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Accurate and fast master equation modeling of triplet-triplet annihilation in organic
phosphorescent emission layers including correlations
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Triplet-triplet annihilation (TTA) in phosphorescent emission layers of modern organic light-emitting diodes
compromises their performance and device lifetime. TTA can occur by a Förster-type interaction between two
triplets, leading to a loss of one of them. The TTA process gives rise to correlations in the positions of the
surviving triplets, which complicate its study. These correlations can in principle be accounted for exactly in
kinetic Monte Carlo (KMC) simulations, but such simulations are computationally expensive. Here, we present
master equation modeling of TTA that accounts for correlations in a computationally efficient way. Cases without
and with triplet diffusion, which partly washes out correlations, are considered. We calculate the influence of
TTA on transient photoluminescence experiments, where it leads to a deviation from exponential decay, and on
steady-state emission efficiency. A comparison with KMC simulations shows that our master equation modeling
is an accurate and computationally competitive alternative.
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I. INTRODUCTION

The efficiency of organic light-emitting diodes (OLEDs)
has dramatically increased due to the introduction of phospho-
rescent emitters [1]. In these emitters, the spin-orbit coupling
induced by a heavy metal atom in the core of the molecule
allows fast intersystem crossing (ISC) of singlet to triplet
excitons and radiative decay of triplet excitons. As a result,
all excitons formed can in principle contribute to phosphores-
cent emission. At low current densities, the internal quantum
efficiency (IQE) of phosphorescent OLEDs approaches 100%
[2]. At high current densities, efficiency roll-off occurs, which
is mainly attributed to triplet-triplet annihilation (TTA) and
triplet-polaron quenching (TPQ) [3–6] (“triplet” will from
now on be used as short for “triplet exciton”). Due to these
processes, correlations between the positions of the surviv-
ing triplets (TTA) and between the positions of charges and
surviving triplets (TPQ) will arise. This complicates the eval-
uation of the effects of TTA and TPQ on the photophysics
of phosphorescent OLEDs, and therefore their mitigation. Ki-
netic Monte Carlo (KMC) simulations provide a mechanistic
and therefore in principle exact way to evaluate these ef-
fects [7–11]. However, such simulations are computationally
expensive.

Recently, Shumilin and Beltukov addressed the problem
of the influence of correlations in the positions of charges
on single-carrier transport in molecular semiconductors [12].
Such correlations result from the strong Coulomb repulsion
of two like charges on the same molecule, which makes oc-
cupation of a molecular site by two charges very unlikely.
This on-site Coulomb repulsion also leads to correlations in
the occupations by charges of different molecular sites, even
when the Coulomb repulsion of charges residing on differ-
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ent molecules is ignored [12,13]. The approach in Ref. [12]
is based on an approximate numerical solution of the hier-
archical Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)
chain of equations [14–16], which is equivalent to a master
equation formulation of a system of interacting particles. In
this hierarchical chain, the equation of motion for the n-
particle distribution function has a dependency on the (n + 1)-
particle distribution function. Solution of the chain of equa-
tions therefore requires a closure, which is obtained in
Ref. [12] by taking into account covariances in the occupation
of molecular sites by charges up to a certain order and neglect-
ing higher-order covariances. In this way, the infinite system
of hierarchical equations is truncated to a finite system, which
can be solved numerically.

BBGKY-like chains of equations can also be formulated
for and applied to the TTA and TPQ processes. However,
to the best of our knowledge this has not yet been done. In
the present paper, we choose to focus on TTA because of the
presence of only one instead of two particle species.

We will assume that TTA is a long-range Förster-type
process with an r−6 distance dependence between two triplets
on phosphorescent guest molecules embedded in a host. In
the TTA process, the triplet excitation energy is transferred
from a donor molecule carrying the first triplet to the acceptor
molecule carrying the second triplet. The Förster-type process
that makes this transfer possible is based on the small amount
of singlet character mixed in to triplets on the phosphorescent
emitter by the spin-orbit coupling that facilitates the phospho-
rescent emission. After the transfer, the acceptor molecule is
in a highly excited triplet state and relaxes thermally to the
lowest triplet state, by which the energy of the first triplet is
lost. TTA can also occur by Dexter-type processes. However,
these processes are only important at very high guest concen-
trations [17] that are not relevant for efficient phosphorescent
OLEDs because of concentration quenching.
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FIG. 1. Sketch of the effect of correlations on triplet positions in
the presence of triplet-triplet annihilation (TTA). Left: triplets with
random positions (points), as occurring, for example, at the begin-
ning of an experiment where triplets are generated by illumination or
in a steady-state situation in the presence of strong triplet diffusion.
Right: triplets with correlated positions, occurring as a result of TTA
with no or weak diffusion. The circle diameter is a measure for the
decay length of the triplet pair correlation function in the correlated
case. In both cases, the number of displayed triplets is the same (30).

The correlations in the triplet positions that arise as a
result of TTA are illustrated in Fig. 1, which displays two-
dimensional sketches of a system with random positions of
the triplets (left) and a system with correlated triplet positions
(right) that has undergone TTA. Such a situation occurs, for
example, in an experiment in which triplets are generated at
random positions by illumination, after which they disappear
either by radiative decay or TTA. The diameter of the circles
drawn around each triplet is a measure for the decay length
of the two-triplet, or triplet pair, correlation function. The
region inside the circle signifies a triplet depletion zone [8].
A proper description of the resulting structure of a system of
positionally correlated surviving triplets requires a many-body
treatment. Apart from TTA, we will consider triplet diffusion
among the emitters and assume that this diffusion is also a
Förster-type process. Diffusion of triplets decreases the cor-
relation established by TTA. Sufficiently strong diffusion will
wash out correlations completely [8].

Models for TTA often ignore the positional correlations
of triplets. For example, in time-resolved photoluminescence
(TRPL) experiments, where triplets are generated at time t =
0 by a short light flash, the decay of the time-dependent triplet
density T (t ) is usually described by the phenomenological
equation

dT

dt
= −krT − 1

2
kTTAT 2, (1)

where kr is the radiative triplet decay rate, and kTTA is a TTA
rate coefficient. In previous work, we have shown from KMC
simulations that such a description is inaccurate, because it
neglects correlations in the positions of surviving triplets [7].
Instead, two effective TTA rate coefficients were introduced
to describe a TRPL experiment: a rate coefficient kTTA,1 based
on the measured time at which half of the emission has taken
place and a rate coefficient kTTA,2 based on the decrease of
the total, time-integrated, photoluminescence (PL) efficiency
with respect to the zero-light fluence limit, in which TTA is
absent. The ratio r ≡ kTTA,2/kTTA,1 is equal to 1 in the strong-

diffusion limit, where Eq. (1) is valid, but the ratio can exceed
2 in the absence of triplet diffusion [7].

In the present paper, we evaluate the effects of TTA in
phosphorescent host-guest systems by master equation mod-
eling, including correlations in the triplet positions. Our
approach, described in Sec. II, starts by formulating the master
equation for the probabilities that the system of triplets is
in a particular state. We then derive from this master equa-
tion a BBGKY-type hierarchy of equations for the n-triplet
distribution functions. Following Ref. [12], we consider a
closure of the hierarchy by neglecting covariances beyond
a certain order, where we consider in particular the second-
and third-order approximation. We find, however, that these
approximations are not sufficiently accurate. Much more ac-
curate results are obtained from a low-triplet density or pair
approximation (PA) and from an approximation known as the
superposition approximation (SA) [18–21].

