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In this work, we report the coexistence of type-II Weyl points and triply degenerate points while taking the
nonlocal effect into account in a chiral photonic metamaterial system. The chiral effect introduces a break
in the spatial inversion symmetry, which is necessary for the generation of nodal points. These nodal points
are symmetrically distributed on the kz axis and possess the time-reversal symmetry-protection mechanism.
Remarkably, the projections of all nodal points are connected by a Fermi arc surface state, and it agrees well
with the single monopole charges of these nodal points, which demonstrates the topological characteristics of
the band degenerate points. We theoretically show that the localized Fermi arc can be formed at the interface
between the metamaterial and vacuum, which may improve the compactness of photonic devices. Especially, the
nonreciprocal surface waves can propagate forward around the sharp corner without experiencing backscattering,
which can be used for the robust transmission of information.

DOI: 10.1103/PhysRevB.105.085304

I. INTRODUCTION

The study of topological semimetals [1–3] with protected
band crossing points has been attracting great interest ow-
ing to new physics and potential applications behind them,
such as exotic surface states [4,5], topological communica-
tion [6], and topological lasers [7–9]. Generally, topological
semimetals have three types according to the dimensionality
of the band degeneracies: zero-dimensional points [10–12],
one-dimensional lines [13–15], and two-dimensional surfaces
semimetals [16–18]. Dirac and Weyl points are two typical
cases for the zero-dimensional nodal points which correspond
to fourfold and twofold band crossing points, respectively
[19–21]. In particular, Weyl points originally predicted in
high-energy physics was later observed in solid-state mate-
rials and appeared in pairs with opposite chirality [22–24].
The different slopes of the crossing bands make nodal points
have distinct physical properties in topological semimetals
[25–27]. As shown in Fig. 1, the conventional Weyl cone,
i.e., type-I Weyl point, has a pointlike Fermi surface. The
type-II Weyl point possesses a conical Fermi surface and has a
strongly tilted cone dispersion [28], so its physical properties
are very different from the type-I Weyl point. Type-II Weyl
semimetals have numerous unique transport and optical prop-
erties, including antichiral Landau levels [29] and anisotropic
chiral anomaly [30]. If one of the two bands forming a Weyl
point is flat, the Weyl degeneracy point is exactly at the critical
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transition between type-I and type-II Weyl points, which is
known as the critical-type Weyl point [31–33].

Recently, in addition to Dirac and Weyl fermions, other
exotic new types of topological quasiparticles have been in-
vestigated, which can be hosted by threefold, sixfold, or
eightfold degenerate points in the band structures, advanc-
ing the understanding on band topology and enriching the
family of topological materials [34–37]. Notably, the new
type of three-component fermions can be viewed as an in-
termediate phase between the four-component Dirac and the
two-component Weyl fermions. Triply degenerate points hold
effective integer spin while preserving linear dispersion and
Fermi statistics. They also give rise to Fermi arcs when
projected onto a certain specific equifrequency surface [38].
The topological property of triply degenerate points can be
characterized by the nonzero topological charge [39]. Further-
more, topological semimetals with triply degenerate points
are proposed to have intriguing physics in spectroscopic and
transport properties, such as exotic Fermi surface transition
and large negative magnetoresistance [40–42]. Therefore, a
series of topological materials with triply degenerate nodal
points have been studied theoretically and experimentally
[43,44].

Materials containing multiple topological features have
attracted enormous attention in recent years. The physical
properties and related applications of various topological
semimetals mentioned above have been widely studied in
different systems [45–49], such as condensed matter, elec-
tromagnetic, and acoustic systems. Meanwhile, a lot of effort
has been devoted to searching materials that can possess such
novel topologically protected band crossings simultaneously
[50–54]. Entanglement among different states sometimes
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FIG. 1. Types of Weyl semimetals. (a) Illustrations of a conventional Weyl cone and type-I band dispersion; (b) a critical-type Weyl cone
band dispersion and (c) a tilted Weyl cone and type-II band dispersion. The following illustration shows the dispersion along the z direction,
where the black line and green line correspond to the transverse mode and longitudinal mode, respectively. Only the ky and kz axes among the
three momenta are drawn due to the limited dimensions.

