaic effect, a nonlinear
optical response that yields net photocurrent with net polariza-
tion. The second-order optical response to a time-dependent
electric field in noncentrosymmetric materials is a kinetic
effect and is a type of nonlinear optical response that includes
a static, DC part responsible for rectification, shift and in-
jection currents, and the resonant photovoltaic effect [2,30–
46]. Astonishingly, DC phenomena differ in those the current
directions and control by an external electric field and intrinsic
symmetries and materials properties. They are connected to
topology and underlie photovoltaic devices [47–50].

It would be worth analyzing the photovoltaic effect in a
phenomenological approach which is stemming from spa-
tial symmetry and the possibility of expanding quantities
as perturbation series [51]. Photovoltaic theory is based
on asymmetry under spatial inversion in a noncentrosym-
metric medium and the photocurrent is expressed by J =
〈E, κ l , E〉 + iκc · (E × E∗) where κ l (c) is the tensor of third
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(second) rank and indicates a linearly (circularly) polarized
current, and E represents an applied electric field with a spe-
cific polarization. The photovoltaic currents are sensitive to
light polarization and linear or circular photovoltaic effects are
distinguished. The latter is because of the conversion of pho-
ton angular momentum to the translational motion of charge
carriers. The symmetry argument on inversion implies that κ l

has symmetry features and, thus, the linear photovoltaic effect
can occur in any piezoelectric materials. However, κc contains
antisymmetric features and therefore it is a pseudotensor and
the circularly polarized current can occur in any gyrotropic
medium or chiral crystals [30].

The nonlinear optical physics has gained with the advanced
two-dimensional (2D) materials, as these newly discovered
materials provide a novel 2D platform to investigate a
multitude of nonlinear optical effects. In addition, the non-
linear response has been studied in 2D crystalline systems
represented by graphene, transition-metal dichalcogenides
(TMDCs), and black phosphorus [47,49,52–55] and has ex-
hibited a variety of fascinating phenomena owing to their
unique electronic and optical properties, which differ from
their bulk counterparts. The 2D materials satisfy several crite-
ria required by an ideal nonlinear material, including a large
and ultrafast nonlinear optical response, broadband and tun-
able optical absorption, and high chemical and mechanical
stability.

The symmetry of the crystal lattices of 2D materials and
their crystal orientations are vital for having the photovoltaic
effect. The graphene lattice belongs to the D6h point group,
meaning that it is a centrosymmetric material; thus, second-
harmonic generation in graphene is a forbidden nonlinear
optical process, however, third-harmonic generation is al-
lowed, which makes it a suitable material for nonlinear optical
applications [25]. In contrast, TMDC monolayers belong to
the D3h point group at the � and are noncentrosymmetric,
hence second-harmonic generation is the lowest-order nonlin-
ear optical process [56,57]. For having the photovoltaic effect
in TMDC at the K point, the point group might be broken.
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In noncentrosymmetric crystals the violation of the principle
of detailed balance gives rise to an asymmetric momentum
distribution for nonequilibrium electrons and holes.

It has become evident that the perfect photovoltaic cal-
culations need a remarkable detailed knowledge of the
nonthermalized charge carriers. However, general photo-
voltaic features can be explained by considering the band
structure of the studied system. In this case, here, we con-
sider a generic model Hamiltonian with adjustable and useful
parameters to describe a gapped system with a linear or
parabolic dispersion relation. To be specific, the physics of
the nonlinear photocurrent of gapped graphene, phosphorene,
thin-film topological insulators, and TMDC can be explained
by this model using appropriate range of the parameters. We
demonstrate that the static nonlinear response to polarized
light, whether linear or circular polarizations, is dominated
by a nonreciprocal current because of the interplay of topo-
logical properties, the Berry connection and bands topology
influenced by trigonal warping and scattering processes. We
refer to this response as a nonreciprocal photocurrent (NPC)
where interband optical transition is considered. Our nu-
merical results show that nonlinear optical responses are
extremely sensitive to tiny changes in the materials’ electronic
properties.

This paper is organized as follows: The model Hamilto-
nian, trigonal warping, quantum kinetic theory, and photo-
voltaic effect in 2D systems are discussed in Sec. II. Numeric
results for nonlinear DC current are presented in Sec. III, and,
finally, we wrap up the main results in Sec. IV.