Readers who are primarily interested in the results of the
present work can immediately go to Sec. III. In that section,
we present results of our master equation modeling using the
various approximations introduced in Sec. II. The results are
compared to KMC results, which serve as validation and a
benchmark. We consider both the transient case, as occurs in
a TRPL experiment, and the steady-state case in which triplets
are continuously generated, as occurs in a photoluminescence
(PL) experiment with continuous illumination or in OLEDs
under stationary operating conditions. In Sec. IV we consider
the computational efficiency of our master equation calcula-
tions using the PA and SA as compared to KMC simulations.
Finally, Sec. V contains a summary, conclusions, and an out-
look.

II. METHODS

In this section, we discuss the theoretical and compu-
tational methods used in our calculations of triplet-triplet
annihilation (TTA). The system that we study represents an
emission layer of a phosphorescent organic light-emitting
diode (OLED). It consists of a cubic lattice of sites, with a
fraction cg of randomly positioned guest sites in an environ-
ment of host sites. The guest sites represent phosphorescent
molecules that can carry triplets (triplet excitons). The host
sites are assumed to be inaccessible to the triplets. For the
lattice constant we take a = 1 nm, which is a typical value
for the intermolecular distance in molecular semiconductors.
We neglect in this work energetic disorder, so that there
is no energy difference between triplets on different guest
sites. Explicit calculations for Ir-cored phosphorescent emit-
ters yield an approximately Gaussian triplet energy disorder
with a standard deviation of about 0.05 eV [17], which can be
considered, at room temperature, as weak disorder. We con-
sider the following processes: (i) Radiative decay of triplets on
the guest sites with a rate kr = 1/τ , where τ is the radiative
triplet lifetime, which is taken to be equal for all sites. We
assume here that the nonradiative decay rate is zero, but it
is straightforward to extend the present results to a nonzero
radiative decay rate. (ii) TTA by a Förster process, governed
by a Förster radius RF,TTA, where one of the two triplets
involved in the process is annihilated. (iii) Diffusion of triplets
between guest sites by a Förster process governed by a Förster
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radius RF,diff . (iv) Generation of triplets with a generation rate
G at random emitter sites that are not yet occupied by a triplet.
This generation can take place by illumination, such as in a
PL experiment, or by recombination of electrons and holes.
We will consider two different situations, corresponding to
two types of experiments. In the first situation, we start with
a randomly generated configuration of triplets on guest sites,
and we study the density T (t ) of triplets as a function of time
t . This situation is representative of a time-resolved photo-
luminescence (TRPL) experiment, where a phosphorescent
emission layer is illuminated by a short light pulse, after which
the luminescence is measured as a function of time. In the sec-
ond situation, there is a constant generation rate G of triplets,
and the steady-state density of triplets T as a function of G
is studied. This situation is representative of an experiment
under continuous illumination. Also a situation where triplets
are generated by electron-hole recombination in an emission
layer of an OLED could be described by a constant generation
rate G if the likelihood of recombination is approximately the
same for all emitter sites.

A. Kinetic Monte Carlo simulations

Our benchmark results are obtained with kinetic Monte
Carlo (KMC) simulations [7], performed with the software
tool BUMBLEBEE [22]. Simulation boxes of 50×50×50 sites
are used with periodic boundary conditions. The rate Si j for
TTA involving two triplets at positions i and j at a mutual

distance ri j , where the triplet at i is annihilated, is given by

Si j = S(ri j ) = 1

τ

(
RF,TTA

ri j

)6

. (2)

The rate Di j for the Förster transfer of a triplet at i to an empty
site j is given by

Di j = D(ri j ) = 1

τ

(
RF,diff

ri j

)6

. (3)

We impose cutoff distances 2RF,TTA and 2RF,diff on the TTA
and diffusion processes beyond which the rates of these pro-
cesses are taken to be zero. We checked that taking larger
cutoffs has no significant influence on the results presented
in this work. Since we neglect energy disorder, the TTA and
diffusion rates are symmetric: Si j = S ji and Di j = Dji. In
the presented results, we take averages over 50–300 different
simulation runs, depending on the required accuracy. Error
bars on the results are indicated when appropriate.

B. General theory

The state of the system is fully specified by the occupations
nk ∈ {0, 1} of all N guest sites by triplets (k = 1, . . . , N). In
a master equation approach, one considers the transition rates
between all the possible states of the system. The time de-
pendence of the probability Pξ (t ) ≡ P(n1, . . . , nN ; t ) that the
system is at time t in the state ξ with occupations (n1, . . . , nN )
is given by the master equation

dP(n1, . . . , nN ; t )

dt
=

∑
i, j,i �= j

[−Si jnin jP(n1, . . . , nN ; t ) + Si jni(1 − n j )P(n1, . . . , ni, . . . , n j + 1, . . . , nN ; t )]

+
∑

i, j,i �= j

[−Di jni(1 − n j )P(n1, . . . , nN ; t ) + Di jn j (1 − ni )P(n1, . . . , ni + 1, . . . , n j − 1, . . . , nN ; t )]

+
∑

i

[−krniP(n1, . . . , nN ; t ) + kr (1 − ni )P(n1, . . . , ni + 1, . . . , nN ; t )]

+
∑

i

[−G(1 − ni )P(n1, . . . , nN ; t ) + GniP(n1, . . . , ni − 1, . . . , nN ; t )]. (4)

For realistic values of N it is impossible to directly
solve these coupled equations for the 2N probabilities
Pξ (t ). Performing KMC simulations is effectively a way to
solve these equations. However, obtaining sufficient accu-
racy for large systems requires long simulation times. Our
alternative approach is based on deriving a chain of equa-
tions for the n-triplet distribution functions similar to the
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) chain of
equations [14–16].

We start by defining the one-triplet distribution function

nk =
∑

ξ

nk,ξ Pξ (t ), (5)

where nk,ξ is the occupation number of site k (0 or 1) in state ξ ,
and where we omit the t-dependence of nk . Normalization im-
plies

∑
ξ Pξ (t ) = 1. From Eq. (4) in conjunction with Eq. (5)

we can derive for nk the equation

dnk

dt
= −krnk + G(1 − nk ) −

∑
l �=k

[Sklnknl + Dkl (nk − nl )], (6)

where nknl is the two-triplet distribution function

nknl =
∑

ξ

nk,ξ nl,ξ Pξ (t ). (7)

For the two-triplet distribution function, we can subsequently
derive the equation

dnknl

dt
= −2krnknl − 2Skl nknl + G(nk + nl − 2nknl )

−
∑

m �=k,l

(Skm + Slm)nknlnm +
∑

m �=k,l

[Dkm(nlnm − nknl )