will bring new phenomena. Typically, the entanglement of
superconductivity and topology, that is, topological super-
conductors, is considered to be the way to realize Majorana
fermions [25,55]. For such a consideration, it is meaningful
to study the coexistence of different degenerate points in
a topological material. This will help us to understand the
topological state, deeply study the properties of basic parti-
cles, discover novel physical phenomena, and develop new
electronic devices. Thus, the potential entanglement between
different types of band degenerate points may also be an inter-
esting topic in the future. However, a topological semimetal
with both type-II Weyl points and topologically nontrivial
triply degenerate points has not been studied in a photonic
metamaterial.

In this work, we demonstrate that a photonic chiral meta-
material in the presence of nonlocal effect hosts the type-II
Weyl and triply degenerate points simultaneously. When the
nonlocal effect is ignored, two pairs of Weyl degeneracy
points of the system are exactly at the critical transition be-
tween the type-I and type-II Weyl points, i.e., critical-type
Weyl points. While taking the nonlocal effect into account,
the bulk plasmon dispersion tilts upward, which forms the
type-II Weyl points and triply degenerate points. As an im-
portant signature of the inherent property of the topological
semimetals, the nontrivial Fermi arc surface state exists at
the interface between the chiral metamaterial and vacuum.
COMSOL Multiphysics is used to prove the field localization
on the boundary of the Fermi arc. In addition, the surface
waves are confirmed to be topologically protected, which can
bypass sharp defects by numerical simulations. Particularly,
to clarify the coexistence conditions of these nodal points, we
explore and discuss the phase diagram in chiral metamaterial
with the nonlocal effect. The coexistence of type-II Weyl and
triply degenerate points in the chiral metamaterial reveals a
promising platform for studying the interplay between these
exotic properties and the topological band crossings.

This paper is organized as follows. In Sec. II, we prove
the coexistence of type-II Weyl and triply degenerate points
in a chiral metamaterial. In Sec. III, we exhibit the existence
of localized Fermi arc surface state. In Sec. IV, COMSOL

Multiphysics simulation shows that the Fermi arc is topologi-
cally protected, and the surface waves can bypass defects for

unidirectional robust transmission. In Sec. V, we give the
phase diagram in chiral metamaterial while considering the
nonlocal effect. The conclusion is given in Sec. VI.

II. PHOTONIC TYPE-II WEYL POINTS AND TRIPLY
DEGENERATE POINTS IN A CHIRAL METAMATERIAL

In order to break the spatial inversion symmetry, the
chiral metamaterial with unit cell composed of metallic
helical elements would be a good candidate [56]. To si-
multaneously realize the electric and magnetic longitudinal
modes, metallic helical elements are generally utilized to in-
troduce both electric and magnetic resonances along the z
direction [12,56]. Moreover, the nonlocal effect will bring
about the positive dispersion for longitudinal plasmonic mode
[15,57]. Here, we consider a metamaterial with the following
tensors of relative permittivity, permeability, and chirality:
ε = diag(εt , εt , εz ), μ = diag(μt , μt , μz ), ξ = diag(γ , γ , 0),
where εz = 1 − ω2

ep/ω
2 and μz = 1 − ω2

mp/ω
2 + βk2

z [32]
possess Drude’s dispersion. ω, ωep, ωmp, γ , and β are the an-
gular frequency, effective plasma frequency, magnetic plasma
frequency, chirality parameter, and nonlocal parameter, re-
spectively.

The constitutive relations of the medium are given as

(
D
B

)
=

(
ε0ε i

√
ε0μ0ξ

−i
√

ε0μ0ξ μ0μ

)(
E
H

)
, (1)

where ε0 and μ0 are the permittivity and permeability of
vacuum, respectively.

