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Quasi-one-dimensional 4He in nanopores
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Low temperature structural and superfluid properties of 4He confined in cylindrical nanopores are theoretically
investigated by means of first-principle quantum Monte Carlo (QMC) simulations. We vary the density of 4He
inside the pore, as well as the pore diameter and the potential describing the interaction of each 4He atom with the
pore surface. Accordingly, the 4He fluid inside the pore forms either a single channel along the axis, or a series of
concentric cylindrical shells, with varying degrees of shell overlap. In the limit of pore length greatly exceeding
its radius, the 4He fluid always displays markedly one-dimensional behavior, with no “dimensional crossover”
above some specific pore radius and/or as multiple concentric shells form, in contrast to what was recently
claimed by other authors [Phys. Rev. B 101, 104505 (2020)]. Indeed, the predicted robustness of one-dimensional
physics suggests that this system may offer a broadly viable pathway to the experimental observation of exotic
behavior of, e.g., junctions of interacting Tomonaga-Luttinger liquids, in an appropriately designed network of
nanopores.
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I. INTRODUCTION

An interacting Bose system cooled toward absolute zero
is believed either to crystallize, or, if it escapes solidifica-
tion, to undergo Bose-Einstein condensation (BEC), with the
concomitant onset of superfluidity (SF), both SF and BEC
occurring at the same temperature Tc, in d = 3 physical di-
mensions [1,2].

A dimensional reduction, effectively achievable exper-
imentally in a number of ways, brings about important
modifications of this behavior. Indeed, while in d = 3, at
temperatures T � Tc, the one-body density matrix plateaus to
a finite value n◦ (known as the condensate fraction) at large in-
terparticle separations, in d = 2 it decays algebraically, while
the superfluid density shows a “universal jump” at T = Tc [3],
in what is generically described as a Berezinskii-Kosterlitz-
Thouless (BKT) phase transition [4].

The situation is completely different in d = 1 dimen-
sion, in which Galilean invariant (continuous) systems
cannot order, even at zero temperature. The low-energy,
long-wavelength dynamics is described by the “universal”
harmonic Tomonaga-Luttinger liquid (TLL) Haldane’s model
(HM) [5], making stringent predictions on the behavior of
several observable quantities. For instance, while there is no
superfluid phase in the thermodynamic (L → ∞, L being
the system length) limit, superfluidity manifests itself as a
finite-size effect. According to the TLL theory, the superfluid
fraction ρS (L, T ) is a universal function of [(LT )/vJ ], vJ

being the superfluid velocity [6], with ρS (L, 0) = 1 [7]. Fur-
thermore, the one-body density matrix displays a power-law
decay modulated by oscillations reflecting the atomic nature
of the fluid at the microscopic scale [8,9]. Striking fingerprints

of the unique behavior are also present in the pair correla-
tion function (PCF), which, according to Haldane’s theory,
features a power-law decay on top of a uniform contribution
∝ n2

0, where n0 is the average one-dimensional (1D) particle
density, and with higher-order harmonics of frequencies that
are multiple integers of 2πn0. Correspondingly, the static
structure factor S(k) exhibits a universal, linear dependence
on k as k → 0, with a slope depending on (nonuniversal)
TLL parameters, and peaks at wave vectors Kl = 2π ln0, with
integer l [5,9–11].

4He is a paradigmatic system displaying all the main fea-
tures of SF and BEC in Bose systems. Thus, a 4He fluid
confined in (quasi) 1D structures appears as a natural play-
ground allowing for the experimental detection of the most
peculiar aspects of 1D TLL physics, most of which remains
yet unobserved. To this aim, several experimental avenues
have been considered to achieve the quasi-1D confinement of
4He, chiefly by adsorbing helium gas inside elongated cavities
of nanometer size diameter, such as those that exist in a variety
of porous glasses [12–17], or nanoholes in Si3N4 membranes
[18], as well as carbon nanostructures [19,20]. Despite the
obvious imperfections of these confining agents (defects, tor-
tuosity, surface corrugation, etc.), the basic physics of an
imbibed fluid should at least broadly mimic that taking place
inside (possibly interconnected [21]) long, smooth cylindrical
channels; and, if the length L of a typical channel greatly ex-
ceeds the characteristic size R of confinement in the transverse
direction (i.e., the radius of the cylinder), quasi-1D behavior
ought to arise.