+ Dlm(nknm − nknl )], (8)
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and for the three-triplet distribution function, we obtain the equation

dnknl nm

dt
=−3krnknlnm − 2(Skl + Skm + Sml )nknlnm + G(nknl + nknm + nlnm − 3nknlnm) −

∑
p�=k,l,m

(Skp + Sl p + Smp)nknlnmnp

+
∑

p�=k,l,m

[Dkp(nlnmnp − nknlnm) + Dl p(nknmnp − nknl nm) + Dmp(nknlnp − nknlnm)]. (9)

The complete chain of coupled equations for the n-triplet distribution functions of increasing n can be written in the following
form:

d
∏

i∈I ni

dt
= −kr|I|

∏
i∈I

ni − 2
∏
i∈I

ni

∑
i, j∈I, j>i

Si j + G

(∑
i∈I

∏
j∈I\i

n j − |I|
∏
i∈I

ni

)

−
∑
j∈I

∑
q �∈I

(
S jqnq

∏
i∈I

ni

)
+

∑
j∈I

∑
q �∈I

D jq

(
nq

∏
i∈I\ j

ni −
∏
i∈I

ni

)
, (10)

where I = {i1, i2, . . . , i|I|} is an arbitrary set of |I| sites.
Following Ref. [12], we introduce the covariances

δnI ≡
∏
i∈I

δni =
∏
i∈I

(ni − ni ) ≡
∑
J⊆I

(−1)|I|−|J|
(∏

i∈J

ni

∏
i∈J\I

ni

)
, (11)

which is a sum with alternating sign over all subsets J ⊆ I . Neglecting covariances beyond m sites, by putting δnI = 0 when
|I| � m + 1, leads to a closure of Eqs. (10) that we will call the mth-order approximation. The mean field (MF), or first-order,
approximation corresponds to m = 1:

δnkδnl = (nk − nk )(nl − nl ) = nknl − nk nl = 0. (12)

With this, Eq. (6) transforms into

dnk

dt
= −krnk + G(1 − nk ) −

∑
l �=k

[Skl nk nl + Dkl (nk − nl )]. (13)

In this work, we will show results obtained with the MF, second-, and third-order approximation. For the second-order
approximation, we have

δnkδnlδnm = (nk − nk )(nl − nl )(nm − nm)

= nknlnm − nknl nm − nknm nl − nl nm nk + 2nk nl nm = 0. (14)

So, in the second-order approximation we replace the three-triplet distribution function by lower-order triplet distribution
functions:

nknlnm ≈ nknl nm + nknm nl + nlnm nk − 2nk nl nm. (15)

In the third-order approximation, we set δnkδnlδnmδnp = 0, obtaining

nknlnmnp ≈ nknl nm np + nknl np nm + nknmnp nl + nlnmnp nk − nknl nm np − nknm nl np

− nknp nl nm − nl nm nk np − nlnp nk nm − nmnp nk nl + 3nk nl nm np. (16)

Next to these approximations, we consider two other approximations, which will turn out to be more accurate than the second-
and third-order approximations. The first is the pair approximation (PA), which is essentially a low-triplet density approximation.
The second is the superposition approximation (SA), where the three-site correlation function is approximated as a product of
two-site correlation functions [18–21]. We define the two-site, or pair, correlation function as

g(2)
kl = nknl

nk nl
, (17)

and the three-site correlation function as

g(3)
klm = nknl nm

nk nl nm
. (18)

With these definitions, Eq. (6) becomes

dnk

dt
= −krnk + G(1 − nk ) −

∑
l �=k

(
nk nlSkl g

(2)
kl + Dkl (nk − nl )

)
, (19)
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and Eq. (8) becomes, using Eq. (19),

dg(2)
kl

dt
= −2Skl g

(2)
kl + G

(
1

nk
+ 1

nl

)(
1 − g(2)

kl

) −
∑

m �=k,l

nm(Skm + Slm)g(3)
klm + g(2)

kl

[∑
m �=k

nmSkmg(2)
km +

∑
m �=l

nmSlmg(2)
lm

]

+ g(2)
kl Dkl

(
2 − nl

nk
− nk

nl

)
− g(2)

kl

∑
m �=k,l

nm

(
1

nk
Dkm + 1

nl
Dlm

)
+

∑
m �=k,l

nm

(
1

nk
Dkmg(2)

lm + 1

nl
Dlmg(2)

km

)
. (20)

In the low-triplet density limit, we can neglect in Eq. (20) the third and fourth terms, because they are of higher order in the
triplet density than the other terms. This leads to

dg(2)
kl

dt
= −2Skl g

(2)
kl + G

(
1

nk
+ 1

nl

)(
1 − g(2)

kl

) + g(2)
kl Dkl

(
2 − nl

nk
− nk

nl

)

− g(2)
kl

∑
m �=k,l

nm

(
1

nk
Dkm + 1

nl
Dlm

)
+

∑
m �=k,l

nm

(
1

nk
Dkmg(2)

lm + 1

nl
Dlmg(2)

km

)
. (21)

We call this the pair approximation because in the low-triplet density limit, the situation with the lowest density where there is
still TTA is that of a pair of two triplets.

In the superposition approximation, one assumes that the correlation between three interacting particles (in our case triplets)
arises from independent pair interactions between these particles (in our case the TTA process) [18–21,23]. Adopting this
approximation, the three-site correlation function g(3)

klm in Eq. (20) is approximated as g(3)
klm ≈ g(2)

kl g(2)
kmg(2)

lm . Using the SA in Eq. (20)
yields

dg(2)
kl

dt
= −2Skl g

(2)
kl + G

(
1

nk
+ 1

nl

)(
1 − g(2)

kl

) − g(2)
kl

∑
m �=k,l

nm(Skm + Slm)g(2)
kmg(2)

lm + g(2)
kl

[∑
m �=k

nmSkmg(2)
km +

∑
m �=l

nmSlmg(2)
lm

]

+ g(2)
kl Dkl

(
2 − nl

nk
− nk

nl

)
− g(2)

kl

∑
m �=k,l

nm

(
1

nk
Dkm + 1

nl
Dlm

)
+

∑
m �=k,l

nm

(
1

nk
Dkmg(2)

lm + 1

nl
Dlmg(2)

km

)
. (22)

We can solve Eqs. (21) and (22) for g(2)
kl in conjunction with

Eq. (19) to obtain results in the PA and SA, respectively.