II. MODEL HAMILTONIAN AND QUANTUM KINETIC
THEORY

We consider a direct-gap semiconductor at zero temper-
ature with the total Hamiltonian H = H0 + HE , where the
interaction with the time-dependent external field with a
monochromatic light wave is represented by HE = eE(t ) · r
where e is the electron charge. Let us consider a generic low-
energy continuum noninteracting model Hamiltonian, which
describes direct band gap semiconductors in 2D systems and
can describe gapped systems with linear and parabolic disper-
sion relations,

H1 = t0a0k · σ + h̄2k2

2me
(αc + αvσz ) + �

2
σz, (1)

and trigonal warping Hw contribution,

Hw = t1a2
0(k · σ ∗)σx(k · σ ∗), (2)

where H0 = H1 + Hw and the Pauli matrices σ = (σx, σy)
acts on the two component wave functions. Notice that k =
k(cos θ, sin θ ), � is the band gap energy, t0 and t1 are hopping
parameters, me is the electron bare mass, (αc ± αv )−1 is the
effective conduction (valence) band mass, and a0 is a lattice
constant. To have a nonlinear photocurrent, the studied system
might break the inversion symmetry, therefore, all terms in the
Hamiltonian are related to broken spatial inversion symme-
try. Trigonal warping causes band dispersion to be strongly
anisotropic and thus the topology of the bands play an essen-
tial role in the NPC.

The dispersion relations are given by |H0 − ε| = 0, and
thus

εs(k) = h11 + s
√

h2
z + |h12|2,

where s = ± denotes the conduction and valence bands, re-
spectively, and

h11 = h̄2k2

2me
αc,

hz = �

2
+ h̄2k2

2me
αv,

h12 = t0a0(kx − iky) + t1a2
0(kx + iky)2. (3)

The effective-mass approximation restricts our theory to a
small energy range in the vicinity of the band edge, although
the large effective band masses ensure its applicability to high
excitations. We discuss how the most physical behavior of the
nonlinear optical response is sensitive to the band masses.

Nonlinear photocurrent response

The quantum kinetic theory based on the density matrix
[58–60] has been successful in describing interband transi-
tions in the presence of scattering terms.

Based on the density-matrix equation, the single-particle
density matrix is given by ρ = |ψ〉〈ψ | and the dynamic of it
obeys the quantum Liouville equation [60],

∂ρ

∂t
+ i

h̄
[H0, ρ] + J[ρ] = − i

h̄
[HE , ρ], (4)

where J[ρ] is the scattering term which takes the form within
the Born approximation and we assume the correlation func-
tion 〈U (r)U (r′)〉 = niU 2

0 δ(r − r′), with ni being the impurity
density. The scattering term is given by

J (〈ρ〉) = 1

h̄2

∫ ∞

0
dt ′

〈[
U,

[
e−iH0t ′/h̄UeiH0t ′/h̄, ρ

]]〉

= 1

h̄2

∫ ∞

0
dt ′〈[U, [U (t ′), ρ]]〉, (5)

where the average is defined over the impurity. The single-
particle density matrix can be decomposed in diagonal ρd and
off-diagonal ρod parts [60] and, thus, we can define

Jd [〈ρd〉] ∼ 〈ρd〉
τ1

,

Jod [〈ρod〉] ∼ 〈ρod〉
τ2

, (6)

where τ1 and τ2 represent the relaxation times in the intra- and
interband. To get an estimate for the relaxation times τ1 and
τ2, we define the density matrix averaged over the impurity
as f = 〈ρ〉. By making use of Eq. (5) and for the elastic
scattering, the band-diagonal part of the scattering term, we
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have

Jd [ fd,k] = 2π

h̄

∑
m′k′

〈
U mm′

kk′ U m′m
k′k

〉
( fd,k − fd,k′ )δ

(
εm

k − εm′
k′

)

= 2π

h̄
fd,k

∑
m′k′

〈
U mm′

kk′ U m′m
k′k

〉(
1 − fd,k′

fd,k

)
δ
(
εm

k − εm′
k′

)

= fd,k′

τ1
(7)

where the relaxation time is given by

1

τ1
=2π

h̄

∑
k′

(
1− fd,k′

fd,k

){〈
U 11

kk′U 11
k′k

〉
δ
(
εc

k−εc
k′
)
δ
(
εc

k − εc
k′+G

)}
.