On the theory side, the phase diagram of 4He confined
in long cylindrical channels of radius R of the order of
1 nm, has been extensively studied with the combined use of
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analytical and numerical methods [7,22–24]. The behavior of
the confined 4He fluid can be qualitatively understood taking
into account basic features of interaction between two helium
atoms, as well as of that of the atoms with the walls of the
cylinder (i.e., the adsorption potential). At sufficiently small R
(typically �4 Å, although this varies depending on the adsorp-
tion potential) and realistic values of the pressure, 4He atoms
line up on a single file along the axis of the cylinder, zero-point
excursions off the axis mainly resulting into a softening of
the repulsion at short distances of the helium pair potential
[25]. Atomic exchanges are suppressed, and the physics of the
system quantitatively approaches the 1D paradigm [26–28].

As R is increased, the structure of the imbibed fluid for
different pore fillings quite generally consists of one (or more)
cylindrical (concentric) shell(s), coaxial with the pore, whose
location and sharpness depend on the pressure and on the
adsorption potential, upon which depends also the presence of
a well-defined file of atoms along the axis; the radial distance
between contiguous shells is roughly set by the repulsive core
of the helium interatomic potential, of the order of 2.5 Å
[7,26,28–30].

Bulk three-dimensional (3D) physics must obviously
emerge as both R, L become macroscopic, i.e., formally in
the R, L → ∞ limit, with R/L held constant (albeit possibly
<< 1) [26]. Under what conditions (quasi)-1D behavior may
be observable in this geometry, especially if R is large enough
to allow for a multishell fluid structure inside the pore, is a
long debated issue. Based on an analysis of the axial PCF
computed by QMC, Del Maestro et al. [26] concluded that,
even for R large enough to accommodate a few coaxial cylin-
drical shells in the pore, the helium fluid that fills the inner
cylinder displays 1D behavior in the L → ∞ limit. This can
be understood by regarding the multishell structure as a set of
coupled bosonic TLLs (see, for instance, Ref. [31]); despite
the low-energy mode gapping due to the coupling between
the TLLs, the “center of mass mode” survives as a gapless,
low-lying degree of freedom, a signature of which is present
in the 1D behavior of the PCF (an extension of this idea,
accounting for effects of disorder, has been recently developed
in Ref. [32]).

This scenario has been recently challenged in Ref. [27],
where, based on an analysis of the scaling properties of
ρS (L, T ), computed by QMC, it is contended that a single
cylindrical shell of 4He, of effective radius as tiny as 1.75
Å, displays 2D, rather than 1D behavior. Specifically, their
claim is that the values of ρS (L, T ) do not conform with
the predictions of the TLL theory, but are consistent instead
with 2D BKT scaling. Furthermore, they argue that even in
the (R/L) → 0 limit there exists nonetheless a characteristic
value of R (presumably dependent on n0 and on the adsorption
potential) where a crossover takes place between 2D and 3D,
i.e., the 4He fluid filling the pore features the same qualities
of bulk 4He. If these conclusions were confirmed, they might
conceivably deal a serious setback to the ongoing experi-
mental effort aimed at observing signatures of TLL physics
in fluids adsorbed in nanopores, as they may place daunting
requirements on the confining agents, in terms of smallness of
diameter size to achieve and/or type of material to utilize.

In this paper we weigh in on the above controversy and
attempt to settle the issue of the effective dimensionality of a

4He fluid in the confines of a cylindrical nanopore, modeled
as a smooth cylindrical channel of length L and radius R, by
performing extensive, first-principle computer (QMC) simu-
lations of a realistic model of 4He in cylindrical confinement.
We consider pores of radius ranging from 3 to 10 Å, as well
as different adsorption potentials, allowing us to explore a
variety of distinct physical settings. Specifically, we go from a
single, tightly confined axial file, or a single cylindrical shell
of 4He atoms, for pores of small radii, to systems enclosed
in wider pores, in which multiple shells form, in some cases
sharply defined, with little or no particle exchanges taking
places between them, in other cases lose shells, only iden-
tifiable as local maxima of the radial 4He density, with 4He
atoms essentially delocalized throughout the system.

