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Valence-bond solid to antiferromagnet transition in the two-dimensional Su-Schrieffer-Heeger
model by Langevin dynamics
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The two-dimensional Su-Schrieffer-Heeger model of electrons coupled to quantum phonons is investigated
using Langevin dynamics within the framework of auxiliary-field quantum Monte Carlo. Based on an explicit
determination of the density of zeros of the fermion determinant, it is argued that the method is efficient in the
challenging adiabatic limit. Large-scale simulations at the O(4)-symmetric point establish that the ground state of
the 2D SSH model undergoes a transition from a (π, π ) valence bond solid to an antiferromagnet with increasing
phonon frequency, yet still in the adiabatic regime. The single-particle spectrum illustrates the renormalization
of the electronic band and suggests the existence of a gapped polaronic band, whereas the particle-hole channels
show gapless modes associated with long-range bond and magnetic order, respectively. The simulations are
supplemented with a mean-field analysis and a self-consistent Born approximation.
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I. INTRODUCTION

The coupling of electrons or spins to phonons can generate
many fascinating states of matter. Apart from supercon-
ductivity [1], this also includes phases that break lattice
symmetries such as charge-density wave states (CDW) and
various flavors of valence-bond solid (VBS) states [2]. In
spin systems, the coupling to phonons can generate quan-
tum phase transitions between antiferromagnetic (AFM) and
VBS states [3]. A particularly intriguing aspect is the pos-
sibility of realizing quantum phase transitions beyond the
Landau-Ginzburg-Wilson paradigm—connecting two states
with different local order parameters—in models relevant for
materials.

The Debye frequency ωD is typically much smaller than the
Fermi energy εF. This separation of energy scales underlies
Migdal’s theorem [1,4], which provides a small parameter
h̄ωD/εF to justify perturbative approaches to the electron-
phonon problem. Quantum Monte Carlo (QMC) simulations
offer the possibility to take a step beyond perturbative ap-
proaches and thereby investigate competing instabilities [5].
In fact, the generic electron-phonon problem does not suffer
from a negative sign problem, irrespective of lattice geometry
and band filling. In particular, for each space-time configu-
ration of phonon fields, time-reversal symmetry ensures that
the eigenvalues of the fermion determinant come in complex
conjugate pairs [6]. As such, it should be a technically simple
problem. However, this is not the case. First, the argument
for the absence of a negative sign problem is valid only if
the phonons are not integrated out, as done in Refs. [7–9].
For example, the continuous-time interaction expansion (CT-
INT) QMC method [7] suffers, in general, from a negative
sign problem when applied to two-dimensional (2D) electron-
phonon problems. The approach introduced in Ref. [9] for the
Hubbard-Holstein model is free of a sign problem, but only

part of the parameter space is accessible. Even in the absence
of a sign problem, a central challenge is to find an adequate
sampling scheme that deals with the separation of energy
scales. Adopting a local updating scheme—as commonly used
in QMC simulations of fermions—in which the phonon field
is updated on a time scale set by the electron motion leads
to prohibitively long autocorrelation times [10]. Global up-
dates of the phonon fields on the imaginary time scale of
the inverse Debye temperature are highly desirable and have
been achieved using, for example, self-learning methods [11].
Finally, a sufficiently favorable scaling of the numerical effort
with system size is essential to study phase transitions.

The history of unbiased numerical results for 2D systems
of electrons coupled to quantum phonons directly reflects
these algorithmic challenges. QMC investigations focused on
the two fundamental types of interactions captured by the
Holstein [12] and Su-Schrieffer-Heeger (SSH) Hamiltonians
[13], respectively. Simulations of Holstein-type models have
a long history, mainly in connection with CDW formation
and superconductivity (SC), but many important questions
have only been resolved recently, see, e.g., Ref. [14] and
references therein. QMC simulations of the simplest variant
of the SSH model, namely a half-filled square lattice, have
remained elusive until recently when the long-standing dis-
cussion regarding the pattern of the expected VBS ground
state was resolved in Ref. [15].

Here, we investigate the 2D SSH model with optical
phonons on the square lattice and for the case of a half-
filled band. We focus on the high-symmetry point with partial
particle-hole symmetry that exhibits an O(2N) symmetry for
the general case of fermions with N flavors.