C. No triplet diffusion

We first discuss the case without triplet diffusion by putting
Dkl = 0 in the equations of the previous subsection. If there
is no diffusion and the guest sites are randomly distributed,
all sites become equivalent after performing an average over
all possible distributions of guest and host sites. We then no
longer need to distinguish between guest and host sites, so
that we can exploit the full symmetry of the lattice. Using
translational symmetry, we can put nk = n0 ≡ n(t ) for all k,
where we choose a relabeling such that k = 0 is the site at
the origin. We are interested in calculating the triplet den-
sity T (t ) = n(t )/a3, which can be obtained by transforming
Eq. (19) into

dT

dt
= −krT + G

(
1

a3
− T

)
− T 2a3

∑
l �=0

S(r0l )g(r0l , t ),

(23)
with

g(rkl , t ) ≡ g(2)
kl , (24)

where because of the above-mentioned lattice symmetry, the
pair correlation function now only depends on the distance rkl

between two sites k and l .
We start by considering a transient situation with no gen-

eration of triplets, G = 0, describing a TRPL experiment. At

time t = 0 we have a density T0 of randomly placed triplets
with uncorrelated positions. The MF expression for T is ob-
tained by neglecting correlations and is equivalent to Eq. (1).
It follows by putting g(r0l , t ) = 1 in Eq. (23):

dT

dt
= −krT − 1

2
kTTAT 2, (25)

with the MF TTA rate coefficient defined by

kTTA ≡ 2×8.402 kr
R6

F,TTA

a3
, (26)

where we performed the three-dimensional (3D) lattice sum

a6
∑
l �=0

1

r6
0l

= 8.402. (27)

Equation (25) can be solved analytically, yielding [24]

T (t ) = krT0(
kr + 1

2 kTTAT0
)

exp(krt ) − 1
2 kTTAT0

. (28)

We will also consider the two-dimensional (2D) equivalent of
these results. The 2D equivalent of the lattice sum in Eq. (27)
has the value 4.659. Equation (25) remains the same, where T
is now expressed in nm−2 with kTTA ≡ 2×4.659R6

F,TTA/a4.
In the second-order approximation we solve Eqs. (6) and

(8), using the approximation Eq. (15) in the latter equation. In
the third-order approximation we include Eq. (9) in addition
to Eqs. (6) and (8), and we use the approximation Eq. (16).
In both cases, we cut off the system of equations by only
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considering TTA for sites separated by a distance smaller
than 2RF,TTA, as in the KMC simulations. Equivalently, we
replace distribution functions of second and third order by
lower-order distribution functions when two sites are farther
apart than 2RF,TTA, where the first-order distribution function
is n(t ). We checked that with this procedure, sufficient ac-
curacy is obtained in the presented results. We exploit the
point-group symmetry of the cubic lattice to further reduce the
number of equations. The resulting finite system of coupled
time-dependent differential equations is solved with standard
numerical techniques, using as a boundary condition at t = 0
distribution functions corresponding to an uncorrelated situa-
tion.

Turning to the PA, Eq. (21) becomes, putting Dkl = G = 0
and using Eq. (24),

dg(r0l , t )

dt
= −2S(r0l )g(r0l , t ), (29)

which leads, with g(r0l , t = 0) = 1, to

g(r0l , t ) = exp

[
−2krt

(
RF,TTA

r0l

)6]
. (30)

Inserting this into Eq. (23), we obtain, with G = 0,

dT

dt
= −krT − T 2a3

∑
l �=0

S(r0l )g(r0l , t ). (31)

In very good approximation, we can replace the lattice sum in
this equation by an integral, which can be performed analyti-
cally:

∑
l �=0

S(r0l )g(r0l , t ) ≈ kr

a3

∫
dr

(
RF,TTA

r

)6

× exp

[
−2tkr

(
RF,TTA

r

)6]

=
√

2

3
π

3
2

(
RF,TTA

a

)3
√

kr

t
. (32)

With this Eq. (31) can be solved, resulting in

T (t ) = T0e−krt

1 +
√

2
3 π2R3

F,TTAT0erf(
√

krt )
. (33)

This result is equal to Eq. (17) in Ref. [25] (with the replace-
ment 1/3 → √

2/3 in the denominator of that equation) and
to Eq. (5) in Ref. [9] with b = 1/

√
2.

Using the 2D equivalent of the integral in Eq. (32), we get

∑
l �=0

S(r0l )g(r0l , t ) ≈ π�
(

2
3

)
3 22/3

(
RF,TTA

a

)2 k1/3
r

t2/3
, (34)

yielding the following 2D equivalent of Eq. (33) for the PA
transient:

T (t ) = T0e−krt

1 + 21/3

6 T0R2
F,TTAπ�

(
2
3

)[
�

(
1
3

) − �
(

1
3 , krt

)] , (35)

with �(z) the Euler Gamma function and �(b, z) the upper
incomplete Gamma function.

Finally, in the SA we obtain from Eq. (22)

dg(r0l , t )

dt
= −2S(r0l )g(r0l , t ) − Ta3

∑
m �=0,l

[S(r0m) + S(rlm)]

× g(r0l , t )g(r0m, t )g(rlm, t )

+ 2Ta3g(r0l , t )
∑
m �=0

S(r0m)g(r0m, t ). (36)

Numerically solving this equation in conjunction with
Eq. (23) yields the SA results. The numerical procedure we
used is similar to that used for the second- and third-order
approximation.

We now consider the steady-state situation, where we are
interested in the steady-state triplet density T as a function
of the triplet generation rate G. The MF result is obtained by
putting dT/dt = 0 and g(r0l , t ) = 1 in Eq. (23), which leads
to

T (G) =
√

(G + kr )
2 + 2GkTTA/a3 − (G + kr )

kTTA
. (37)

The steady state results in the second- and third-order ap-
proximation are obtained in the same way as in the transient
case, but now with the inclusion of the terms containing G.
We numerically solve the coupled system of time-dependent
differential equations until no further change in time is ob-
served. The results are independent of the choice of the initial
distribution functions at t = 0. The presented results are ob-
tained with distribution functions that initially correspond to
an uncorrelated situation.

In the PA, Eq. (21) becomes in the steady state, with
Dkl = 0,

−2S(r0l )g(r0l ) + 2G

Ta3
[1 − g(r0l )] = 0, (38)

which leads to

g(r0l ) = 1

1 + Ta3S(r0l )
G

. (39)

Inserting this into Eq. (23) and putting dT/dt = 0, we obtain

−krT + G

(
1

a3
− T

)
− T 2a3

∑
l �=0

GS(r0l )

G + Ta3S(r0l )
= 0. (40)

We can, again in very good approximation, replace the lattice
sum by an integral:

∑
l �=0

GS(r0l )

G + Ta3S(r0l )
≈ Gkr

a3

∫
dr

(
RF,TTA

r

)6

× 1

G + Ta3kr
(RF,TTA

r

)6

= 2

3

√
Gkr

Ta3
π2

(
RF,TTA

a

)3

, (41)

so that Eq. (40) becomes

−krT + G

(
1

a3
− T

)
− 2

3
T 3/2a3/2π2

√
Gkr

(
RF,TTA

a

)3

= 0. (42)

085202-6



ACCURATE AND FAST MASTER EQUATION MODELING OF … PHYSICAL REVIEW B 105, 085202 (2022)

This equation can easily be solved numerically to obtain
T (G). The 2D equivalent of the lattice sum Eq. (41) is

∑
l �=0

GS(r0l )

G + Ta3S(r0l )
= 2

3
√

3

(
G2kr

T 2a4

)1/3

π2

(
RF,TTA

a

)2

, (43)

so that the 2D equivalent of Eq. (42) for the steady-state PA
triplet density becomes

−krT + G

(
1

a2
− T

)
− 2

3
√

3
T 4/3a2/3π2(G2kr )

1/3

(
RF,TTA

a

)2

= 0. (44)

In the SA, Eq. (22) becomes in the steady state, with Dkl = 0,

−2S(r0l )g(r0l ) + 2G

Ta3
[1 − g(r0l )]

− Ta3
∑

m �=0,l

[S(r0m) + S(rlm)]g(r0l )g(r0m)g(rlm)

+ 2Ta3g(r0l )
∑
l �=0

S(r0l )g(r0l ) = 0. (45)

In principle, this equation can be solved directly, in conjunc-
tion with Eq. (23) after putting dT/dt = 0. Instead, we use the
same practical approach as for the second- and third-order ap-
proximation, and we solve the corresponding time-dependent
coupled differential equations until no further change in time
is observed.