We compute the superfluid fraction ρS (L, T ) of 4He inside
the pore, just like in Ref. [33], as well as the axial static
structure factor S(k). As mentioned above, S(k) has a known
analytical form within the TLL, and is expected to display
well-defined scaling properties with respect to the product
LT of pore length L and temperature. This information can
be used to assess the degree to which our simulated systems
conform to the 1D paradigm, or whether there are significant
deviations in some cases.

The main conclusion of our study is that, in the limit
(R/L) → 0, the 1D behavior of 4He is always recovered,
regardless of pore radius and/or shell structure inside the pore,
in contrast with the claim of Ref. [33]. We see no evidence
of any dimensional crossover to 2D or 3D. We attribute the
disagreement between our conclusions and those of Ref. [33]
to the fact that the length L of the systems studied therein
(making use of the same computational technology adopted
here), is insufficient to reach the TLL regime [34]. We gener-
ally confirm both the findings of Refs. [26,30], as well as the
validity of the basic assumption of the theory expounded in
Ref. [32], namely that a single cylindrical shell is a 1D object
as L → ∞, lending support to the notion that the properties
of a fluid in cylindrical confinement may be predicted on the
basis on a formalism of coupled concentric shells.

The paper is organized as follows: in Sec. II we briefly
discuss the microscopic N-particle Hamiltonian for 4He in
a nanopore; in Sec. III we provide and discuss our results,
while in Sec. IV we outline our conclusions and provide some
further future perspectives of our work.

II. MODEL AND METHODOLOGY

We model the system of interest as an ensemble of N
4He atoms, regarded as point particles of mass m and spin
zero, i.e., obeying Bose statistics. The microscopic many-
body Hamiltonian reads as follows:

HN = − h̄2

2m

N∑

i=1

∇2
i +

N∑

i< j=1

V (ri j ) +
N∑

i=1

U (ri ), (1)

where ri is the position of ith atom, ri j ≡ |ri − r j |, and V (r) is
the accepted (Aziz) interatomic pair potential for helium [35].
The last term on the right-hand side of Eq. (1) corresponds
to the one-body potential describing the the interactions of
4He atoms with the walls of a smooth cylindrical channel
of radius R, representing the pore, whose axis is taken along
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TABLE I. Parameters D (well depth) and a (hard core range) of
the 4He-wall adsorption potentials [U term in Eq. (1)] adopted in
this work. The values for choice A (Na substrate) are taken from
Ref. [36], those for B (glass 1) from Ref. [30], and for C (glass 2)
from Ref. [37].

System D (K) a (Å)

A 12.53 3.99
B 32 2.25
C 100 2.05

the z direction (specifically, it is the locus of all points with
x = y = 0).

The expression for U utilized here is described in detail
in Ref. [30]; it is derived from the well-known “3-9” potential
describing the interaction of a particle with an infinite, smooth
wall, and it features an attractive well of depth D, as well
as a repulsive core at short distance of characteristic length
a. These two parameters, together with the radius R, can
be adjusted to reproduce, as closely as allowed by such a
simplified model, the adsorption properties of real pores. In
this work we have made three different choices (summarized
in Table I), not with the aim of reproducing any actual physical
system, but rather of gaining understanding of the physics
of 4He in rather different confining environments. The set
A of potential parameters has been proposed to describe the
interaction of helium atoms with a Na substrate [36], while B
and C, respectively, have been used to model porous glasses
[30,37].

While the parameter sets labeled B and C may be more
closely related to actual experimental systems (i.e., porous
glasses), set A has been included with the aim of exploring
the physics of the confined helium fluid in the presence of a
weak adsorption potential. Alkali metal surfaces are known
for their unusual adsorption properties [38,39]; for example,
a Cs substrate is not wetted at all by liquid helium, whereas
a superfluid 4He monolayer has been predicted to form on
a Li substrate [40]; Na is only slightly weaker an adsorber
than Li. In confined geometries, alkali substrates have been
show to enhance the superfluid response of nanoscale size
fluid parahydrogen clusters [41]. Figure 1 shows the various
potentials considered in this work, for different pore radii.