The purpose of our work is twofold. First, we investigate
the usefulness of Langevin updates, successfully applied be-
fore to the 2D Holstein model [16], by using an identical
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FIG. 1. Schematic phase diagram of the O(4)-symmetric,
square-lattice SSH model as a function of phonon frequency. The
left inset depicts the VBS phase, showing one of four equivalent
(π, π ) patterns of strong and weak bonds. The right inset illustrates
the AFM phase which, due to the O(4) symmetry, is equivalent to a
phase with CDW or SC order.

algorithm based on the standard auxiliary-field QMC
(AFQMC) formulation [17] implemented in the ALF-2.0
package [18]. Our analysis is based on the calculation of a
Pfaffian whose sign changes track the zeros of the fermion de-
terminant. Following Ref. [16], we also implemented Fourier
acceleration to reduce autocorrelations. Our analysis reveals
that the method is suited to investigate the particularly inter-
esting adiabatic regime.

Second, we provide insight into the physics of the SSH
model, namely evidence for and details of a transition from
a VBS state to an AFM state with increasing phonon fre-
quency. A schematic phase diagram is shown in Fig. 1. AFM
order at finite phonon frequencies is remarkable as it was
expected only in the presence of Coulomb repulsion [19–23].
We characterize the evolution with phonon frequency by cal-
culating susceptibilities and, in particular, excitation spectra.
We complement our numerical results with those from a self-
consistent Born approximation. Furthermore, we determine
the mean-field ground state and study its destruction by ther-
mal fluctuations in the adiabatic limit.

The rest of the paper is organized as follows. In Sec. II, we
define the SSH model and comment on symmetries, limiting
cases, and previous work. In Sec. III, we discuss the numerical
method. Our results are presented in Sec. IV, followed by
a discussion in Sec. V. We also provide an Appendix with
details about the self-consistent Born approximation. Aspects
of this work were already reported in Ref. [24].

II. MODEL AND SYMMETRIES

A. Hamiltonian

We consider an SSH model with optical phonons, defined
by the Hamiltonian

Ĥel = −t
∑
〈i, j〉

N∑
σ=1

(ĉ†
i,σ ĉ j,σ + H.c.) +

∑
b

[
P̂2

b

2m
+ k

2
Q̂2

b

]

+ g
∑
〈i, j〉

Q̂b

N∑
σ=1

(ĉ†
i,σ ĉ j,σ + H.c.). (1)

The first term describes the hopping of electrons on the bonds
b = 〈i, j〉 connecting two nearest-neighbor sites i, j with hop-
ping amplitude t . The operator ĉ†

i,σ creates an electron in a
Wannier state centered at site i and with z component of spin
σ that runs over N flavors. We use antiperiodic boundary
conditions ĉ†

i+La1,σ
= −ĉ†

i,σ in the direction of the primitive
vector a1 of the lattice and periodic boundary conditions
ĉ†

i+La2,σ
= ĉ†

i,σ in the direction of a2. The phonons are rep-
resented by harmonic oscillators that reside on the bonds.
They are described by momentum and position operators P̂b

and Q̂b as well as the frequency ω2
0 = k/m, where k is the

spring constant and m the mass of the harmonic oscillators.
Electron hopping is modulated by the coupling to the phonon
coordinate Q̂b on the respective bond b with strength g. The
adiabatic regime is defined as ω0 < t . All results will be for
N = 2 (i.e., spin-1/2 electrons).

B. Symmetries

The SSH model at half filling and on a bipartite lattice is
invariant under the partial particle-hole transformation

P̂−1
σ ĉ†

i,σ ′ P̂σ = δσ,σ ′eiQ·iĉi,σ ′ + (1 − δσ,σ ′ )ĉ†
i,σ , (2)

where Q = (π, π ) for the square lattice considered here. We
can define a corresponding Z2 order parameter, the fermion
parity on site i [25],

p̂i =
N∏

σ=1

(1 − 2n̂i,σ ). (3)

This Ising-like order parameter supports order at finite tem-
perature. Since it changes sign under transformation (2), it can
be used to detect a spontaneous breaking of the particle-hole
symmetry.