(8)
Pursuing the same calculations starting by using Eq. (5) for
the elastic scattering, the band-off-diagonal part, we thus have

1

τ2
= π

h̄

∑
k′

{〈
U 11

kk′U 11
k′k

〉
δ
(
εc

k′ − εc
k

)

− 〈
U 11

kk′U 22
k′k

〉 fod,k′

fod,k
δ
(
εv

k′ − εv
k

)

− 〈
U 11

kk′U 22
k′k

〉 fod,k′

fod,k
δ
(
εc

k − εc
k′
)}

. (9)

Even simple models for impurity centers give the linear and
circular second-order optical current. We can consider the dis-
order as U (r) = U0

∑
i δ(r − ri ) and define matrix elements

of U ss′
kk′ as

U ss′
kk′ = 〈

ψ s
k

∣∣U (r)
∣∣ψ s′′

k′
〉

= U0
h∗

12(k)h12(k′) + Dk
sDk′ s

′′

(
Dk

s2 + |h12(k)|2)1/2(
Dk′ s

′ 2 + |h12(k′)|2)1/2 ,

(10)

where the eigenvector of the system, H0|ψ s〉 = εs(k)|ψ s〉 can
be easily obtained as

|ψ s〉 = 1√
Ds2 + |h12|2

(−h12

Ds

)
, (11)

where Ds = hz − s(h2
z + |h12|2)1/2.

The density matrix can be expanded in the powers of
the electric field, f = f (0) + f (1) + f (2) + · · · [60] and thus
the quantum kinetic equation provides the time evolution of

the diagonal f n
d = 〈ρn〉 and off-diagonal f n

od = 〈ρn〉 parts;

∂ f n
d

∂t
+ i

h̄

[
H0, f n

d

] + J[ f n] = − i

h̄

〈[
HE , f (n−1)

d

]〉
,

∂ f n
od

∂t
+ i

h̄

[
H0, f n

od

] + J[ f n] = − i

h̄

〈[
HE , f (n−1)

od

]〉
. (12)

Therefore, we will get

∂ f n
d

∂t
+ i

h̄

[
H0, f n

d

] + f n
d

τ1
= DE

(
f (n−1)
d

) − Jd
[

f n
od

]
,

∂ f n
od

∂t
+ i

h̄

[
H0, f n

od

] + f n
od

τ2
= DE

(
f (n−1)
od

) − Jod
[

f n
d

]
, (13)

where DE ( f (n−1)
i ) = − i

h̄ 〈[HE , f (n−1)
i ]〉 is the driving term and

essentially contains the covariant derivative as

− i

h̄

〈[
HE , f (n−1)

]〉 = eE
h̄

· {∇k f (n−1) − i
〈[
Rk, f (n−1)

]〉}
,

where the first term on the right-hand side contains the
Fermi-surface information and the second term shows the
Fermi sea response and the Berry curvature effects. Rss′′

kk′ =
i〈ψ s

k |∇k′ |ψ s′′
k′ 〉 is the Berry connection and, in order to calcu-

late it, we need to calculate ∇k|ψ s〉. Therefore, by making use
of all derivatives, the Berry connection can be obtained as

Rss′′
kk′ = i

〈
ψ s

k

∣∣∇k′
∣∣ψ s′′

k′
〉

= −i
f s′′

(k′)(
Ds2+|h12|2

)1/2(
Ds′ 2+|h12|2

)3/2 [h∗
12h12 + DsDs′′

]

+i
[(h∗

12∂kh12+Ds∂kDs′′
)k̂+ 1

k (h∗
12∂θh12 + Ds∂θDs′′

)θ̂](
Ds2 + |h12|2

)1/2(
Ds′ 2 + |h12|2

)1/2 ,

(14)

where f s(k) = ∇k(Ds2 + |h12|2)/2 and Rs′s
k = R∗ss′

k is sat-
isfied. Notice that the crystal asymmetry has been usually
incorporated into the Berry connection.

It will be clear soon that the off-diagonal contributions
are related to NPC on nonlinear optical response. Notice that
f (0)
d = f0(εk ) and f (0)

0d = 0 where f0(ε(k)) is the equilibrium
Fermi-Dirac distribution function. In this stage we follow the
perturbation recipe to calculate the first- and second-order
density matrices, f (1)

od,k(t ), f (1)
d,k(t ) and f (2)

od,k(t ) and f (2)
d,k(t ).

