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First-principles mobility prediction for amorphous semiconductors
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Carrier mobility in amorphous semiconductors remained unpredictable due to random electronic states in
the absence of the long-range order in a lattice structure, although amorphous semiconductors have been
investigated over several decades and widely used in diverse electronic devices. In this work, we develop a
method to predict mobility of disordered systems by virtue of the first-principles calculation without using any
empirical parameters. Quantum transport modeling based on the nonequilibrium Green’s function formalism
enables us to establish a formula to connect first-principles results with amorphous-phase mobility. Finally,
the developed approach is quantitatively validated by comparing the theoretical predictions with previously
measured mobilities of amorphous metal oxides (SnO,, In,O3, and ZnO) and amorphous silicon. Localization
analysis provides further physical insight into a distinct feature between the amorphous metal oxides and

amorphous silicon.
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I. INTRODUCTION

Amorphous and crystalline semiconductors are of in-
terest in various electronic devices for present and future
applications: for example, thin-film transistors [1], solar
cells [2], phase-change memories [3], organic-electronic de-
vices [4], monolithic three-dimensional integration [5], etc.
Electron mobility is a critical figure of merit connected di-
rectly to the performance of such devices. To design and
optimize semiconductor channel materials, first-principles
mobility characterizations have been performed extensively
for crystalline semiconductors [6—11]. In line with this, the
modeling works have facilitated an accelerated development
of electronic device technology by predicting and engineer-
ing mobility in a wide range of crystalline semiconductors.
On the other hand, the theoretical estimation of mobility
for amorphous semiconductors remains elusive due to their
disorder-induced complexity in atomic and electronic struc-
tures, in which Bloch’s theorem is not applicable anymore.
Several (semi)empirical and phenomenological models—
variable-range hopping [12,13], random phase model [14],
Brownian motion model [15], and percolation conduction
model [16]—have been presented to explain certain features,
such as temperature dependence, of the carrier mobilities in
amorphous semiconductors; ab initio approaches have been
also proposed to model hopping conductions in amorphous
semiconductors [17,18]. However, these previous modeling
studies have not reached a quantitative description to pre-
dict the amorphous-phase mobility that includes both hopping
and extended-state conductions without empirical parameters.
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Given that amorphous semiconductors are ubiquitous and ex-
pected to broaden industry applications, it is important to
develop a quantitative prediction tool for mobility in amor-
phous materials based on first-principles calculations without
empirical parameters.

In addition to the pragmatic point of view for device
applications, conduction in disordered systems exhibits rich
fundamental physics problems, such as disorder-induced
metal-insulator transition [12,19-21] and many-body local-
ization [22], originating from Anderson localization [19].
Historically, after Anderson localization was suggested in
1958 [19], Thouless introduced an energy scale Ety, = iD/L?
to study the Anderson localization [23-25]. The Thouless
energy Et, corresponds to a coupling strength between lev-
els in two neighboring hypercubes of size L as depicted in
Fig. S1 of the Supplemental Material [26], resulting in the
energy level broadening. According to the time-energy un-
certainty relation, the Ery is rewritten as Er, = 7/t; then,
the time t = L?/D can be interpreted as the escape time for
an electron to diffuse escaping out of a block, where D is
the diffusion coefficient. Another physical quantity associ-
ated with conduction is the average spacing between energy
levels, W; in a d-dimensional hypercube with a density of
states p, W =1/ (pLd). Based on these, Thouless argued that
the ratio Et,/W is proportional to the dimensionless con-
ductance g = G/(e*/h) = Emn/W = (hD/p)L?2, where G is
the conductance. Subsequently, the gang of four—Abrahams,
Anderson, Licciardello, and Ramakrishnan—proposed the
scaling theory of localization in their influential paper pub-
lished in 1979 [27]. For weak disorder, Ohm’s law holds the
validity: g = 0 L9472, where o is the conductivity. For strong
disorder, g decreases exponentially with L: g o< exp(—L/§),
where £ is the localization length. From these two limits, the
gang of four asymptotically constructed the scaling function
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B(g) =dIng/dInL and proposed conductivity behavior in
disordered systems of different dimensionality. Despite the
conceptual success of the scaling theory, quantitative predic-
tion of mobility from scratch remains challenging.