FIG. 1. Pore adsorption potential corresponding to the parame-
ters in Table I, with pore radius R set to 6 Å (A6) and 10 Å (A10, B,
and C).

Clearly, substrate C is the strongest among those considered
here, whereas, for a given radius R, the well depth of substrate
B is roughly intermediate between that of the other two. The
adsorption potential is nearly flat in the vicinity of the axis of
the channel (r = 0), but displays a minimum off the axis for
R � 3 Å, whose depth decreases with increasing R. It is im-
portant to note that the potential labeled A6 in Fig. 1 is very
similar to that used in Ref. [33], the latter being shifted upward
by about 23 K, compared to ours.

The low temperature properties of the system described
by (1) were investigated in this work by means of QMC
simulations based on the canonical [42,43] continuous-space
worm algorithm [44,45]. As this methodology is extensively
described in the original references, we shall not review it
here. Details of the simulation are standard; the system is
enclosed in a supercell shaped as a cuboid, with periodic
boundary conditions in all directions [46]. We made use of a
fourth-order approximation for the high-temperature density
matrix (see, for instance, Ref. [47]), and all of the results
quoted here are extrapolated to the limit of time step τ → 0.
In general, we found that a value of the time step equal to
1.6 × 10−3 K−1 yields estimates indistinguishable from the
extrapolated ones.

The main physical quantities of interest are the radial 4He
density profile n(r), which provides information on the pres-
ence of one or more shells and their spatial definition, and
the static structure factor S(k), computed along the z direction
(i.e., the axis of the channel). The S(k) is the key quantity that
we use to assess the possible 1D nature of the fluid inside the
pore, based on its scaling behavior with respect to L and T ,
on the expectation that Haldane’s model of Luttinger liquid
ought to apply.

We also compute the superfluid fraction ρS (L, T ), esti-
mated using the standard winding number estimator [48,49],
with the goal of comparing our results to those of Ref. [33],
which are obtained using the same methodology [50]. In prin-
ciple, the scaling of ρS (L, T ) in the L → ∞, T → 0 limit, can
also provide information about the 1D nature of the system;
however, its calculation in the limit of long channels (i.e., the
limit in which the most stringent statements of the TLL apply)
quickly becomes a daunting task, due to the increasingly large
fluctuations of the winding number and, correspondingly, the
impractically long time required to accumulate the statistics
needed to reduce error bars to a meaningful size.

III. RESULTS

In this section we present and discuss our results, chiefly
focusing on the presence of TLL physics in 4He in nanopores,
with the different geometries and adsorption potentials uti-
lized.

A. Dimensionality

We begin by addressing immediately the central issue of
this work, namely the possible crossover from 1D to 2D, and
then from 2D to 3D behavior, which the authors of Ref. [33]
claim take place in the pore as the radius and/or the density
of helium inside are varied. In particular, based on a scaling
analysis of the superfluid fraction ρS (L, T ), they assert that the
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FIG. 2. Top: Radial density profile n(r), computed with respect
to the axis of the pore. The linear 4He density is n0 = 0.25 Å−1. Inset
shows the 4He density projected on a plane along the axis of the
cylinder (brighter colors mean higher density). This result is obtained
with choice A of pore adsorption potential U , for a nominal pore
radius R = 6 Å. Bottom: Same as top panel, but for linear density
n0 = 0.6 Å−1.

crossover from 1D to 2D occurs as soon as the helium atoms
inside the channel no longer form a single file along the axis,
morphing into a cylindrical shell, even one of radius as small
as ∼2 Å.