Therefore, all single-density-matrix terms can be written as

f (1)
d,k(t ) =

∫ t

−∞
dt ′e− t−t ′

τ1
{
eE(t ′) · ∇k f0(ε) − Jd

[
f (1)
od,k(t ′)

]}
,

f (1)
od,k(t ) =

∫ t

−∞
dt ′e− t−t ′

τ2 e−iεc (t−t ′ )/h̄
{ − eE(t ′) · iR12

k

[
f0(εc) − f0(εv )

] − Jod
[

f (1)
d,k(t ′)

]}
eiεv (t−t ′ )/h̄,

f (2)
d,k(t ) =

∫ t

−∞
dt ′e− t−t ′

τ1
[
eE(t ′) · {∇k f (1)

d,k(t ′)
} − Jd

[
f (2)
od,k(t ′)

]]
,

f (2)
od,k(t ) =

∫ t

−∞
dt ′e− t−t ′

τ2 e−iεc (t−t ′ )/h̄

× [
eE(t ′) · {∇k f (1)

od,k(t ′) − i f (1)
od,k(t ′)

[
R11

k − R22
k

]} − Jod
[

f (2)
d,k(t ′)

]]
eiεv (t−t ′ )/h̄. (15)
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Now, by considering whether the external electric field is
that of linearly or circularly polarized light, namely E(t ) =
E (î cos θp cos ωt + ĵ sin θp sin ωt ) where θp = 0 or ±π/4, re-
spectively, we can solve Eq. (15) and then the optical current
will be obtained by

j = − e

h̄

∫
dk
4π2

Tr[vfk], (16)

where the velocity tensor h̄v = DH0
Dk . By expanding the co-

variant derivative, the velocity is given by h̄v = ∇kε(k) −
i[R,H0] and, eventually, the total current is

js = js
d + js

od

= − e

h̄

∫
dk
4π2

{∇kε
s(k) fkδss′ − iRs′s

k [εs(k) − εs′
(k)] fk,ss′

}
,

(17)

where the first and second terms refer to the intra and in-
terband contributions, respectively. To capture the TNPV
current, the electric field needs to be incorporated into the
time-evolution operator, leading to the scattering term.

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present our results of the second-order
optical current provided by Eqs. (15) and (17). We set � =
0.32 and t0 = 2.34 eV, a0 = 1.82

√
3Ȧ. We also set αc = 0.5

and αv = 0.75, otherwise, we explicitly give those values.
We consider distinct values of the trigonal warping term
t1, about −0.34, −0.64, and −0.94 eV and the relaxation
time is considered to be a constant; τ = τ1 = τ2, varying
(0.5–1.5) ps. The electron densities are considered to be
(1 − 4) × 1012 cm−2. Moreover, we ignore Jd and Jod terms
appeared in Eq. (15) in our numerical calculations.

Notice that the Hamiltonian parameters can be fixed for
a real system, for instance, � = 1.82(0.91), t0 = 2.34 (048
along the x direction only), t1 = −0.34(0.003) eV, a0 =
1.82

√
3 (along x is 2.23 and y is 1.64) Ȧ and αc = 0.02(1.660)

and αv = 3.08(0.683) for MoS2 (phosphorene), respectively
[61,62]. The averaged band masses,

√
mxmy, are considered

for phosphorene.
To begin with, the contour plot of the dispersion relations

of the Hamiltonian associated with the conduction and va-
lence bands is shown in Fig. 1 for the two different warping
values t1 = −0.34 and = − 0.94 eV. The anisotropic behav-
ior of the dispersion relations increase upon increasing not
only the deeper energy but also the value of warping. The
difference between the band masses can manage a discrepancy
between the conduction band and the valence band.