In the present work, we revisit the theory of localization,
which provides underlying physical insights into developing
a method to quantitatively estimate amorphous semiconduc-
tors’ mobility in terms of the first principles calculations.
More specifically, a universal relationship between mobility
and localization length in amorphous phases is established
and numerically validated by using a nonequilibrium Green’s
function (NEGF) method [28-30]. In conjunction with the
localization length calculated by the first-principles calcula-
tion based on the density functional theory (DFT) [31,32], the
relationship established here enables us to not only predict
mobility for uncharted amorphous semiconductors but also
provide insights into determinant factors of amorphous-phase
mobility.

II. METHODS

A. NEGF modeling of transport in disordered systems

Quantum transport in disordered electronic systems can
be treated by the NEGF method [28-30]. We construct the
Hamiltonian H, which consists of on-site energies, and hop-
ping parameters for the channel region and self-energies for
contacts, in terms of a first-nearest-neighbor s-orbital tight-
binding model,

H == (to¢]is1 + He) + ) it]e;,
i i

where éj (&) is the creation (annihilation) operator at site i,
&; is the on-site energy, and H.c. stands for Hermitian conju-
gate. Amorphous systems are modeled by adding a random
on-site energy disorder following a Gaussian distribution with
a standard deviation of A. Actually, we can adjust either
on-site potentials and hopping strengths to model disordered
systems because a nonuniform distribution of them results
in the same outcome—Ilocalization. The hopping parameter
to is determined by using ) = Fzz/ (2ma(2)), where qq is the
interatomic distance and m is the effective mass. The elastic
phonon scattering is implemented in a phenomenological way
using the so-called Buttiker probe model [29,30,33], where
the probe extracts electrons and reinjects them after phase ran-
domization. The current at terminal R (or L) can be calculated
from

Ik = % dE(Te[ 4] — Tr[TRG"])

in terms of an inflow (E}{‘A) and an outflow (I'rG"). g is
the elementary charge, and E is the energy. Here, G" =
GX"G" is the correlation function; A = i[G — G'] is the
spectral f_unction; I'r = i(ZXR — Z;) is the broadening matrix;
XM= 3"+ X + X" is the summation of the inscattering
functions associated with the two leads and phase-breaking
scattering. The retarded Green function G is expressed as

G=[EI-H-% — % — %]},

where ¥, Xg, and X are the self-energies, and [ is the
identity matrix. We calculate the electron current and density

based on these approaches, eventually providing mobility in
amorphous semiconductors. The m is set to the free electron
mass myg, the mean interatomic distance is set to 0.3 nm, and
the phonon spectral function Dy, which corresponds to the
electron-phonon coupling strength, is set to 0.1eV? unless
otherwise stated. Temperature T is fixed at 300 K. The in-
trinsic mobility is calculated within the nondegenerate limit,
in which the Fermi level is 3kgT lower than the conduction
band edge. The drain voltage is set to 0.001 V to achieve the
low-field limit.