D. Triplet diffusion

In this subsection, we include diffusion of triplets. We will
no longer consider for this case the second- and third-order
approximation, since we will see in the next section that for
the case without diffusion, these approximations turn out to
be considerably less accurate than the PA and SA.

Since diffusion of triplets can only occur among guest sites,
we encounter the problem of percolation, where fast triplet
diffusion can occur along percolating pathways of guest sites
that happen to be close together. This is a problem that we
cannot fully address without sacrificing translational symme-
try. Instead, we preserve translational symmetry and use an
approximate approach, which is based on the idea that the
fraction of sites available for diffusion is cg and that the typ-
ical minimal distance over which triplet transfer can occur is
therefore c−1/3

g a instead of a. This approximation neglects the
fact that there can be percolating pathways for triplet transfer
with nearest-neighbor guest sites closer than this distance.
Therefore, our approach will underestimate triplet diffusion.
However, because of the long-range character of the Förster
transfer, this underestimation is not severe. The other approx-
imation we make is the replacement of the lattice description
by a continuum description. In this continuum description,
the discreteness of the underlying lattice is reflected by a
minimal distance r0 of the order of the lattice constant a over
which TTA can occur, which is the same as in the case of no
diffusion. We choose the value of r0 such that Förster-type
sums can be replaced by corresponding integrals:

a6
∑
l �=0

1

r6
0l

= 4πa3
∫ ∞

r0

dr r2 1

r6
= 4π

3

(
a

r0

)3

= 8.402, (46)

where we have performed the same lattice sum as in Eq. (27).
From this we find r0 = 0.7929a. Accordingly, a minimal dis-
tance r̃0 = c−1/3

g r0 is introduced over which triplet transfer
can take place. With the above approximations, Eq. (19) trans-
forms into

dT

dt
= −krT + G

(
1

a3
− T

)
− 4πT 2

∫ ∞

r0

dr r2S(r)g(r, t ).

(47)
In the MF approximation, we have g(r, t ) = 1 and we obtain
exactly the same results as without diffusion, discussed in the
previous subsection, both in the transient and steady-state case
and irrespective of the guest fraction cg. The PA for the two-
triplet correlation function Eq. (21) turns into

dg(r, t )

dt
= −2S(r)g(r, t ) + 2G

Ta3
[1 − g(r, t )]

− 2g(r, t )
cg

a3

∫
V \δṼ0\δVr

dr′D(r′)

+ 2
cg

a3

∫
V \δṼ0\δVr

dr′D(r′)g(|r′ − r|, t ), (48)

where \δVr and \δṼr indicate that a spherical volume with a
radius r0 and r̃0, respectively, around r is excluded from the
integrals over the infinite volume V . The last two terms have a
prefactor cg because the density of sites available for diffusion
is reduced by that factor. The SA Eq. (22) becomes

dg(r, t )

dt
= −2S(r)g(r, t ) + 2G

Ta3
[1 − g(r, t )]

+ 2T g(r, t )
∫

V \δV0

dr′S(r′)g(r′, t )

− T g(r, t )
∫

V \δV0\δVr

dr′[S(r′) + S(|r′ − r|)]

× g(r′, t )g(|r′ − r|, t )

− 2g(r, t )
cg

a3

∫
V \δṼ0\δVr

dr′D(r′)

+ 2
cg

a3

∫
V \δṼ0\δVr

dr′D(r′)g(|r′ − r|, t ). (49)

We obtain transient results from Eqs. (47) and (48) (PA) or
(49) (SA) by setting G = 0 and solving the resulting equa-
tions numerically, where the integrals are evaluated using a
spectral method. For numerical reasons, we set the pair cor-
relation function g(r, t ) = 1 when r � 250 nm, which means
that we neglect correlations for larger distances. We checked
that this is a sufficiently large cutoff on the correlations.
Steady-state results are obtained by including the terms in-
cluding G and solving the equations until no further change in
time is observed, as we did for the case without diffusion.

III. RESULTS

A. No triplet diffusion

In this subsection, we discuss the impact of triplet cor-
relations on TTA in TRPL experiments and steady-state
conditions in the absence of triplet diffusion. In the simula-
tion of TRPL experiments, the triplets are initially randomly
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FIG. 2. Transient triplet density T (t ) in a simulation of a TRPL
experiment with an initial triplet density T0 = 0.02 nm−3, in the
absence of triplet diffusion. (a) Transients for the various approx-
imations discussed in Sec. II as compared to KMC results, for
RF,TTA = 2.0 nm. (b) Same as (a), but with a logarithmic time axis.
(c) and (d) Same as (a) and (b), but for RF,TTA = 3.0 nm. The insets
in (b) and (d) are magnifications of the indicated regions.

positioned. In the absence of triplet diffusion, the value of
the guest concentration is then irrelevant, because also the
positions of the phosphorescent guest molecules are taken to
be random. In steady-state conditions, we assume that there is
a constant generation rate of triplets, which occurs randomly
at guest molecules that are not yet occupied by another triplet.

Figure 2 shows the time-dependent triplet density T (t )
in simulations of a TRPL experiment with an initial triplet
density T0 = 0.02 nm−3 for two different TTA Förster radii
RF,TTA = 2.0 nm (top graphs) and 3.0 nm (bottom graphs). For
a typical phosphorescent guest concentration of 10%, T0 =
0.02 nm−3 corresponds to 20% initial occupation of the guest
molecules by a triplet. The time t is expressed in units of the
triplet lifetime τ = 1/kr . The measured photoluminescence is
proportional to T (t ). We show transients up to t = 2τ , which
is a typical time range in TRPL experiments. Figures 2(a) and
2(c) are semilog, and 2(b) and 2(d) are log-log plots of the
same data. We compare the transients for the five approxi-
mations discussed in Sec. II B to those of KMC simulations
discussed in Sec. II A, which serve as a benchmark. The
MF and PA transients are given by the analytical expressions
Eqs. (28) and (33), respectively.

The effect of TTA is clearly seen in all transients from
the nonexponential decay. After some time, triplets that are
initially close to each other will have undergone TTA, cre-
ating correlations in the positions of the triplets as sketched
in Fig. 1(b). For long times, the surviving triplets become
isolated and TTA ceases to be important, as observed by the
exponential decay at long times, as most clearly visible in
Figs. 2(a) and 2(c). We see that the MF transients, obtained
from Eq. (28), start to strongly deviate from the KMC tran-
sients after t ≈ 10−2τ for RF,TTA = 2.0 nm and t ≈ 10−3τ

FIG. 3. Transient triplet density for RF,TTA = 3.0 nm and differ-
ent initial triplet densities T0 = 10−3, 2×10−3, 5×10−3, 10−2, and
2×10−2 nm−3, in the absence of triplet diffusion. Transients are
shown for the four main approximations: (a) second order, (b) third
order, (c) PA, and (d) SA, in comparison to KMC transients.

for RF,TTA = 3.0 nm; see Figs. 2(b) and 2(d), respectively.
The reason for the deviation is that correlations in the posi-
tions of the triplets are neglected in the MF approximation,
which leads to an overestimation of TTA and a too strong
initial decrease of T (t ). The second- and third-order transients
are increasingly accurate, but even the third-order transients
finally deviate considerably from the KMC transients. On
the other hand, the transients for the PA and the SA follow
the KMC transients quite accurately. The magnification in
Fig. 2(d) shows that for RF,TTA = 3.0 nm and times approach-
ing t = τ a small deviation of the PA from the KMC transient
becomes visible, while the SA transient still closely follows
the KMC transient. The magnification in Fig. 2(b) shows that
for RF,TTA = 2.0 nm also the PA transient keeps on following
the KMC transient quite closely.