The nonlinear DC currents caused by Eq. (15) arising from
two time-dependent electric fields; the one originated from
f (2) by itself and another came from ∇k f (1). Since the electric
field is represented as E cos(ωt ), the nonlinear current is pro-
portional to cos2(ωt ) = 1

2 + 1
2 cos(2ωt ) where the constant

term provides the nonlinear DC current.
The nonlinear DC currents are presented in Fig. 2 in terms

of warping values along the x and y directions. The value of
the nonlinear DC current increasing by increasing the trigonal
warping term t1 and its jump emerges at the interband absorp-
tion threshold. By increasing the light frequency, electrons

FIG. 1. Contour plot of the energy dispersion of the conduction
and valence bands around with iso-energy dashed lines as a guide to
the eye for different t1 = −0.34 and −0.94 eV in the top and bottom
panels, respectively. The valence bands are plotted in panels (b) and
(d); however, the conduction bands are shown in panels (a) and (c).
Strong trigonal warping in the bands causes a more discrepancy
between the valence- and conduction-band dispersions with different
band masses.

deeper in the valence band are excited to the conduction band;
increasing the NPC. The existence of the increasing current
occurs until the optical interband transition rate is nonzero
and the latter depends strongly on the structure of the band
structure or the band gap and the value of the effective band
masses. For instance, the range of the increasing of the cur-
rent as a function of the light frequency increases when the
conduction-band mass grows with respect to the valence-band
mass. Interestingly, by applying the electric field along the x
direction, J (2)

y is nonzero for the given values of αc and αv and
a nonlinear Hall response appears. The optical nonlinear Hall
response becomes more minimal by reducing the effective
band masses in the conduction and valence bands. Nonlinear
optical responses are extremely sensitive to small changes in
the material’s electronic properties.

The second-order density matrix has several
terms and a dominate term contains R12

k [∇kε
c(k) −

∇kε
v (k)][ f0(εc(k)) − f0(εv (k))]/[−h̄ω + εc(k) − εv (k) +

ih̄τ−1]2. Our results show that the injection contribution,
which comes from the fact that the electron and holes
have different velocities, and that the coherent k and −k
excitations are imbalanced, as well as the higher-order pole
current, are contributions to obtain the DC nonlinear optical
response in the studied system [30]. Both depend on the
scattering time values, and thus the current is enhanced if the
relaxation time increases. However, anomalous current and
double resonant current include a negligible contribution to
the nonequilibrium DC optical response. On the other hand,
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FIG. 2. Second-order optical response, σ
(2)
i j = Ji

(2)/|IE j |2 (in units of pA m/W) as a function of h̄ω (in units of eV) for linearly polarized
light, θp = 0 along the x and y directions for different hopping terms t1 in eV. The nonlinear Hall response is nonzero for the chosen parameters.
The relaxation time τ = 0.5 ps and the electron density is n = 1 × 1012 cm−2. The NPC jump appears at unique energies because of the
(� + 2εF ) values. The existence of the increasing current occurs until the optical interband transition rate is nonzero and the latter depends
strongly on the structure of the band structure or the band gap and the value of the effective band masses. Strong trigonal warping in the valence
band causes a large discrepancy between the valence- and conduction-band dispersions with different band masses.

the resonance photovoltaic effect is also negligible owing to
particle-hole asymmetry.

It is worth mentioning that the shift current mechanism
originates from the difference of the wave function center of
the electron and hole band states. The shift current ignores
the kinetic processes of relaxation of photoexcited electrons.
Moreover, the shift current is an intrinsic contribution and
does not depend on impurity or the relaxation-time process.
For an almost nonpolar system such as MoS2, phosphorene,
and gapped graphene, the shift current tends to be remarkably
small. Accordingly, it is necessary to treat the nonlinear opti-
cal current as a kinetic phenomenon that is missing in the shift
current [63].

To examine the impact of the band masses, we present the
nonlinear response in Fig. 3 along the x and y directions for
various αv for linearly polarized light with n = 1012 cm−2.
The σ

(2)
i j becomes smaller by reducing the band masses along

both directions. However, our numerical results show that the
nonlinear response rises upon increasing the band masses,
too. The position of the jump changes due to the variations
in the Fermi energy. These results indicate that the NPC is
significantly sensitive to the band masses.

Now we devote our attention to the polarization depen-
dence of the nonlinear DC current. As we mentioned earlier,
the linear response is allowed for noncentrosymmetric ma-
terials and the circular response is determined in gyrotropic
materials. The linear and circular polarization dependence of
the NPC are shown in Fig. 4. The linear polarization current is
smaller than the circular polarization current. Since the linear
polarization is a sum of the right- and left-circular polariza-
tions, apparently, there are cancellation terms in the linear
polarization current. This suggests a strong unidirectional cur-
rent in response to circularly polarized light. The nonlinear
Hall response J (2)

y becomes smaller in the circularly polarized
light. The negative value of the nonlinear Hall response origi-
nates from the intraband contribution.