Combining ∇ × E = iωB and ∇ × H = −iωD, Maxwell’s
equations can be recast to a 6-by-6 matrix form

[(
iκ 0

0 iκ

)
− iω

(
I 0

0 −I

)(−√
ε0μ0ξ μ0μ

ε0ε
√

ε0μ0ξ

)](
E
H

)
= 0,

(2)
where κ = [0,−kz, ky; kz, 0,−kx; −ky, kx, 0] is the antisym-
metric tensor and I is the identity tensor matrix. For the sake
of simplicity, ω is normalized to ωmp and the wave vectors
k are normalized to km (km = ωmp/c, c is the speed of light
in vacuum). In addition, we assume εt = μt = 1, ωmp = 1,
ωep = 2ωmp, and γ = 1 in the present study.
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FIG. 2. The dispersion relation of band structure and the lo-
cations of degenerate points for chiral metamaterial with different
nonlocal parameters. (a) β = 0 and (b) β = −0.047. The other elec-
tromagnetic parameters are the same. The black, purple, and orange
dots indicate the critical-type Weyl points, type-II Weyl points, and
triply degenerate points, respectively. Panels (c) and (d) give the
dispersion along the ky direction, kz is fixed at the type-II Weyl point
(kz = 2.31) and the triply degenerate point (kz = 4), respectively.

The bulk state equation of metamaterial can be described
by the electric field E. Figure 2 presents the dispersion relation
of band structure with different electromagnetic parameters. It
is clearly shown that there are three bands from low frequency
to high frequency and four linear degeneracies along the kz

axis. The chiral metamaterial hosts two pairs of Weyl points
in total. In physical terms, Weyl points are monopoles of
the Berry curvature in three-dimensional momentum space,
which are protected by the orthogonality of the polarizations,
i.e., the bulk plasmon and the circularly polarized propagating
modes [57].

When the nonlocal effect is ignored, i.e., β = 0, Weyl
points in the proposed system are exactly at the critical tran-
sition between the type-I and type-II Weyl points, as shown
in Fig. 2(a). The topological property of the Weyl point can
be characterized by Chern numbers [57,58]. We note that
in a system with time-reversal symmetry, one pair of Weyl
points at k and −k have the same topological charge, because
the Berry curvature satisfies �(k) = −�(−k) [12,39] in the
chiral medium. After the time-reversal operator is applied to
one of the two Weyl points, the other Weyl point with the
same topological charge can be yielded. As shown in Fig. 2,
triply degenerate points and Weyl points are highlighted by
the colored dots. The black, purple, and orange dots indicate
the critical-type Weyl points, type-II Weyl points, and triply
degenerate points, respectively.

When the nonlocal parameter is set as β = −0.047, as
shown in Fig. 2(b), the energy bands in low frequencies tilt
upward and degenerate with that in high frequency, which
generates triply degenerate points. Compared with Fig. 2(a),

the nonlocal effect in the chiral metamaterial generates triply
degenerate points. Nonlocality does not affect the symmetry-
protection mechanism of the system [5]. Therefore, these
newly generated triply degenerate points are also protected
by the time-reversal symmetry. In addition, it is worth noting
that there is still degeneracy for energy bands in low fre-
quencies. However, due to the inclination of the energy band,
the degenerate points become the type-II Weyl points. Triply
degenerate points and type-II Weyl points are represented by
orange and purple points respectively, the positive (C = +1)
and negative (C = −1) chirality of the corresponding points
is marked in Fig. 2(b). The energy dispersion in the vicinity
of the type-II Weyl points forms a tilted cone. Type-II Weyl
semimetals exhibit novel transport properties different from
normal Weyl semimetals [28,59], such as the anomalous Hall
effect, anisotropy of the dynamical conductivity, and the col-
lapse of Landau levels. In order to show the degeneracy of
bands more clearly, as depicted in Figs. 2(c) and 2(d), we give
the dispersion along the ky direction, while kz is fixed at the
type-II Weyl point (kz = 2.31) and the triply degenerate point
(kz = 4), respectively.