Figure 3 shows, for RF,TTA = 3.0 nm and different initial
triplet densities T0 between 10−3 and 2 × 10−2 nm−3, tran-
sients for the second- and third-order approximations and for
the PA and SA, in comparison to the KMC transients. We see
that the second- and third-order transients deviate less from
the KMC transients at lower T0, which is related to the fact
that at lower initial triplet densities, correlation effects are less
important. As expected, the third-order transients are superior
to the second-order transients. The PA and SA transients fol-
low the KMC transients very closely for all values of T0.

In Fig. 4 we show the triplet pair correlation function g(r, t )
[Eq. (24)] at various distances r as a function of t for RF,TTA =
3.0 nm and a high initial triplet density of T0 = 2×10−2 nm−3,
for which the effects of TTA are relatively strong. We show
results for the same approximations as in Fig. 3, in comparison
to KMC results. The values of r correspond to the possi-
ble distances between points of the used cubic lattice with
lattice constant a = 1 nm. Initially, we have g(r, t = 0) = 1,
which expresses the fact that the triplets are initially randomly
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FIG. 4. Triplet pair correlation function g(r, t ) in the absence
of triplet diffusion as a function of time at various distances r for
RF,TTA = 3.0 nm and T0 = 0.02 nm−3. Results are shown for the four
main approximations, (a) second order, (b) third order, (c) PA, and
(d) SA, in comparison to KMC results.

positioned without any correlation. When time proceeds, a de-
pletion zone with a radius of about RF (2krt )1/6 [see Eq. (30)]
develops around each triplet by the TTA process [8], where
the probability of finding another triplet is reduced. Finally,
g(r, t ) becomes zero for all r, which happens at a later time for
larger r, indicating the presence of a growing fully developed
depletion zone. The accuracy with which the transients of the
various approximations in Fig. 3 follow the KMC transients
is reflected in the accuracy with which the corresponding
correlation functions follow the KMC correlation function.
The PA correlation function in Fig. 4(c), given by Eq. (30),
is a substantial improvement to the second-order [Fig. 4(a)]
and third-order [Fig. 4(b)] correlation functions, yielding only
small deviations from the KMC correlation function at long
distances. The SA correlation function in Fig. 4(d) shows an
excellent agreement.

We now turn to the steady-state situation where triplets
are generated randomly, at positions where there is no other
triplet, with a rate G. This corresponds to an experiment under
continuous illumination or to the situation where triplets are
homogeneously generated by electron-hole recombination in
an emission layer of an OLED. In the latter case, we neglect
the interaction of the triplets with the electrons and holes.

In Figs. 5(a) and 5(b) we show the steady-state triplet
density T as a function of the generation rate G for RF,TTA =
2.0 and 3.0 nm, respectively, for the five approximations of
Sec. II B, in comparison to KMC results. The MF result is
given by the analytical expression Eq. (37). The PA result is
obtained by solving the analytical expression Eq. (42). For
a low generation rate, TTA is insignificant, so that all results
approach the dotted line T = Gτa−3/(1 + Gτ ) for low G. For
high G all results approach each other, pointing at a decreased
significance of correlations. Large differences between the
various results are observed for intermediate values of the

FIG. 5. Dependence of the steady-state triplet density T , in the
absence of triplet diffusion, on the triplet generation rate G for the
various approximations of Sec. II, as compared to KMC results, for
(a) RF,TTA = 2.0 nm and (b) RF,TTA = 3.0 nm. The dotted lines show
the no-TTA limit T = Gτa−3/(1 + Gτ ).

generation rate, where for realistic values Gτ = 10−2 and
RF,TTA = 3.0 the MF result underestimates the triplet density
by almost an order of magnitude. Apart from the MF and
second-order approximations, the other approximations (third
order, PA, SA) yield results in very good agreement with the
benchmark KMC results.

Figure 6(a) shows, for RF,TTA = 3.0 nm and Gτ = 10−2,
results for the pair correlation function g(r) for the four
main approximations, second order, third order, PA, and SA,
in comparison to KMC results. The underestimation of the
size of the depletion zone by the second-order approximation
(green upward triangles) results in the underestimation of the
triplet density by that approximation in Fig. 5. The third-order
approximation (orange downward triangles) partly corrects
for this underestimation and hence yields better results for
the triplet density in Fig. 5. The PA correlation function,
given by Eq. (39), describes the KMC correlation function
quite well, with only a small difference at large distances [cf.
Fig. 4(c)], while the SA yields an extremely good descrip-
tion. Figure 6(b) shows, in addition to results for Gτ = 10−2

copied from Fig. 6(a), PA, SA, and KMC results for a larger
triplet generation rate Gτ = 10−1. The small deviation in
g(r) at large distances of the PA has increased somewhat,

FIG. 6. (a) Steady-state triplet pair correlation functions g(r) for
RF,TTA = 3.0 nm and Gτ = 10−2 for the four main approximations
in comparison to KMC results. (b) PA, SA, and KMC results for g(r)
for Gτ = 10−1, Gτ = 10−2 [same results as in (a)], and PA result for
Gτ → 0. Apart from the PA case, the data points have discrete values
of r that are connected by straight lines.
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FIG. 7. (a) Transient triplet density T (t ) in two dimensions for
the various approximations discussed in Sec. II, as compared to KMC
results, for an initial triplet density T0 = 0.04 nm−2 and RF,TTA = 3.0
nm, in the absence of triplet diffusion. (b) Dependence of steady-state
triplet density T in two dimensions, in the absence of triplet diffu-
sion, on the triplet generation rate G for the various approximations,
as compared to KMC results, for RF,TTA = 3.0 nm. The dotted line
shows the no-TTA limit T = Gτa−2/(1 + Gτ ).