Figure 2 shows 4He radial density profiles computed at
low temperature (T = 1 K, they remain unchanged at lower
temperature) for a helium fluid inside a pore of radius R = 6
Å, whose adsorption potential parameters are those of set A
in Table I, top (bottom) panel showing the result for linear
density n0 = 0.25 (0.60) Å−1. Also shown are projected den-
sity maps along the axis of the pore, illustrating, together
with the n(r), the structural change taking place as the linear
density is increased, i.e., the helium atoms go from forming a
single axial file at lower density, to a cylindrical shell of radius
slightly less than 2 Å at the higher n0.

These results are quantitatively very similar to those of
Ref. [33] for the same linear densities, albeit their results
are generally obtained with different choices of pore radius
and/or potential parameters. This similarity allows us to make
a cogent comparison of our results and predictions for these
systems with theirs. For the purpose of our analysis, we mo-
mentarily postpone the discussion of the superfluid fraction,
and present instead our results for the axial static structure
factor S(k).

Figure 3 shows our QMC results for S(k), for the two
systems shown in Fig. 2. The key result of TLL that we utilize
to interpret our results is the analytical expression for S(k)
for a system of linear size L at temperature T [10,11]. As
mentioned in Sec. I, its main implications are that, in the

FIG. 3. Static structure factor S(k) computed along the axis of
a pore of radius R = 6 Å, for a linear 4He pore density equal to
n0 = 0.25 Å−1 (top) and n0 = 0.6 Å−1 (bottom). The parameters of
the interaction between 4He atoms and the wall of the pore are
those corresponding to set A in Table I. Data shown pertain to three
different system sizes; the temperature of each simulation is such
that the product LT is constant. Statistical errors are smaller than
the sizes of the symbols. Solid line represents a fit of the data in the
k → 0 limit based on TLL theory, as explained in the text.

L → ∞, T → 0 limits, S(k) a) becomes a function of the
product LT alone b) behaves linearly as k → 0.

The results of Fig. 3 clearly show that both these conditions
are met by our numerical data. In particular, for each of the
two values of n0, the collapse of data obtained at constant LT
for three systems of different lengths (each length differing
from the other two by at least a factor 2), is downright im-
pressive. Our results are consistent with the linear behavior
predicted at low k by the TLL theory (solid lines in Fig. 3),
allowing us to infer the value of the Luttinger parameter
[51]. We obtain K ∼ 1.38 (1.88) for n0 = 0.25 (n0 = 0.60)
Å−1. These values of K , both in the 1 � K � 2 range, are
significantly lower than those reported, e.g., in Ref. [26]; this
is consistent with the weakness of the adsorption potential A,
compared to that utilized in those works (as it has already been
shown for parahydrogen [25], the strength of the potential U
affects the value of K).

The S(k) shown in Fig. 3 displays well-defined peaks in
both cases. For the lower density system, i.e., n0 = 0.25 Å−1,
which as shown above is structurally quasi-1D, the peak is
located at K1 = 2πn0, as expected. On the other hand, for
the case n0 = 0.6 Å−1, i.e., with 4He atoms arranged on a
cylindrical shell, the location of the peak allows one to infer an
effective 1D density roughly equal to n0/2. One may interpret
this by imagining the cylindrical shell as consisting of annuli
coaxial with the pore, the distance between adjacent annuli
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FIG. 4. Superfluid fraction ρS (L, T ) for strictly 1D 4He at linear
density n0 = 0.1 Å−1, computed by QMC for different system sizes,
plotted as a function of the product LT of system size by temperature.
N is the number of particles. Statistical errors on ρS are of the order of
0.007, i.e., considerably smaller than symbol sizes. Finite-size effects
are clearly seen.

being 2/n0, each annulus comprising on average two atoms,
both located off the axis of the pore.

Altogether, the results of Fig. 3 constitute strong evidence
of 1D behavior in both cases, the only effect of the structural
change undergone by the system as it evolves from a single
file to a shell being the above-mentioned renormalization of
the 1D density. There is no evidence whatsoever of any di-
mensional crossover from 1D to 2D for the results obtained in
this work at both linear densities are entirely consistent with
TLL theory. Since, as stated above, we expect our results to
be directly comparable to those of Ref. [33], this apparent
disagreement needs to be addressed.