Triply degenerate points and Weyl points coexist in the chi-
ral metamaterial while taking the nonlocal effect into account.
As shown in the white dotted boxes in Fig. 2(b), we focus
on the topological characteristics of degenerate points at the
positive kz region. The dispersion relations around the triply
degenerate points and Weyl points are analyzed in detail, as
shown in Fig. 3. The dispersion is along the z direction, where
the black arrow and cyan/yellow arrows correspond to the
transverse and longitudinal modes, respectively. As depicted
in Fig. 3(a), the dispersion in the ω-kz plane is presented at
kx = ky = 0. The dispersions of the longitudinal electric mode
and longitudinal magnetic mode are determined by

εz = 1 − ω2
ep/ω

2 = 0, μz = 1 − ω2
mp/ω

2 + βk2
z = 0. (3)

The transverse mode is expressed by

k4
z + ω4(γ 2 − εtμt )

2 − 2ω2k2
z (γ 2 + εtμt ) = 0. (4)

The degeneracy between the transverse mode and the lon-
gitudinal magnetic mode leads to the generation of type-II
Weyl points (purple dots). Notably, the degeneracy of one
transverse mode and two longitudinal modes will produce
triply degeneracy points (orange dots).

Since the system has rotational invariance in the x-y plane,
the dispersion profiles near degenerate points in wave vector
space kx-kz and ky-kz are the same. The band dispersions
are linear in three-dimensional momentum space along all
directions, as illustrated in Fig. 3. The band structure of the
triply degenerate points in the ω-kx-ky surface is shown in
Fig. 3(b). It is clear that two bands have linear dispersion
along an arbitrary momentum direction, like that in a Weyl
cone, while the third energy band remains flat. As depicted in
Fig. 3(c), triply degenerate points are formed by the crossing
of three nondegenerate bands. On the other hand, the Weyl
point possesses a conical structure with doubly degenerate
linear band crossings, as shown in Fig. 3(d). It can be seen
intuitively that the two bands in low frequencies tilt upward
to form a type-II Weyl point in Fig. 3(e). The group velocities
around the Weyl point along the z direction have the same
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FIG. 3. The band structure of the bulk states. (a) The dispersion along the z direction of a chiral metamaterial with the nonlocal parameter
β = −0.047. The horizontal line represents the dispersion of the longitudinal electric mode. The black and yellow arrows correspond to the
transverse mode and longitudinal magnetic mode, respectively. The band dispersions of triply degenerate points and Weyl points in the kx-ky

plane with (b) ω = ωep and (d) ω = ωmp. Panels (c) and (e) give the band dispersions of triply degenerate points and Weyl points in the ω-k
plane.

sign, which is indeed a unique feature of the type-II Weyl
point [28].

III. FERMI ARC EXISTS AT THE INTERFACE BETWEEN
THE CHIRAL METAMATERIAL AND VACUUM

A landmark feature of the Weyl topological phase is the
presence of exotic surface states with Fermi arc. In the above
discussions, we have seen that there exist triply degenerate
points with positive charge C = +1 and type-II Weyl points
with negative charge C = −1. According to the bulk-edge
correspondence [60], there should be a Fermi arc connecting
degenerate points at different positions. Therefore, it is impor-
tant to examine and compare their surface consequences.

For photons, the vacuum is not an insulator. Different from
electronic materials, there are photonic bands in the vacuum.
Here, in order to study the topological connectivity character-
istics of Fermi arc, we take the y-z plane (x = 0) to be the
interface between vacuum (x > 0) and the chiral metamateri-
als (x < 0). Then, according to the electromagnetic boundary
continuity condition, the surface wave equation can be ob-
tained by numerical calculation [43].

Next, we focus on the dispersion of the bulk state and
Fermi arc near the type-II Weyl and triply degeneracy fre-
quencies. The six equifrequency contours containing both
bulk and surface states on the ky-kz plane are shown in
Fig. 4. Dispersions of the Fermi arc are represented by the
black solid curves at (a) ω = 2.02, (b) ω = 2, (c) ω = 1.98,
(d) ω = 1.25, (e) ω = 1.15, and (f) ω = 1, respectively. As
shown in Fig. 4(b), two orange dots at large wave vector k
represent one pair of triply degenerate points carrying positive
chirality. Figures 4(a) and 4(c) correspond to the frequency

above and below the triply degenerate points. Although great
changes have taken place in the bulk equifrequency surfaces,
it is straightforward to show that a Fermi arc emerges from the
triply degenerate point and tangentially terminates at the light
cone. This clearly verifies the existence of single topological
charge of the triply degenerate point.