Interestingly, the current does change with the Fermi
energy besides the optical transition point owing to � +
2εF. Notice that the many-body electron-electron interaction-
induced renormalization of the self-energy and a large and
nonlinear band-gap renormalization upon adding free carriers
to the conduction band occurs. Therefore, the position of the
peak jump is renormalized by quantum many-body effects and
we ignore those effects. The σ (2)

xx = Jx
(2)/|IEx |2 shows general

features as Fig. 2. In addition, by increasing the electron den-
sity, the Sommerfeld factor [64,65] shows up and our theory
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FIG. 3. Second-order optical response, σ (2)
xx = Jx

(2)/|IEx |2 (in
units of pA m/W) as a function of h̄ω (in units of eV) for linearly
polarized light, θp = 0 along the x direction for different masses,
αv for giving αc = 0.5. Inset shows the nonlinear response along
the y direction. The σ

(2)
i j response becomes smaller by increasing

αv . The relaxation time τ = 0.5 ps and the electron density is n =
1 × 1012 cm−2.
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FIG. 4. Second-order optical response, σ
(2)
i j = Ji

(2)/|IE j |2 (in
units of pA m/W) as a function of h̄ω (in units of eV) for dif-
ferent polarizations, θp = 0 and π

4 along the x and y directions.
The relaxation time τ = 0.5 ps, the warping t1 = −0.34 eV, and the
electron density n = 1 × 1012 cm−2. The nonlinear Hall response J (2)

y

becomes smaller in circularly polarized light.

also accounts for the Sommerfeld factor. To emphasize this
process, Fig. 5 shows the nonlinear DC current found using
the different electron densities. Our numerical results show
that the peak also increases with growing αv or decreasing
αc. Therefore, the peak disappears by making use of larger αc

and smaller αv values. Our numerical results show that there
is also a tiny bump around the peak for the σ (2)

yx = Jy
(2)/|IEx |2

in a greater electron density.
To explore the peak around the interband transition, we

focus on the Sommerfeld factor [64] (for instance see Fig. 5).
The spectral function and the optical linear susceptibility are
given by the real-space Green’s function. In addition, f (1)

od (k)
can be obtained from the k-space Green’s function. The Som-
merfeld factor implies a peak around the optical transition in
the density of states, hence we expect a peak in the current
near the optical transition, which indicates the large density of
states. The latter is proportional to 1/a∗2

B where the effective
Bohr radius a∗

B = h̄2ε/m∗e2 with the reduced effective mass

FIG. 5. Second-order optical response, σ (2)
xx = Jx

(2)/|IEx |2 (in
units of pA m/W) as a function of h̄ω (in units of eV) for linearly
polarized light, θp = 0 along the x direction and different electron
density in units of cm−2. The relaxation time τ = 0.5 ps and the
warping term is t1 = −0.94 eV. The magnitude of the peak is sen-
sitive to the electron density owing to the Sommerfeld factor. This
peak disappears by increasing the values of αc and αv .

between the valence and conduction bands; m∗ = me(αv2 −
αc2)/2αc. This result is in good agreement with our numerical
results explained earlier. The peak in optical absorption near
the band edge originates from the Sommerfeld factor [65] and
its amplitude depends on material parameters.

We explore the effect of the relaxation time τ on the
NPC and results are shown in Fig. 6. The current changes
significantly by changing the relaxation time and when τ is
large, the NPC can be larger, which is helpful for photo-
voltaic solar cell applications. Terms of the form ( f c

0 − f v
0 )

FIG. 6. Second-order optical response, σ (2)
xx = Jx

(2)/|IEx |2 (in
units of pA m/W) as a function of h̄ω (in units of eV) for lin-
ear polarized light, θp = 0 along the x direction and different τ in
ps. The warping term is t1 = −0.34 eV and the electron density is
n = 1 × 1012 cm−2.
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are always present in f (2)
od [47,60], where f c(v)

0 is the Fermi-
Dirac distribution function in the conduction (valence) bands.
However, the denominator contains expressions of the form
[−h̄ω + (εc − εv ) + ih̄/τ ]2, which tend to a smaller value as
τ increases, and thus the peak becomes stronger although
its width does not change because of the ( f c

0 − f c
0 ) term.