As mentioned above, the contention of a dimensional
crossover made in Ref. [33] is based on a scaling analysis
of estimates of the superfluid fraction ρS (L, T ). We have
computed ρS (L, T ) in this work as well, obtaining results
which are in quantitative agreement with those of Ref. [33],
at least within the statistical errors of both calculations [52].
We argue that the findings of Ref. [33] are in fact consistent
with TLL theory, if finite-size effects affecting estimates of
ρS (L, T ) are properly taken into account. It is well known that
the superfluid fraction computed by QMC using the winding
number estimator is affected by finite-size effects, in any
dimension; 1D is no exception. In 1D, finite-size corrections
to the estimate of ρS have been extensively studied in the
context of the classical XY model, which is a minimal model
of superfluidity (see, for instance, Ref. [53]).

Figure 4 shows the superfluid fraction ρS (L, T ) computed
for a strictly 1D system, namely 4He, at a linear density n0 =
0.1 Å−1. The estimates are obtained in this work using the
same QMC computational methodology, on systems compris-
ing different numbers N of particles, absolutely comparable
to those utilized in Ref. [33], and plotted as a function of
the product LT . It is important to note that statistical errors
on ρS are of the order of 0.007, i.e., the obvious differences
between results obtained for different numbers N of particles
are well outside statistical uncertainties. The trend is the same
observed in Ref. [33], i.e., for a given value of LT , estimates

of the superfluid fraction obtained with a greater number of
particles are greater in value. Thus, the results of Ref. [33] are
entirely consistent with the 1D scenario.

The contention is made in Ref. [33] that an accurate fit to
the estimates of the superfluid fraction obtained for the system
of linear density n0 = 0.6 Å−1 can be obtained by assuming
a 2D scenario, i.e., in terms of an actual (BKT) superfluid
transition occurring at a finite temperature (around 0.2 K).
Besides the fact that, as noticed above, there is no reason to
discard the 1D scenario, the interpretation of the QMC data
in terms of a 2D BKT transition offered in Ref. [33] (Fig. 10)
is unconvincing, as evidenced by the large finite-size effects
affecting their estimates of ρS (L, T ) below the estimated tran-
sition temperature Tc, which are not at all typical of a BKT
transition (see, for instance, Ref. [54]).

One might wonder if a dimensional crossover may still
take place, perhaps at different n0 and/or pore radius. As
we show below, the results obtained in this work, within the
range of pore radii and density considered, are all amenable
to a description in terms of the TLL theory, as L → ∞. The
crucial point, as we show below, is that one needs to perform
calculations on systems of sufficient length, in order for the
1D physics to emerge.

Figure 5 (top) shows the radial density profile n(r) at
T = 1 K (it is independent of L and remains unchanged at
lower T , within the precision of the calculation) for a 4He
fluid of linear density n0 = 3 Å−1, confined inside a pore of
radius R = 10 Å. The parameters of the adsorption potential
are those of set A in Table I. Clearly, in this case the fluid
is nearly structureless, with two floppy, largely overlapping
concentric shells, arising essentially as a result of the hard core
repulsion of 4He atoms at short distance. At low T (i.e., T �
2 K) quantum-mechanical exchanges of helium atoms become
frequent. An analysis of the number of particles involved in
cycles of exchanges shows that atoms are delocalized between
the two shells (or, as expressed in the formalism of Ref. [32],
“hopping” of helium atoms from one shell to the other occurs).

It might be imagined that such a system ought not conform
to the 1D paradigm, on account of the significant atomic
motion in the transverse direction, especially since it paves
the way to quantum-mechanical exchanges, which underlie
SF in 2D and 3D 4He, but are increasingly suppressed as the
1D limit is approached. However, as shown in the bottom
panel of Fig. 5, our QMC-computed axial static structure
factor displays the same data collapse described above for the
single-file and single-shell systems, i.e., it only depends on the
product LT for sufficiently long L, a hallmark of TLL behav-
ior. We therefore conclude that even this double-shell confined
4He fluid behaves like a 1D system in the thermodynamic
limit, one to which the formalism of Yang and Affleck [32]
ought to be applicable. The value of the Luttinger parameter
K in this case is ∼1.85, again inferred from the low-k behavior
of S(k),