while the SA still describes the KMC g(r) very well. The
reduction of the depletion zone for a larger generation rate
leads to a decreased role of correlations and hence to the
convergence of all results for high Gτ observed in Fig. 5.
The reason is that for high Gτ the generation of triplets is
so fast that there is insufficient time for the TTA process to
generate correlations. We also added to Fig. 6(b) the result
for the PA correlation function in the limit Gτ → 0, which
is g(r) = 1/[1 + (RF,TTA/r)6], as obtained from Eq. (39) after
putting T = Gτa−3. We have assumed thus far that triplets
are generated homogeneously in three dimensions, either by
photoexcitation or by electron-hole recombination. In prac-
tice, there are situations where triplets are generated in a 2D
plane. This happens, for example, in thin emission layers or
in situations where triplets are generated in the emission layer
close to the interface with a charge transport layer. The latter
can occur when one of the charge carriers in the emission layer
has a much higher mobility than the other. For this reason,
we also studied transient and steady-state triplet densities in
a 2D square lattice. Analytical 2D results equivalent to the
analytical 3D results can be found in Sec. II C. Figure 7(a)
shows transient triplet densities for RF,TTA = 3.0 nm and a
2D initial triplet density T0 = 4×10−2 nm−2 for the five ap-
proximations discussed in Sec. II B. For this initial triplet
density, the average number of triplets within a disk of radius
RF,TTA = 3.0 nm is 2.26, which is the same as the number
of triplets within a sphere of this radius in the 3D case with
T0 = 2×10−2 nm−3, which makes Fig. 7(a) comparable to
Fig. 2(d). Figure 7(b) shows corresponding 2D steady-state
results, which should be compared to Fig. 5(b). The general
conclusions that we have drawn about the 3D results also
hold for the 2D results. A noticeable difference, however, is
that the effects of correlations in 2D are stronger than in 3D,
which is, e.g., seen from the larger deviation of the MF results
from the KMC results in the comparison of Figs. 7(a) and
7(b) to Figs. 2(d) and 5(b), respectively. This is in line with
the well-known fact that in many-body theories correlations
become more important in lower dimensions.

FIG. 8. Transient triplet density T (t ) for an initial triplet density
T0 = 0.02 nm−3, RF,TTA = 3.0 nm, and different guest concentrations
cg in the presence of triplet diffusion. (a) Transients for the mean-
field approximation, the PA, and the SA as compared to KMC results,
for RF,diff = 1.5 nm. (b) Same as (a), but with a logarithmic time axis.
(c) and (d) Same as (a) and (b), but for RF,diff = 3.0 nm. The insets
in (b) and (d) are magnifications of the indicated regions.

B. Triplet diffusion

In this subsection, we consider the effects of triplet dif-
fusion on transient and steady-state triplet densities in the
presence of TTA. Because triplets can only diffuse among
phosphorescent guests, it is now important to distinguish be-
tween guest sites, on which the triplets can reside, and host
sites, which we assume to be inaccessible to triplets. The ap-
proximate approach followed to account for this is explained
in Sec. II D. This approach neglects percolation effects, where
triplets can quickly diffuse along percolating pathways of
guest molecules that happen to be close to each other. The
approach therefore underestimates diffusion, but, as we will
see, this underestimation is not severe.

Figure 8 shows, for RF,TTA = 3.0 nm, an initial triplet den-
sity T0 = 0.02 nm−3, and various guest concentrations cg, the
transient triplet density T (t ) for RF,diff = 1.5 nm [Figs. 8(a)
and 8(b)] and RF,diff = 3.0 nm [Figs. 8(c) and 8(d)]. We give
results for the MF approximation, the PA, and the SA, in
comparison to KMC results. For intermediate guest concen-
trations, like cg = 5 and 10% in the case of RF,diff = 3.0 nm,
the SA and PA transients are lying slightly above the KMC
transients, which is related to the fact that our approach is not
able to fully capture the effects of percolation and underes-
timates diffusion. For 100% guest concentration, percolation
effects are absent, explaining why for this case the PA and
SA transients very closely follow the KMC transients. For
low guest concentration, like cg = 2%, the role of diffusion
becomes small, explaining why for low guest concentrations
the PA and SA transients also very closely follow the KMC
transients. As seen in the insets in Figs. 8(b) and 8(d), the
SA transients are more accurate than the PA transients. The
displayed MF transients are identical for both values of RF,diff
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FIG. 9. Transient PA, SA, and KMC pair correlation functions
g(r, t ) as a function of time for T0 = 0.02 nm−3 and RF,TTA = 3.0
nm in the presence of triplet diffusion, for (a) RF,diff = 1.5 nm and
cg = 100%, (b) RF,diff = 1.5 nm and cg = 10%, (c) RF,diff = 3.0 nm
and cg = 100%, and (d) RF,diff = 3.0 nm and cg = 10%. The error
bars in the KMC results are obtained from results for different KMC
runs.

and equal to the MF transient in Fig. 2(c) in the absence of
diffusion. For RF,diff = 3.0 nm and 100% guest concentration,
diffusion is so fast that correlations are almost completely
washed out (see below). As a result, the MF transient is close
to the PA, SA, and KMC transients, as seen in Figs. 8(c)
and 8(d).

A comparison of the transient PA and SA pair correlation
functions with the KMC pair correlation functions g(r, t ) as a
function of time for RF,TTA = 3.0 nm, T0 = 0.02 nm−3, and
four different values of r is shown in Fig. 9. Results are
displayed for the four combinations RF,diff = 1.5 and 3.0 nm,
and cg = 100% and 10%. A guest concentration of 10 mol%
is typical for phosphorescent OLEDs. The case of 100% guest
concentration could apply to single organic component flu-
orescent OLEDs, where the excitons are singlets instead of
triplets. The results for the KMC correlation functions are
given by the symbols, where the error bars are obtained from
results for different KMC runs. In the case of cg = 10% this
includes KMC runs for different random locations of the guest
sites in the simulation box. Because of the diffusion, there
are much fewer triplets at later times in the simulation box
than without diffusion. As a result, it is more difficult to
obtain sufficient accuracy in the KMC correlation functions.
We obtain a reasonable accuracy by performing an average
of the correlation functions over finite time intervals. For this
reason, results are shown for much fewer times than for the
case without diffusion (Fig. 4).

In all cases, the PA and SA correlation functions in Fig. 9
are in quite good agreement with the KMC correlation func-
tions. For 100% guest concentration [Figs. 9(a) and 9(c)] the
PA correlation function deviates somewhat from the KMC
correlation function, while the SA correlation function is very

FIG. 10. Dependence of steady-state triplet density T on the
triplet generation rate G for the mean field, PA, and SA approxima-
tion, as compared to KMC results, for RF,TTA = 3.0 nm, and RF,diff =
1.5 and 3.0 nm, for (a) 100% and (b) 10% guest concentration. The
dotted lines show the no-TTA limit T = Gτa−3/(1 + Gτ ).

accurate. For 10% guest concentration [Figs. 9(b) and 9(d)]
both the PA and SA correlation functions deviate somewhat
from the KMC correlation functions, which should be at-
tributed to the underestimation of diffusion by the neglect of
percolation effects. The diffusion leads to incomplete deple-
tion zones, with g(r, t ) initially dropping, but finally leveling
off at nonzero values, as observed for RF,diff = 1.5 nm and
cg = 100% in Fig. 9(a), and RF,diff = 3.0 nm and cg = 10% in
Fig. 9(d). For RF,diff = 3.0 nm and cg = 100% the diffusion is
so strong that the depletion zone has almost disappeared; see
Fig. 9(c). This is the reason why the MF transient in Fig. 8(c)
is so close to the PA, SA, and KMC transients. On the other
hand, for RF,diff = 1.5 nm and cg = 10% diffusion is weak,
leading to an almost completely developed growing depletion
zone, see Fig. 9(b), as observed without diffusion in Fig. 4.