One pair of type-II Weyl points with negative chirality at
lower frequency is represented by the purple dots, as depicted
in Fig. 4(e). Nontrivial Fermi arc surface states between the
type-II Weyl point partners are shown in Figs. 4(d)– 4(f). It
serves as an important signature of the topological nature of
the system. At the Weyl degeneracy frequency ω = 1.15, the
projection of two type-II Weyl points are connected by one
Fermi arc, as illustrated in Fig. 4(e). It also agrees with the
single topological charge of type-II Weyl points. In addition,
at frequencies slightly shifted away from the Weyl frequency
[shown as Figs. 4(d) and 4(f)], a k-space gap appears between
the two bulk states. However, the Fermi arc always exists
and remains connected. With the increase of frequency ω,
the bulk state of metamaterial would encircle the vacuum at
a certain value of ω. Thus, the nontrivial Fermi arc surface
state is tangent to the bulk mode of metamaterial instead of the
vacuum state, as shown in Fig. 4(d). In short, the bulk equifre-
quency surfaces change significantly at different frequencies,
the Fermi arc still exists, and is tangent to either metamaterial
or vacuum bulk mode depending on the frequency ω. From
each degenerate point, there is a Fermi arc connecting to the
bulk state of vacuum or metamaterial.

To verify the nontrivial topological properties of the Fermi
arc, as shown in Figs. 4(c) and 4(f), we select two different
propagation constants kz = 3 and kz = 1.5, which are ex-
pressed by the points A and B, respectively. It is shown that
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FIG. 4. Equifrequency contours containing both bulk and Fermi arc surface states on the ky-kz plane at (a) ω = 2.02, (b) ω = 2, (c) ω =
1.98, (d) ω = 1.25, (e) ω = 1.15, and (f) ω = 1. Black solid curves, green solid lines, and blue dashed lines represent the dispersion of Fermi
arc, the vacuum state, and the bulk state of the chiral metamaterial, respectively. The type-II Weyl points and triply degenerate points are
highlighted by the purple and orange dots, respectively.

these surface modes are localized. Moreover, as illustrated in
Figs. 5(a) and 5(c), the amplitude of the Fermi arc surface
states will decay rapidly away from the boundary. It indicates

Metamaterial Vacuum VacuumMetamaterial

|H| maxmin
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FIG. 5. The Fermi arc surface states exist localized field mode
at the interface between the chiral metamaterial (x < 0) and vac-
uum (x > 0). The values of two different propagation constants kz

at points A and B are (a) kz = 3 and (c) kz = 1.5, respectively.
(b),(d) The simulated |H | field distributions are shown by COMSOL

Multiphysics. The fields are localized at the interface for points A
and B.

these surface waves are confined on the interface. Figures 5(b)
and 5(d) show the field distribution diagrams of the surface
modes at the interface between the metamaterial and vacuum.
The results herein can improve the compactness of photonic
devices and facilitate the integration of photonic circuits.

IV. TOPOLOGICALLY PROTECTED FERMI ARC
SURFACE STATES

The topological properties and the corresponding Fermi
arc surface states in the chiral metamaterial are proved by
numerical simulation. As exhibited in Figs. 6(a) and 6(b),
the 2D equal-frequency surfaces (ω = 1.98 and ω = 1) of the
metamaterial are illustrated by blue color. Since the surface
state is in direct contact with the vacuum, the vacuum effect
should be taken into account. The green region represents the
vacuum state. The topologically protected Fermi arc surface
state (black curve) exists at the interface between the vacuum
(x > 0) and metamaterial (x < 0). Then, we choose three
different values of propagation constants kz at points B, C, and
D for ω = 1, which correspond to (d) kz = 1.5, (e) kz = 0.95,
and (f) kz = 2, respectively. Another point A [Figs. 4(c) and
6(a)] represents kz = 3 and ω = 1.98. As shown in Fig. 6(c),
simulation is performed in the x-y plane, z component of the
magnetic field of surface waves at ω = 1.98, which confirms
the surface wave propagates unidirectionally on the boundary
without experiencing backscattering at the sharp corners.