Therefore, integrating over k, a larger current emerges owing
to the stronger peak. The presence of τ can also be viewed
as a reflection of Kramers symmetry breaking by the warping
term, which causes the excited carrier distribution to be asym-
metric on the two sides of the conduction band. Although the
σ (2)

yx behaves nonlinearly in terms of τ , our numerical results
show that the nonlinear Hall response σ (2)

yx behaves linearly.
In the system explored here the recombination rate is

smaller than the excitation rate because (i) in noncentrosym-
metric crystals the principle of detailed balancing is broken
for nonequilibrium photoexcited carriers [36], (ii) the electron
mobility is greater than the hole mobility implying different
band masses, and (iii) a separation between the center of the
electron wave-packet and hole packet in real space occurs,
which becomes larger when the discrepancy between two
bands increase.

IV. CONCLUSION

Nonlinear response can be extremely good as a classifi-
cation tool to study materials and allows us to detect novel
physics that are invisible in linear optical response. We have
investigated the second-order static steady-state photocurrent
in a generic two-dimensional crystal and shown nonlinear
DC currents along x and y directions. A strong unidirectional
current in response to circularly polarized light is identi-
fied. The current increases with the charge relaxation time
and trigonal warping coefficient. Our theory incorporates in-
terband scattering, including electric-field-induced scattering
effects. The topological nonreciprocal photocurrent results
from topological effects through the Berry connections, band-
mass discrepancy between the electron and hole, which leads
to a change in the electron wave packet regarding the hole
wave packet, and trigonal warping in the bands which makes
the wave packet different between the conduction and valence
bands. We have shown that the magnitude of the nonlinear
DC current depends on material parameters as well as the
relaxation time. Furthermore, a finite nonlinear Hall response
appears for certain values of the effective band masses. Our
findings provide an alternative platform for nonlinear light-
matter interaction engineering and will stimulate state-of-art
experiments.

The nonequilibrium distribution to second order in the
electric field has a nonzero time average, resulting in a DC
nonlinear optical response. The time average of the total ac-
celeration in the system is nonzero, since the acceleration
oscillates in time as well as the distribution of excited carriers.
This nonzero time average represents a constant acceleration.
The angular average of the acceleration is nonzero owing
to the anisotropy of the excitation originated from trigonal
warping. Subsequently, excited carriers possess a constant
acceleration, and this needs to be controlled by scattering
process, represented by the relaxation time. The presence of τ
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FIG. 7. Second-order optical response σ (2)
xx = Jx

(2)/|IEx |2 (in
units of pA m/W) as a function of h̄ω (in units of eV) along the
x direction for circularly polarized light θp = π/4 in MoS2 with
broken mirror symmetry U = −0.04 eV by using Eq. (A3) for n =
5 × 1012 cm−2. Inset shows the same quantity using the density
matrix for τ = 1 ps. The shift current represents an intrinsic property
and does not depend on impurities. It ignores the kinetic processes
of relaxation of photoexcited electrons. Moreover, the shift current
shows a remarkably small nonlinear optical response for a nonpolar
system.

can also be viewed as a reflection of Kramers symmetry break-
ing by the warping contribution, which causes the excited
carrier distribution to be asymmetric on the two sides of the
conduction band. The longitudinal component of the optical
current depends on τ 2, whereas the Hall current contribution
behaves like τ .

The trigonal warping or strain process is important to pro-
duce nonlinear optical phenomena based on the anisotropic
Fermi surface. This approach can be utilized to extract the
experimentally unknown trigonal wrapping by considering a
system with linearly and circularly polarized light using scan-
ning photocurrent microscopy. The difference of DC optical
responses increases by the trigonal warping. Therefore, by
measuring a significant difference in the value of the responses
of the system at the optical band edge, the role of the trigonal
warping should be recognized.