In addition to the apparent global SU(N ) spin rotation sym-
metry, the model possesses an enlarged O(2N ) symmetry on a
bipartite lattice. To prove this, we reformulate the Hamiltonian
using Majorana fermions [25,26],

ĉ†
i,σ = 1

2
(γ̂i,σ,1 − iγ̂i,σ,2). (4)

After a canonical transformation ĉ†
i → iĉ†

i on one sublattice,
the hopping operator can be written as

K̂b =
N∑

σ=1

(ĉ†
i,σ ĉ j,σ + H.c.) = i

2

∑
σ

2∑
α=1

γ̂i,σ,αγ̂ j,σ,α, (5)

thereby revealing the O(2N ) symmetry. Because of the latter,
the model is free of a sign problem for odd values of N [27].
For even N , time-reversal symmetry is sufficient to show the
absence of a sign problem [6]. In the case of N = 2 consid-
ered here, the spin operators and the Anderson pseudospin
operators [28] are the infinitesimal generators of the SO(4)
symmetry. They are defined by

Ŝi = 1

2

∑
σ,σ ′

ĉ†
i,σσσ,σ ′ ĉi,σ ′ , η̂i = P̂−1

↑ ŜiP̂↑, (6)

where the vector σ contains the three Pauli matrices. The spin
and pseudospin components (l , m, n) fulfill the Lie algebra of
the SU(2) group [Ŝi,l , Ŝ j,m] = iδi, j

∑
n εlmnŜi,n and commute
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among each other. Here, εlmn is the Levi-Civita symbol. The
Lie algebra of the global O(4) symmetry can be interpreted as
O(4) = SU(2) × SU(2) × Z2, where the additional Z2 sym-
metry corresponds to the partial particle-hole symmetry [25].
Hence, an AFM phase is degenerate with a CDW and an
s-wave superconductor (SC). If the parity p̂i orders and the
particle-hole symmetry is spontaneously broken, either the
spin or charge sector is explicitly chosen. The VBS ground
state in Fig. 1 spontaneously breaks the C4 symmetry of the
lattice, whereas long-range AFM order breaks the O(4) sym-
metry down to U(1).

C. Limiting cases

In the adiabatic limit ω0 → 0, imaginary-time fluctuations
of the phonon fields are exponentially suppressed. The phonon
displacements can be treated classically and the Hamiltonian
can be written as

Ĥ =
∑

b

(−t + gqb)K̂b +
∑

b

q2
b. (7)

Here, Q̂b|q〉 = qb|q〉 and K̂b is defined in Eq. (5). The Hamil-
tonian consists solely of a modulated hopping of the electrons
and the potential energy of the phonon fields. Mean-field
theory or Monte Carlo simulations yield a VBS ground state,
see Sec. IV A.

For ω0 > 0, we can integrate out the phonons to obtain an
effective Hamiltonian for the electrons [25,29]. This yields the
action

Seff = − g2

2k

∫ β

0

∫ β

0 dτ dτ ′ ∑
b K̂b(τ )D(τ − τ ′)K̂b(τ ′) (8)

with β = T −1 the inverse temperature (we set kB = 1). The
interaction is local but retarded,

D(τ ) = ω0

2

e−ω0|τ | + e−ω0(β−|τ |)

1 − e−ω0β
. (9)

By taking the antiadiabatic limit ω0 → ∞, it becomes instan-
taneous [25],

lim
ω0→∞ D(τ ) = δ(τ ). (10)

The effective Hamiltonian of the SSH model in the antiadia-
batic limit is given by

Ĥeff = −t
∑
〈i, j〉

K̂b − g2

2k

∑
〈i, j〉

K̂2
b . (11)

For N = 1, this expression is equivalent to the Hamiltonian of
the t-V model if we set g = √

kV . For two fermion flavors,
N = 2, we can rewrite the interaction term as

−1

4
K̂2

b = Ŝi · Ŝ j + η̂i · η̂ j . (12)

The interaction (12) again reveals the O(4) symmetry and
favors an AFM/CDW/SC ground state [25].