It needs to be stressed that observing numerically the 1D
limiting behavior of cylindrically shaped 3D systems with a
significant spatial extension in the radial direction, requires
that computer simulations be carried out on systems of suf-
ficient length L. To give a sense of how crucial this aspect
is, we discuss in detail the values of ρS (L, T ) at T = 1 K,
computed by QMC for the system of Fig. 5, for the three
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FIG. 5. Top: Radial density profile of a 4He fluid of linear density
n0 = 3 Å−1, confined inside a pore of radius R = 10 Å. The result
shown is at T = 1 K, but does not change appreciably at lower T .
The interaction between 4He atoms and the wall of the pore are
those of set A in Table I. Inset shows the 4He density projected over
a plane perpendicular to the axis of the cylindrical pore; brighter
regions correspond to higher (3D) density. Bottom: Static structure
factor S(k), computed along the pore axis for the same system, at
three different system lengths and temperatures, such that LT is held
constant. Solid line is a linear fit to the data in the k → 0 limit, based
on TLL theory.

quoted lengths. For L = 40, 80 Å, i.e., with N = 120 and 240
4He atoms, the estimate of ρS is the same within statistical un-
certainties, namely 0.95(3). A value so close to unity, obtained
at a relatively high temperature and apparently insensitive on
L might lead one to conclude that the system is behaving
essentially like bulk 4He, i.e., a 3D SF. However, as soon as L
is increased to 160 Å, corresponding to N = 480, ρS falls to
0.70(3), showing how the estimates obtained with the shorter
sizes do not offer a reliable representation of the behavior of
the system in the L → ∞ limit.

It has been explicitly shown in the context of the 2D XY
model how the length L of a quasi-1D system must be signif-
icantly greater than a characteristic length Lc, which grows
proportionally to the perimeter (area) of an empty (filled)
cylindrical shell, in order for the 1D behavior to emerge
[53,55]. To illustrate this point, Fig. 6 shows numerical results
for the superfluid density ρS (L, T ) of an XY ladder system
defined on a L × M lattice, with periodic boundary conditions
in both directions. As shown in the figure, the results obtained
for different numbers M of rungs collapse on the M = 1 curve
(i.e., a 1D system) if the length L of the ladder is rescaled by
M, ρS (L, M, T ) = ρS (Leff, T ), in the L → ∞ limit.

FIG. 6. Superfluid fraction ρS (L, T ) for a 2D XY ladder of length
L = 4096 and with M rungs. Results are shown as a function of LT .
Left panel shows results for M = 1 (green curve: one-dimensional
case), M = 4 (red curve: 4 rungs), and M = 8 (blue curve: 8 rungs).
The same results are shown in the right panel, with the system length
rescaled by the corresponding M, showing the collapse of the curves
onto each other.

B. Role of adsorption potential

We conclude this section by briefly discussing the depen-
dence of the physics of the system on the adsorption potential.
Generally speaking, if the radius of the pore is small (how
small depends on the adsorption potential, but typically R � 4
Å) only a single file of atoms forms along the axis; in the op-
posite limit, i.e., as R becomes large, adsorption of 4He inside
the pore approaches that on a flat substrate, i.e., continuous
growth of a superfluid 4He film as a function of chemical
potential, on top of possibly one or few “inert”, solid layers,
depending on the strength of the substrate. Inside a pore of
diameter of the order of few nm, interesting, intermediate be-
havior can be observed, as adsorption begins to take place near
the surface, and proceeds through the formation of concentric
shells. The degree of floppiness of each shell, and the corre-
sponding overlap of adjacent shells (and quantum-mechanical
exchanges of atoms at low T ), depend on both the value of R
and on the adsorption potential.