The impact of the Coulomb interaction on the DC current
is a pertinent question. Since in an absorption photon a pair
of the electron and hole are created therefore a new state
emerges owing to Coulomb interaction [66]. This new state
leads to additional absorption peaks shifted from the funda-
mental absorption edge by the coupling energies. Therefore,
the DC nonlinear optical current should be enhanced when
many-body effects are captured through the Bethe-Salpeter
equation. Moreover, spin photocurrent is another subject that
can be studied by including the spin-orbit interaction term in
the system.
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APPENDIX: SHIFT CURRENT IN MONOLAYER MoS2

WITH BROKEN SYMMETRIES

Monolayer MoS2 has two valley minima at K and K ′. The
symmetry point group at the K point is C3h which contains
the discrete symmetries C3 (threefold rotation), C2

3 , σh (re-
flection by the xy plane), S3 (improper rotation σhC3), and
S2

3 . The former prohibits nonlinear responses like the circular
photovoltaic effect [51] and the fact that crystals with C3h,
D3h, and Td show only the linear photovoltaic effect if the
total angular momentum allows the optical transition where
�l = ±1. There are several ways to activate the DC nonlinear
optical response by imposing an in-plane electric field [67],
vertical gate potential, and strain [68] to break the three-
fold symmetry. The doped MoS2, through single-bias voltage
breaking the mirror symmetry, reduces the point group and
thus we consider a biased system.

Let us consider a low-energy k · p continuum model
Hamiltonian around K and K′ points system [61]:

H0 = � + λSτv

2
σz + t0a0k · σ + h̄2k2

4m0
(α + βσz ), (A1)

and the trigonal warping Hw contribution is given by

Hw = t1a2
0(k · σ ∗

τv
)σx(k · σ ∗

τv
), (A2)

where the Pauli matrices σ = (τvσx, σy) acts on the two-
component wave functions. The spin-orbit couplings in the
valence and conduction bands are considered and τv = ± is
a valley index, and S = ± refers to a spin index. Notice that
k = k(cos θ, sin θ ). All terms in the Hamiltonian are related
to broken spatial inversion symmetry in monolayer TMD. In
the case of monolayer MoS2, all parameters are a0 = a/

√
3,

a = 3.16 Å, � = 1.82 eV, λ0 = 69 meV, λ = −80 meV, t0 =

2.34 eV, t1 = −0.14 eV, α = −0.01, and β = −1.54. Notice
that �l = −τv in MoS2 and thus circularly polarized light is
considered.

The vertical bias breaks the mirror symmetry σh and thus
modifies the on-site energies of atoms in three sublayers of
TMDs. We assume a single-gate device in which the induced
potentials take the values U b = 0 and Ut = 2U for layers. Us-
ing simple electronic arguments, the induced potentials for an
applied vertical bias V can be estimated as U = e d

L
ε′
ε

V where
ε, d , ε′, and L denote the dielectric constants and thickness of
ML-MDS and the substrate, respectively. Based on Ref. [61]
we have δ� = −0.1 + 0.2(U + 0.5), δt0 = 0.055 − 0.1(U +
0.55), δα = −0.15U/eV, δβ = −1.95U/eV.

The shift current was proposed, which attributes the
charge separation arising from the asymmetry in the elec-
tron and hole wave functions [69]. This is an intrinsic
effect of the shift current. A two-band model Hamiltonian
was considered to explore the interband optical transition.
The Floquet Hamiltonian is coupled by time-dependent
terms 〈uc| 1

T

∫
H[k − A(t )]eiωt dt |uv〉. The nonlinear optical

response Jj = ∑
i=x,y χ ii

j EiEi is given by

χ ii = πe3

h̄2ω2

∫
dk

(2π )d
δ
(
εc

k − εv
k − h̄ω

)∣∣vi
vc

∣∣2

× (∇kφ
i
cv + Rcc − Rvv

)
, (A3)

where i and j are Cartesian coordinates and φi
cv = Im(log vcv )

maintains the gauge invariant. The interband velocity is also
defined as vcv = i(εc

k − εv
k )Rvc. The Dirac δ function in our

calculations is simulated by a Gaussian function with the
broadening factor 0.01.

Figure 7 shows numerical results based on the shift current
formalism for U = −0.04 eV in comparison with quantum
kinetic theory. In MoS2, the system is nonpolar and the con-
duction and valence bands are made effectively by d orbitals
where charge carriers are less mobile. Therefore, the shift
current tends to be remarkably small as shown in Fig. 7 and,
subsequently, it is necessary to treat the nonlinear optical
current as a kinetic phenomenon that is missing in the shift
current [63].
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