D. Previous work

Despite its long history [13], the SSH model was mainly
studied in connection with 1D materials. Until recently,
investigations of the 2D SSH model relied on mean-field argu-
ments or started outright from the adiabatic limit of classical

phonons. The correct mean-field VBS pattern remained con-
troversial [19,30–32] and an alternative, multimode Peierls
state with no well-defined ordering wave vector was sug-
gested [33–35]. AFM order in 2D SSH models with additional
Coulomb interaction was discussed in Refs. [19–23]. How-
ever, all these works completely left out the impact of
quantum lattice fluctuations, which are the focus of the present
work and have proven to have a crucial impact for the 1D spin-
less (i.e., N = 1) SSH model [36]. Numerical confirmation of
the existence of a unique VBS ground state and its ordering
pattern was provided by QMC simulations in Ref. [15], where
a nonzero critical value was reported for quantum phonons.
QMC results were also obtained for the honeycomb lattice
[37] and the Lieb lattice [38].

III. METHODS

A. Langevin dynamics

Using the real-space formulation of the path integral for
the phonon degrees of freedom with the eigenstates |q〉 of the
position operator Q̂b, the partition function of the model can
be written as

Z =
∫ ∏

b,τ

dqb,τ e−S, (13)

S = S0 + SF = S0 − N ln det [1 + B(β, 0)]

with

B(τ1, τ2) =
τ1∏

τ=τ2+�τ

(∏
b

e−�τgqb,τ Kb

)
e�τ t

∑
b Kb (14)

and the matrix

(Kb)x,y =
{

1 if x ∈ b ∧ y ∈ b
0 otherwise . (15)

Here, x and y label lattice sites; x ∈ b means that site x belongs
to bond b. In the path integral, we discretized the imaginary
time interval [0, β[ into steps of width �τ = β/LTrot. Fol-
lowing Blankenbecler, Scalapino, and Sugar (BSS) [17] we
rewrote the fermionic trace as a determinant. Therefore, we
only have to sample the phonon degrees of freedom, whose
g = 0 imaginary-time dynamics is governed by

S0 = �τ
∑
b,τ

(
1

ω2
0

[qb,τ+1 − qb,τ

�τ

]2

+ q2
b,τ

)
. (16)

We use Langevin dynamics to update the phonon fields q =
{qb,τ }. The corresponding Langevin equation is a stochastic
differential equation for the fields [16,18],

dq(tl )

dtl
= −M

∂S(q(tl ))

∂q(tl )
+

√
2Mη(tl ), (17)

with an additional Langevin time tl . The independent Gaus-
sian random variables η satisfy

〈ηb,τ (tl )〉 = 0, 〈ηb,τ (tl )ηb′,τ ′ (t ′
l )〉 = δb,b′δτ,τ ′δ(tl − t ′

l ), (18)

where δ is to be understood as a Kronecker δ for the discrete
indices and as the Dirac δ function for the continuous tl . The
matrix M is an arbitrary positive-definite matrix. In order to
use the Langevin equation in our AFQMC code, we discretize
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the Langevin time tl with a finite time step δtl . Using the Euler
method, the discretized equation is given by [39]

q(tl + δtl ) = q(tl ) − M
∂S(q(tl ))

∂q(tl )
δtl +

√
2δtlMη(tl ). (19)

For the random variables η we replace δ(tl − t ′
l ) → δtl ,t ′

l
. The

systematic error introduced by discretizing tl is of linear order
in δtl [16,18]. By transforming the Langevin equation into
a Fokker-Planck equation one can show that the stationary
probability distribution of finding the system in state q is given
by [40]

P(q) = e−S(q)∫
Dq e−S(q)

. (20)

A major aspect of Langevin dynamics are the forces, their
computation, and characteristics. For the SSH model, using
Eq. (13), the forces read

∂S

∂qb,τ
= �τkqb,τ + m

�τ
(2qb,τ − qb,τ+1 − qb,τ−1)

+ Ng�τ Tr {Kb(1 − G(b, τ ))} (21)

with the Green function

Gi, j (b, τ ) = Tr[Û <(b, τ )ĉi ĉ†
jÛ

>(b, τ )]

Tr[Û (β, 0)]
(22)

and the propagators

Û <(b′, τ ) = Û (β, τ )
Nb∏

b=b′
e−�τgqb,τ ĉ†Kbĉ,

Û >(b′, τ ) =
b′−1∏
b=1

e−�τgqb,τ ĉ†Kbĉe�τ t
∑

b ĉ†KbĉÛ (τ − �τ, 0).