MF, PA, SA, and KMC steady-state results for the triplet
density T as a function of the generation rate G for RF,TTA =
3.0 nm, and RF,diff = 1.5 and 3.0 nm, are shown in Figs. 10(a)
and 10(b) for cg = 100% and 10%, respectively. Correspond-
ing PA, SA, and KMC pair correlation functions are given
in Figs. 11(a) and 11(b) for generation rates G = 10−1τ−1.
For cg = 100%, both the PA and SA yield results in excellent
agreement with the KMC results, both for the triplet densities

FIG. 11. Steady-state PA, SA, and KMC pair correlation func-
tions g(r) for RF,TTA = 3.0 nm, RF,diff = 1.5 and 3.0 nm, and Gτ =
10−1 for (a) guest concentrations cg = 100% and (b) cg = 10%. The
KMC data points have discrete values of r and are connected by
straight lines. For the PA and SA, g(r) is a continuous function
defined for r > r0 = 0.7929 nm (see Sec. II D).
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[Fig. 10(a)] and the correlation functions [Fig. 11(a)]. For
cg = 100% and RF,diff = 3.0 nm, diffusion is so strong that
even the MF result becomes reasonably accurate in Fig. 10(a),
like in Figs. 8(c) and 8(d) for the transient case. In Fig. 11(a)
we see that the correlations in this case are relatively unim-
portant. For cg = 10% and RF,diff = 1.5 nm the diffusion is
weak and both the PA and SA results are very close to the
KMC results and also very close to the results without diffu-
sion in Fig. 5(b) (triplet densities) and Fig. 6(b) (correlation
functions). For cg = 10% and RF,diff = 3.0 nm diffusion is
important. The PA and SA results are then slightly above the
KMC results in Fig. 10(b), because of the underestimation of
diffusion by the neglect of percolation effects. The diffusion
is, however, not strong enough to completely wash out corre-
lations, as seen in Fig. 11(b). As a result, the MF result for the
triplet density in Fig. 10(b) is not accurate. For cg = 10% and
RF,diff = 1.5 nm diffusion is less important, leading to a more
strongly deviating MF triplet density in Fig. 10(b) and a larger
depletion zone in Fig. 11(b) as compared to RF,diff = 3.0 nm.

IV. COMPUTATIONAL EFFICIENCY

In this section, we compare the computational efficiency
of master equation calculations using the PA and SA to that of
KMC simulations. We do not consider here the second- and
third-order approximations, because these approximation are
far less accurate than the PA and SA. We focus on a compari-
son for the transient calculations. In the case of steady-state
calculations, the comparison is not straightforward because
of the different procedures used to reach the steady state.
The master equation calculations and KMC simulations were
performed on comparable hardware (Intel Xeon Gold 6240
or comparable processors) with comparable numerical preci-
sion. The master equation calculations were done with Python
codes that can be further optimized and possibly to some
extent parallelized.

For the case of TTA without triplet diffusion, we only
compare the CPU time for SA calculations, since an ana-
lytical expression is available for the PA [Eq. (33)]. As an
example, we consider TTA with a Förster radius RF,TTA = 3.0
nm. For the SA calculations the CPU time is independent of
the initial triplet density T0, as is expected, whereas the CPU
time increases steeply with T0 for the KMC simulations. For a
typical initial triplet density T0 = 0.02 nm−3, the KMC sim-
ulations take for a single run already about a factor 4 longer
than the SA calculations. The transient KMC results for this
case, presented in Sec. III A, were obtained by averaging over
50–100 runs. The SA calculations, which obviously require
only a single run, were in this case thus at least two orders of
magnitude more time-efficient than the KMC simulations.

For the case with triplet diffusion, where also for the PA
no analytical result is available, we compare the PA and SA
calculation and KMC simulation times for RF,TTA = 3.0 nm
and T0 = 2×10−2 nm−3 with RF,diff = 1.5 and 3.0 nm, as a
function of the guest concentration cg. We find that the CPU
time for the PA calculations is about three orders of magnitude
smaller than for the SA calculations. For both approximations,
the CPU time is about the same for RF,diff = 1.5 and 3.0 nm
and almost independent of cg. For the KMC simulations, the
CPU time increases approximately linearly with cg and is
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considerably larger for RF,diff = 3.0 nm than for RF,diff = 1.5
nm. For a typical guest concentration cg = 10% the KMC
simulations take for a single run with RF,diff = 1.5 nm about a
factor 3 longer than the SA calculations, while this factor is an
order of magnitude higher for RF,diff = 3.0 nm. For RF,diff =
1.5 nm, which may be considered as a realistic value for
isoenergetic transfer between Ir-cored phosphorescent emitter
molecules [17], KMC simulations for a typical number of
100 runs take at least two orders of magnitude longer than
SA calculations. A further gain of three orders of magnitude
can be obtained by making use of the PA, although this can
slightly affect the accuracy; see Sec. III B.

We note that KMC simulation runs for different disorder
configurations can be performed in parallel, which for the
examples that were discussed above can reduce the wall time
with respect to the CPU time by two orders of magnitude in
the case of 100 single runs. The speed-up by using PA or
SA calculations is nevertheless considerable and can be even
further increased by optimizing and parallelizing the used
codes.

V. SUMMARY, CONCLUSIONS AND OUTLOOK

We applied master equation modeling to the description
of Förster-type triplet-triplet annihilation (TTA) in organic
emission layers consisting of a guest phosphorescent emitter
embedded in a host, without and with inclusion of Förster-
type triplet diffusion among the emitter molecules. We derived
from the master equation for the time dependence of the
probabilities for the different states of the system a hier-
archical chain of equations that includes all correlations in
the positions of the triplets. Following the recent theoretical
work on charge transport in disordered semiconductors [12],
we solved this chain of equations by neglecting covariances
higher than second or third order. However, we found that
these approximations yield insufficiently accurate results.

Instead, we showed that using a low-triplet density pair
approximation (PA) or the superposition approximation (SA)

yields accurate (PA) to very accurate (SA) results for rel-
evant quantities, as benchmarked by kinetic Monte Carlo
(KMC) simulations. This holds both for transient situations
corresponding to time-resolved photoluminescence (TRPL)
experiments as well as in steady-state situations. The CPU
time required for the SA or PA calculations is, in some cases,
orders of magnitude less than for the KMC simulations, which
makes this type of master equation modeling an attractive
alternative. In addition, this type of modeling provides impor-
tant insight into the role of correlations in the process of TTA.
Table I gives an overview of the methods used in this work,
the equations solved, and an assessment of the accuracy and
feasibility of the calculations.

With only one type of excitation (triplet excitons) present,
this work can be considered as a pilot study for taking into
account the complicating effects of correlations between ex-
citations in accurate yet fast calculations of the photophysics
of OLEDs. With the inclusion of charges, application to
triplet-polaron quenching (TPQ) should be possible. We fur-
ther foresee application to electron-hole recombination and
to charge transport, where correlations caused by Coulomb
interactions should be included, going beyond the method-
ology presented in Ref. [12]. With the further inclusion of
energetic and positional disorder, a complete accurate and fast
alternative to KMC simulations of the photophysics of OLEDs
may become available.
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