B. DFT modeling of amorphous semiconductors

The amorphous atomistic structures of SnO,, In, O3, ZnO,
and Si are generated by using ab initio molecular dynamics
(MD) as implemented in the Vienna Ab-initio Simulation
Package (VASP) [34,35]. These calculations were based on
DFT using the plane-wave basis set and Perdew-Burke-
Ernzerhof generalized gradient approximation (GGA-PBE)
functional [36]. The pseudopotential is given by the projector-
augmented wave (PAW) method [37,38]. The experimental
melt-quench process was simulated to obtain the amorphous
atomistic structures [39]. In such a melt-quench method, a
supercell of crystalline structure with amorphous-phase den-
sities (5.29 g¢/m> for SnO, [40], 6.60 g/m> for In,O3 [41],
5.61 g/m3 for ZnO [42], and 2.285 g/m3 for Si [43]) is melt
at 3000 K for 6 ps. This step is to remove the crystalline
order. The melted supercell is then quenched down to 100 K
at a rate of 200 K/ps. We note that this cooling rate is
faster than the typical experimental cooling rate of an order
of magnitude of 1 K/s, and it is due to the limitation of
the time scale in ab initio MD simulations. According to
a comprehensive experiment-theory work [39], however, the
adopted cooling rate is expected to reproduce an experimental
atomistic structure well. The obtained quenched structure is
finally equilibrated at 300 K for 6 ps, followed by a conven-
tional geometric structure optimization. Since ab initio MD
is computationally expensive due to the large supercell size
and long time scale, we employed a cutoff energy of 250
eV and a single I"-point Brillouin zone sampling scheme. All
simulations were carried out within the NV T ensemble using
the Nose-Hoover thermostat [44,45]. The time step was set to
2 fs. For atomistic structural relaxation, the quasi-Newton al-
gorithm method was employed to find a local minimum, with
the convergence criterion of the force on each atom to be less
than 0.02 eV/A. Cell shape and cell size were kept constant
during the structure relaxation. For electronic minimization
and electronic structure calculation, a Blocked-Davidson al-
gorithm was used with the converged energy criterion of
1073 eV for total energy.

III. RESULTS AND DISCUSSION

A. Relationship between amorphous-phase mobility
and localization length

Here, we propose a first-principles mobility modeling for
amorphous semiconductors by establishing the universal be-
havior of mobility. Whereas the original version of the scaling
theory of localization was suggested with hypercubes span-
ning in a three-dimensional (3D) space [27], we focus on
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the localization length along the transport direction and de-
velop a scaling theory with respect to the channel length in a
multichannel one-dimensional (1D) system, which is similar
to the approach that has been utilized to develop a different
version of scaling theory [46,47] using Landauer’s formal-
ism [48]. The multichannel 1D system can correspond to a
higher-dimensional system. Apart from that, carrier mobility
will be considered rather than conductance because mobility
is a directly relevant figure-of-merit to the performance of
semiconductor devices.

In accordance with the conductance, the mobility in a
noninteracting disordered system relies exponentially on the
degree of localization and the characteristic length [20,27,46]:

L
Mamor = Mcry €XP <__)v (D

3
where ftamor and pery are the mobilities in amorphous (with
disorder) and crystalline phases (without disorder), respec-
tively. The weak disorder limit gives rise to & > L and
Mamor = Mery. A principal parameter constituting the model is
the localization length &, which can also be referred to as a
disorder-induced decoherence length. If we assume isotropic
delocality of an LY hypercube, a localization length can be

given by
IPR
€L =L<¢) e, (2)
IPRumor

where IPR.,y and IPR,n,, are the inverse participation ratios
(IPRs) of crystalline and amorphous phases, respectively. An
IPR is a measure of wave-function localization described in
IPR = (N 3V [yi*)/ (Y 19il*)2, where v); is the probability
amplitude of an electronic state at the ith grid point, and N is
the total number of grids. Equation (2) is derived by applying
a normalization, IPR = IPR o /IPRy, Which is employed
to meet the condition that &£, = L for the crystalline system,
into the relationship 1/IPR = (£,/L)*. In a 1D s-orbital tight-
binding model (d =1, IPR.y = 1), Eq. (2) is reduced to
& = L/IPR o Importantly, this approach does not end up
providing &; larger than L even if the intrinsic localization
length £ is larger than L with a weak disorder. In other words,
& =L (§, = &) holds when & > L (§ < L). These two op-
posite limits lead us to expect 1/& + 1/L = 1/&; or