Figure 7 shows QMC-computed radial density profiles of
4He inside a cylindrical pore of radius R = 10 Å, for the

FIG. 7. Radial density profiles for a 4He fluid in a cylindrical
pore of radius R = 10 Å. for the three different adsorption potentials
of Table I, labeled accordingly. The linear 4He density in all cases
is 4.0 Å−1. Inset compares profiles for case C of Table I for linear
densities 4.0 and 6.0 Å−1, the latter corresponding to the presence
of two shells. All the results show are at temperature T = 1 K, and
remain unchanged at lower T .
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three different adsorption potentials whose parameters are
summarized in Table I. The 4He linear density n0 = 4 Å−1.
As one can see, as the depth of the attractive well of the
potential is increased, and concurrently the distance of closest
approach a decreases, the outer shell becomes sharper, forms
closer to the substrate, and can pack a greater number of 4He
atoms. For the particular case of potential C, which is the
most strongly adsorbing of the three, only one shell forms,
coating the surface of the pore, of effective 2D density over
0.08 Å−2, i.e., above the 2D freezing density of 4He [56].
Atoms confined within this shell experience very little mo-
bility and exchanges are virtually nonexistent. On increasing
the 4He density inside the pore, a second shell forms, well
separated from one another and with no atomic exchanges
(inset of Fig. 7). On further increasing the density a central
file of atoms may or not appear, depending on geometry and
adsorption potentials, both affecting commensuration.

Very different behavior is observed on the weaker A and
B substrates, in which the outer shell that coats the surface
forms further away from it, and the shells that form are broad,
floppy, and liquidlike, and overlap. For a given choice of ra-
dius and for a specific linear density, the value of the Luttinger
parameter K is lower for weaker adsorption potentials.

IV. CONCLUSIONS

We have carried out in this work extensive QMC simula-
tions at low temperature (typically 1 K or less) of a fluid of
4He atoms in the confines of a cylindrical pore of axial length
greatly exceeding its radius. We have considered different
values of the radius, up to 1 nm, and three different adsorption
potentials, with greatly varying adsorption strength. The main
purpose of this study was to assess recent contentions of
dimensional crossover(s) taking place inside cylindrical pores,
including for values of the pore radius as small as 4 Å, in
correspondence of the formation of a single shell (as opposed
to a single file of atoms along the axis).

Our analysis of the static structure factor, computed along
the axis of the pore, shows data collapse in the limit of
pore length L → ∞, consistently with TLL theory, i.e., the
accepted 1D paradigm, for all values of the linear 4He density
n0, pore radius R, and adsorption potentials utilized in this
work. We also find this to be true regardless of the structure
of the fluid inside the pore, i.e., whether it is a single file of
atoms along the axis, a single hollow shell, or a fluid filling
a section of the pore, in which few overlapping shells can be
identified. This is consistent with the formalism of Yang and

Affleck, which models the multishell structure of the confined
fluid as a system of coupled TLLs, still exhibiting overall 1D
behavior [32].

We find the value of the Luttinger parameter K to fall in
the range between 1 and 2 for the two weaker adsorption
potentials considered, i.e., considerably less than what found
in previous work, in which stronger adsorption potentials were
used. This is consistent with what was found in other calcu-
lations [25], namely that adsorption in confined geometries
characterized by weak potentials can reduce the value of K ,
i.e., bring a fluid close to a topologically protected, quasisu-
perfluid phase, characterized by K < 0.5. Whether a further,
substantial reduction of K could be achieved by selecting even
weaker substrates, e.g., Cs [36], will be the subject of future
studies.

We find that, as long as L/R 	 1, the system always dis-
plays 1D behavior, i.e., we find no dimensional crossover. We
attribute the disagreement between our conclusions and those
of Ref. [33] to the smallness of the system length considered,
and to the incorrect assumption that numerical data for the
superfluid fraction should not be affected by finite-size cor-
rections. In our submission, the data presented in Ref. [33]
are consistent with 1D behavior.

As a final remark, the possibility of clearly identifying TLL
behavior in 4He in nanopores paves the way to a plethora
of possible extension of our research, toward, for instance,
constructing pertinently designed junctions and/or networks
of pores, where to realize in a tunable and controlled system
the novel phases and phase transitions predicted in junctions
of TLLs [57–63], including the ones involving fixed points
at reduced decoherence [64,65], with potentially countless
applications.
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