It is similar to point A in Fig. 6(c), because the propaga-
tion constant kz of point B is also located in the middle of
the gap, and the backward scattering-immune unidirectional
transmission can be obtained, as shown in Fig. 6(d). This
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FIG. 6. COMSOL simulation for the surface modes at the interface
between the vacuum (x > 0) and chiral metamaterial (x < 0). Panels
(a) and (b) describe the 2D equal-frequency surfaces and Fermi arcs
(black curves) for ω = 1.98 and ω = 1, respectively. Four different
propagation constants kz at the points A, B, C, and D are (c) kz = 3,
(d) kz = 1.5, (e) kz = 0.95, and (f) kz = 2, respectively. The green
region represents the vacuum state and the blue one is the bulk state
of the metamaterial. Panels (c)–(f) give the simulated surface waves
transportation results corresponding to the cases in (a) and (b), show
the field patterns Hz from simulation, and share the same color map.
Black stars denote the dipole sources for exciting the surface waves.

means that the surface wave cannot propagate in the interior
of the medium, but only along the surface of the medium. In
addition, comparing Figs. 6(c) and 6(d), the amplitudes of
the magnetic field z components at points A and B change
because the selected propagation constants kz are different.
On the other hand, since neither point C nor point D is located
in the common gap region, the surface waves are scattered
into the bulk states by sharp defects. Specifically, the surface
state for point C is very close to the equifrequency contour
surfaces of vacuum, so the surface wave diffuses into vacuum,
as shown in Fig. 6(e). Similarly, the surface wave can also
be scattered to the bulk state of metamaterial for point D,
as illustrated in Fig. 6(f). Therefore, numerical simulations
show that nonreciprocal propagation of the surface waves
is confirmed to be topologically protected. The topological
origin of the unidirectional transmission waves is due to the
existence of only one Fermi arc in the gap region [Figs. 6(a)
and 6(b)].

V. PHASE DIAGRAM IN CHIRAL METAMATERIAL
WITH CONSIDERING THE NONLOCAL EFFECT

In the previous discussion, the nonlocal parameter β =
−0.047 is an example to analyze the coexistence of type-II

Weyl points and triply degenerate points. Since we are inter-
ested in studying the coexistence of these nodal points, we
further explore and discuss the phase diagram in chiral meta-
material while considering the nonlocal effect. Equations (3)
and (4) give the dispersion relations for the longitudinal elec-
tric mode, longitudinal magnetic mode, and transverse mode,
respectively.

Combining μz = 1 − ω2
mp/ω

2 + βk2
z = 0 [Eq. (3)] and

k4
z + ω4(γ 2 − εtμt )2 − 2ω2k2

z (γ 2 + εtμt ) = 0 [Eq. (4)], we
can obtain the relation between the wave vector kz and the
nonlocal parameter β as

k±
z =

√
−1 ±

√
1 + 4ω2

mpβ(γ + √
εtμt )2

√
2β

. (5)

Equation (5) represents the degeneracy of the longitudinal
magnetic mode and the transverse mode, as shown by the
red solid lines in Fig. 7(a). The critical value for the non-
local parameter β = −1/(4ω2

mp(γ + √
εtμt )2) = −0.0625 is

shown by the red dotted line. Grey (−0.0625 < β < 0) and
khaki (β < −0.0625) shaded areas represent the presence and
absence of the coexistence of these nodal points, respectively.
The longitudinal magnetic mode and transverse mode degen-
erate along the kz axis when the nonlocal parameter satisfies
−0.0625 < β < 0 (gray shaded part). In this case, there are
four type-II Weyl points in the system. Specifically, one pair
of Weyl points has the small |kz| value, and the other pair
possesses the large |kz| value. Correspondingly, the two Weyl
degeneracy frequencies are also different.