(23)

Here, Nb is the total number of bonds on the lattice. From
Eq. (13) we see that the action has logarithmic divergences
if the determinant vanishes. The O(2N ) symmetry of the
model only guarantees that the determinant is non-negative.
An advantage of Langevin dynamics is that it amounts to
global updates. In each step, all phonon fields are updated and,
contrary to the Metropolis-Hastings algorithm [41,42], there
is no acceptance-rejection step.

To control the motion through configuration space we used
an adaptive Langevin time step δtl [43,44]. At each Langevin
time step, the fermionic forces for every b and τ are compared
to a preset maximal force Fmax. If the maximal computed force
max(∂SF /∂qb,τ ) exceeds Fmax, δtl is decreased by the ratio of
the two forces,

δ̄tl = Fmax

max
(

∂SF
∂qb,τ

)δtl . (24)

The variations of the Langevin time step have to be accounted
for when measuring observables,

〈Ô〉 =
∑Nm

α=1 (δ̄tl )α〈〈Ô〉〉α∑Nm
α=1 (δ̄tl )α

. (25)

FIG. 2. Comparison of Langevin, CT-INT, and HQMC results
for (a) the local imaginary-time Green function and (b) the spin cor-
relation function on an L = 4 lattice for β = 1.0, �τ = 0.1, g = 1.0,
k = 2, ω0 = 1.0, and δtl = 0.0005. HQMC and CT-INT data taken
from Ref. [26].

Here, Nm is the total number of measurements and 〈〈Ô〉〉α
denotes the value of the observable Ô for configura-
tion Cα of the phonon fields. Equation (25) reduces to
〈Ô〉 = 1

Nm

∑Nm
α=1〈〈Ô〉〉α for a fixed time step and to 〈Ô〉 =

1
Tl

∫ Tl

0 dtl〈〈Ô(tl )〉〉 for continuous Langevin time.
Simulations start from a random field configuration {qb,τ }

and iterate the following set of steps:
(1) Compute the equal-time Green functions on all time

slices from Eq. (22).
(2) Compute the forces via Eq. (21).
(3) Using the equal-time Green functions from (1), we

can compute 〈〈Ô〉〉α for any equal-time, multipoint correlation
function, see Eq. (25). To this end, we make use of Wick’s
theorem, which holds for a given field configuration.

(4) Adjust the time step according to Eq. (24).
(5) Draw a set of independent Gaussian variables η.
(6) Compute new fields {qb,τ } from the Langevin equa-

tion using the Fourier acceleration matrix M and running
Langevin time step δ̄tl [Eq. (17)].

In Fig. 2, we compare selected results from our method
with two other QMC approaches: the hybrid QMC (HQMC)
method described for the SSH model in Ref. [26] and CT-INT
QMC method in which the phonons are integrated out in favor
of a retarded interaction of the electrons [7,45,46]. The results
from all three methods are in good agreement.

B. Calculation of the Pfaffian

In this section, we explore how suitable Langevin dynam-
ics is for the SSH model and in which parameter regions
it is particularly efficient or problematic. As opposed to the
HQMC approach of Ref. [26], Langevin updates constitute
rejection-free global moves. A key requirement for the success
of these methods is the absence of singularities in the action
S. Since S contains the logarithm of the fermion determi-
nant, the latter must not vanish. In special cases where S has
no singularities, this class of updating schemes works very
well. A notable example is the 1D Hubbard model with open
boundary conditions [18]. For the SSH model in the adiabatic
limit, the phonon fields are frozen in imaginary time and the
fermion determinant is strictly positive. For ω0 > 0, this is not
the case.

To analyze the fermion determinant, we derive a relation
to a Pfaffian. The latter can be evaluated numerically and its
sign changes track the zeros of the determinant. Note that the
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Pfaffian is not necessary for simulations but rather represents
an additional diagnostic.