1 1\
“(5-1) @

which will be justified later in this work. Equation (3) is
highly recommended to use because the first-principles es-
timation is done with small systems due to computational
limitations. Please note that IPR.y, IPRamor, Mery, and flamor
should be averaged under given electron statistics: (A) =
S f(E)A(E)dE/ [ f(E)dE. In tandem with the nondegen-
erate limit, we adopt the Maxwell-Boltzmann distribution
for the f(E). Throughout this paper, we omit the brackets
(-) for ease of notation. The NEGF modeling turns out to
demonstrate that Eq. (1) describes remarkably well the scaling
behavior of the mobility regardless of effective masses despite
the tenuous form of Eq. (1) [Figs. 1(b) and 1(c)]. Furthermore,
this is a piece of evidence that Eq. (3) is valid.

We have so far considered no additional source of level
broadening except for the broadening induced by the open
boundary condition, i.e., a noninteracting system with con-
tacts at zero temperature. However, additional phase-breaking
scattering events (e.g., phonon scattering) are inevitable prac-
tically. See Fig. S2 of the Supplemental Material [26] for the
effects of disorder and additional phase-breaking scattering
on the local density of states (LDOS) and transmission co-
efficients. In our model, now we introduce electron-phonon
coupling with a fixed phonon spectral function D, using
Buttiker probe model [29,30,33] as a source of the incoherent
phase-breaking scattering. If other scattering processes are
involved, their contributions can be effectively incorporated
by adjusting the Dy in Buttiker probe model. Eventually, we
establish a relationship for the interacting system by replacing
L with X in Eq. (1):

A
Mamor = Mery €XP (_g> , 4)

where A is the mean free path of a crystalline phase. It should
be noted that the A in Eq. (4) is a parameter that does not
depend on disorder. Actually, in an interacting disordered
system, mean free path and localization length are correlated
and influenced by each other. However, the interacting, dis-
ordered system is divided into an interacting system and a
disordered system; then, A and & are calculated in each system,
which enables us to characterize the mobility of amorphous
semiconductors in terms of first principles calculations. This
treatment is reasonable because for A < L, A play a dominant
role of the cutoff characteristic length [20], as schematically
shown in Figs. 1(a) and 1(d).

It is necessary to take into account the effects of finite L
because a simulation domain for the NEGF modeling cannot
be infinitely long. Eq. (4) holds when L > A; while Eq. (1)
holds when A > L. Connecting these two opposite limits
asymptotically, we can derive

Lx
)- ®)

TE L+

Another effect of the finite L is associated with mobility.
Generally, mobility in semiconductors is determined in the
long channel limit with a low electric field. When L is compa-
rable to a mean free path, the L-dependent mobility emerges.
As L decreases, transmission happens more frequently; thus,
the transmission coefficient becomes A/(L + ) [49], which
will be converted into A /L in the long L limit. Therefore, the
ratio of the finite-L transmission coefficient to the infinite-L
one is L/(A + L), resulting in

Mamor = Mcry €XP (

w L
Mcry = Mcryk +L’ (6)

where gy is the mobility in the long-channel limit. Figure S3
[26] shows that this relationship well describes ficry as a func-
tion of L, so that we exploit Eq. (6) to estimate A in Eq. (5).
Also, we further confirmed that pamer 1S L-independent for
sufficiently large L (Fig. S4 [26]). This L-independent fiymor
is required in order for Eq. (4) to hold in the long L limit that
we utilize for the first-principles prediction. To numerically
validate the model developed for the amorphous-phase mo-
bility prediction, we use Eq. (5) with finite systems, which
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FIG. 1. Relationship between mobility and localization length in 1D systems. (a),(d) Schematics of localization of wave-function envelope
¥ in systems (a) without and (d) with phonon scattering. (b),(C) ftamor/Hery as a function of the localization length & without phonon scattering
[(b) linear, (c) semilog]. (€),(f) famor/Mery as a function of & with phonon scattering [(e) linear, (f) semilog]. The inset equations are associated

with the solid model curves. L is set to 30 nm in (b), (¢), (e), and (f).

is still large enough to obtain L-independent fi¢ry and flamor-
Figures 1(e) and 1(f) show that Eq. (5) reproduces well the
overall behavior of £-dependent mobility with different ef-
fective masses. Furthermore, it turns out that the exponential
behavior holds as in the noninteracting systems displayed in
Figs. 1(b) and 1(c).