In addition, it can be intuitively found that the dispersion
relation of the longitudinal electric mode is flat (εz = 1 −
ω2

ep/ω
2 = 0). Further tuning the electric plasma frequency to

be equal to one of the two Weyl degeneracy frequencies leads
to the creation of two triply degenerate points. Therefore,
the system supports two type-II Weyl points and two triply
degenerate points. As illustrated in Fig. 7(a), in order to better
clarify the effect of nonlocal parameter β on the coexistence
of these nodal points, we choose two cases for comparison.
The green and blue dashed lines correspond to β = −0.03 and
β = −0.08, respectively.

As illustrated in Fig. 7(b), we give the dispersion relation
of band structure for chiral metamaterial with the nonlocal
parameter β = −0.03 in the ω-kz plane. Other electromag-
netic parameters are εt = μt = 1, γ = 1, ωmp = 1 and ωep =
ωmp/

√
1 + (−1 −

√
1 + 4ω2

mpβ(γ + √
εtμt )2)/2 = 2.68. The

degeneracy of the modes clearly shows that the system sup-
ports both type-II Weyl points and triply degenerate points.
Moreover, similar to β = −0.047 in Figs. 2(b) and 3(a), the
Weyl point here is also located in the low frequency region,
while the triply degenerate point lies in the high frequency
region, as illustrated in Fig. 7(b). The purple and orange dots
indicate the type-II Weyl points and triply degenerate points,
respectively. On the contrary, because the nonlocal param-
eter β = −0.08 is located in the khaki region, there is no
degeneracy between the longitudinal magnetic mode and the
transverse mode. No matter how the electric plasma frequency
is changed, the three modes cannot cross at the same point,
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FIG. 7. (a) Phase diagram in the chiral metamaterial while considering the nonlocal effect. The red dotted line represents the critical value
of the coexistence of type-II Weyl points and triply degenerate points (the nonlocal parameter β = −0.0625). Grey and khaki shaded areas
indicate the presence and absence of the coexistence of these nodal points, respectively. Panels (b) and (c) show the dispersion along the z
direction of the chiral metamaterials when the nonlocal parameters are set as β = −0.03 and β = −0.08, respectively. The horizontal line
represents the dispersion of the longitudinal electric mode (LE). The black and yellow arrows correspond to the transverse mode (T) and
longitudinal magnetic mode (LM), respectively.

that is, the triply degenerate point cannot be generated, as
explained in Fig. 7(c).

VI. CONCLUSIONS

In conclusion, we demonstrate that a photonic chiral meta-
material can support critical-type Weyl points owing to the
chiral effect. Taking the nonlocal effect into account, the lon-
gitudinal magnetic mode slopes upward, and it crosses with
the transverse mode and the longitudinal electric mode, which
forms triply degenerate points. Meanwhile, the Weyl point in
low frequency also changes to type-II. The dispersion relation
of the bulk state of the chiral metamaterial can be used to
prove the coexistence of these nodal points. More importantly,
as a significant embodiment of the nontrivial properties of
topological semimetals, there is a photonic Fermi arc surface
state at the interface. Due to the single monopole charges
of type-II Weyl points and triply degenerate points, the pro-
jections of all nodal points are connected by one Fermi arc.
This is why the surface wave only travels in one direction.

Moreover, we theoretically proved that the Fermi arc has field
localization properties at the interface between the metamate-
rial and vacuum, thereby it may lead to potential applications
in integrated photonic circuits. Notably, it is verified that
the Fermi arc surface states are topologically protected. The
nonreciprocal surface waves can transmit forward around the
sharp corners without backscattering. Interestingly, we show
the conditions for the coexistence of type-II Weyl points and
triply degenerate points based on the phase diagram of the
system. Our work is conducive to a deep understanding of
the properties of basic particles, discovering exotic physical
phenomena, and providing a prototype platform for exploring
the coexistence of multiple topological nodal points.
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