B. First-principles mobility prediction

A combination of the universal relationship and the
first-principles calculation can lead to a first-principles
amorphous-phase mobility prediction without empirical pa-
rameters. Although the current work employs experimental
crystalline mobilities to validate the proposed model, they can
be replaced with crystalline mobilities simulated by fully ab
initio apporaches [6-11]. First, we need to make sure that
the £ defined in this work is the intrinsic physical quantity
corresponding to the disorder strength of a given amorphous
material. In this regard, £ should be independent of simulation
domain size L. Figure 2(a) demonstrates that an intrinsic lo-
calization length £ given in Eq. (3) well describes the degree
of localization regardless of the system size when the system
is sufficiently large. Furthermore, DFT tools dealing with
solid states typically exploit periodic boundary conditions of
a unit cell. It is necessary to assess the effect of the periodic

boundary condition. To do that, we define a localization length
in a single unit cell, & unit = Lunit/IPRamor, Where IPRymor
is calculated in a unit cell in the middle of the system, and
Lynit 1s the unit cell size. According to our NEGF calculation,
&1 unit does not depend on the number of unit cells constituting
the entire system but relies only on L, [Fig. 2(b)]. Also,
&r unit 1 consistent with & of the fully random system with
the same disorder strength [Figs. 2(a) and 2(b)]. In addition,
the fitting curve based on Eq. (3) is in good agreement with
the numerical results, as shown in Figs. 2(a) and 2(b). These
results are pieces of clear evidence that the evaluation of &
using Eq. (3) along with a periodic boundary condition is valid
even if the system is not large enough to show saturation of
&EL,unit With Ly

In the NEGF modeling, we can readily estimate the
(phonon) scattering-induced decoherence length A from the
size-dependent mobility using Eq. (6), and Fig. S3 [26] shows
the fitting works. For the first-principles prediction, however,
we need a different solution for A because it is not simple to
obtain ft¢ry as a function of L. Instead, we can utilize the diffu-
sion theory, A = ~/2Dt, where the two unknowns—diffusion
coefficient D and mean free time r—can be determined by
two well-known equations and two readily accessible quanti-
ties. By taking the nondegenerate limit, we can take advantage
of the Einstein relation D = ucykgT /g to obtain the D; also,
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FIG. 2. Validation of the estimation of § in 1D systems. (a) Single unit cell localization length &, as a function of L and within fixed
disorder strength and without phonon scattering (A = 0.3eV, Dy = 0eV?) using NEGF modeling. Panel (b) shows the same plot but with
periodic potential. The system is made of four periodic unit cells with random potential. L is set to 30 nm. The inset equations are associated
with the solid fitting curves. The fitting curves in (a) and (b) use the same & of 2.65 nm, and each error bar is one standard deviation given by

50 samples randomly generated with the fixed strength of disorder.

the Drude model T = picymm/g enables us to determine the 7.
On top of these relations, it will be straightforward to extract
the pery and m, either experimentally or theoretically. Putting
these equations and parameters together, we derive

b= 202 mksT /2, ™

in the end. To calculate the localization length of a 3D system
with an arbitrary cell shape, the system size L can be approx-
imated by L = V13 where V is the cell volume. Finally, we
can calculate the mobility of an amorphous semiconductor by
combining Eq. (4) and first-principles calculation results.

To validate our model and demonstrate the usefulness of
our approach in predicting the mobility in amorphous semi-
conductors, we apply the mobility model to several selected
amorphous solids. The n-type metal oxides (In,O3z, SnO;,
and ZnO) and Si are chosen as these semiconductors have
been widely investigated with their amorphous-phase mo-
bilities experimentally determined. DFT-based first-principles
calculations have been performed to generate the amorphous
atomic structures and calculate the localization length of the
amorphous materials. For each of these materials, multiple
amorphous phases (three samples for metal oxides and six
samples for Si) have been generated to obtain a statistical
average. See Fig. S5 [26] for examples of the calculated elec-
tronic DOS and IPR for the selected samples of amorphous
materials. In calculating the single unit cell localization length
&1 .unit» IPRs from multiple electronic states are averaged ac-
cording to the Maxwell-Boltzmann distribution function as we
did for the NEGF modeling. The crystalline-phase mobilities
are adapted from experimentally reported values [S0-53].

The predicted amorphous-phase mobilities in these se-
lected materials, along with their experimentally measured
values, are plotted in Fig. 3 (see Table S1 for data of each
sample). We note that most of the amorphous Si samples in ex-
periments are passivated by hydrogen to reduce the dangling
bond density, including the experimental reference [54], while
amorphous Si samples in our model are not hydrogenated. To

model the hydrogenated amorphous Si (a-Si:H), we mimic
the passivation effect by eliminating highly localized states
(IPR > 10) that would be originating from the Si dangling
bonds [55]. Although very accurate modeling of amorphous
phases would be needed for quantitative refinements of the
current mobility predictions, Fig. 3 demonstrates that our
model can provide a quantitatively reasonable prediction for
experimental amorphous-phase mobility reported in articles,
especially for the distinct feature between metal oxide systems
and Si. Importantly, our model captures the general trend that
covalently bonded Si suffers from severer electron mobility
degradation than ionically bonded metal oxides when transi-
tioning from crystalline phase to amorphous phase [1]. We
can further interpret the inherent difference between metal

OCrystalline (expt.) BAmorphous (expt.) OAmorphous (model)

1000 [ (53]
?50] [51] [52]
@ 100 [
> | [0 [39] 57
€ 10 L
o 3
2 1
re) 3
[e} L
E 01y [54]
© F
T oot}
0.001
Sno, In,0, ZnO  Si(a-Si:H)

FIG. 3. Amorphous-phase mobilities from experimental Hall
measurements [39,54,56,57] and our model. The plot for modeling
prediction of the amorphous-phase mobility is an average of loga-
rithmic values with error bars indicating the minimum and maximum
values.
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oxides and Si by looking into our model analysis. Combin-
ing Egs. (4) and (7), we can obtain fiymer X Aexp(—A/& ),
where [lamor €Xxhibits a maximum value when A = &. This
relationship indicates that although a large mean free path A
provides high mobility of the crystalline phase, a too large A is
not desirable to achieve a high ptyme because (ymor decreases
exponentially when A is larger than . This is the case of Si,
and the significant degradation of (tamor 1S clearly shown from
the predicted mobility of amorphous silicon.

IV. CONCLUSION

We developed and phenomenologically justified a first-
principles mobility model for amorphous semiconductors,
where the interplay of disorder-induced electron localization
and phonon scattering plays a crucial role. Based on the
modeling conjunctures, the mobility model quantitatively cap-
tures the primary effects of localization on amorphous-phase
mobility and reasonably well reproduces the experimentally
measured mobilities in amorphous metal oxides and a-Si:H.
Therefore, the proposed approach is expected to provide quan-
titative mobility prediction accelerating amorphous materials
design for future electronic device applications. While the
current work deals with Hall mobility for simplicity, it is

worth briefly noting a connection with device mobility. Hav-
ing considered a high Fermi level, the model here would
be applicable to the device mobility even though quantum
confinement effects of the inversion layer on electronic states
might be challenging to incorporate. Indeed, there is room for
improvement in the developed model through careful asymp-
totic, fine-tuned coefficients, and a rigorous prescription for
dimensionality. For all future refinements, this work undoubt-
edly paves the way for characterizing mobility of amorphous
semiconductors, which is accomplished in this work.
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