The O(2N ) symmetry of the model permits us to express
the determinant as a square of a trace over one of the two
Majorana fermions:

Z2
γ = det [1 + B(β, 0)]

Zγ = Tr

[∏
τ

∏
b

(
e− i

2 �τgqb,τ γ̂i γ̂ j
)
e

i
2 �τ t

∑
b γ̂i γ̂ j

]
. (26)

Here and in the rest of this section, we drop the spin and
Majorana kind indices since none of the quantities considered
explicitly depend on them. One can show with a canonical
transformation of the Majorana fermions on only one sub-
lattice, γ̂i → −γ̂i, that Zγ is real [47] and its square hence
non-negative.

Zγ can have a different sign in different regions of the
configuration space. Being an entire function, it necessarily
has to vanish between these regions. Hence, the average sign
of Zγ serves as an estimate of the number of zeros of the
determinant. If the average sign is close to plus or minus unity,
we are less likely to cross a boundary between two regions in
which Zγ has different signs. In contrast, a small average sign
implies more zeros.

To measure the sign of Zγ we reformulate it as a Pfaffian.
First, we use an alternative Trotter decomposition and rewrite
the exponentials as hyperbolic functions by using (γ̂iγ̂ j )2 =
−1 to obtain

Zγ = Tr

[∏
x

eiyx γ̂i γ̂ j

]

=
∏

x

(cosh yx ) Tr

[∏
x

(1 + iγ̂iγ̂ j tanh yx )

]
. (27)

The tuple x = (b, τ ) combines the bond index and the imag-
inary time slice into a new index ordered according to its
position in the product

∏
τ

∏
b. To lighten the notation, we

used yx = 1
2�τ (t − gqx ). Next, we introduce Grassmann vari-

ables ξi/ j,τ [29] on every site and imaginary time slice, where
i and j are on different sublattices, and use

C±
n∏

x=1

√
a(x) =

∫
[dξ ]e± ∑

x<x′
√

a(x)a(x′ )ξx′ ξx ,

C+ = (−i)n, C− = 1 (28)

for even n [48]. Here, [dξ ] = dξn...dξ1 is a time-ordered
product and a ∈ C. Finally, Zγ can be written as the Pfaffian
over an antisymmetric matrix A ∈ C2NbLTrot×2NbLTrot [48],

Zγ =
∏

x

(cosh yx ) Tr (1) Pf(A),

where

Pf(A) =
∫

[dξ ]e− 1
2 ξT Aξ (29)

FIG. 3. (a) Average sign of the Pfaffian for the t-V model on
the π -flux square lattice with L = 4, βt = 4, and δtl = 0.005. This
model exhibits a Gross-Neveu phase transition at Vc = 1.279(3)t
[50]. (b) Average sign of the Pfaffian for the SSH model with
antiperiodic-periodic (a-p) or periodic-periodic (p-p) boundary con-
ditions and β = 5.0, �τ = 0.1, and δtl = 0.0005.

and

−1

2
ξT Aξ = −

∑
x

ξi,xξ j,x +
∑

i,(x<x′ )

mx′xξi,x′ξi,x

−
∑

j,(x<x′ )

mx′xξ j,x′ξ j,x. (30)

Here, mx′x = √
tanh (yx ) tanh (yx′ ) and the vector ξ contains all

Grassmann variables.
For the numerical computation of the Pfaffian we used the

software from Ref. [49]. Since the calculation is very expen-
sive, we only considered small lattices and a small number of
imaginary time slices. In Fig. 3, we plot the average sign for
both the t-V model as a function of the interaction strength V
and the SSH model as a function of the phonon frequency ω0.

The results for the t-V model illustrate a breakdown of
Langevin dynamics due to severe divergences of the forces.
Upon increasing V , the average sign of the Pfaffian drops
to zero and the measured observables deviated by up to a
factor of 106 from results obtained with a Metropolis-Hastings
updating scheme. In the adiabatic limit of the SSH model,
the average sign is close to unity and the simulations are
stable. Increasing ω0 leads to a decrease of the average sign
and the updating tends to become unstable. In general, we
found it easier to stabilize the simulations with our choice of
mixed boundary conditions as opposed to periodic boundary
conditions in both directions.

C. Fourier acceleration

Following Refs. [16,40], we used Fourier acceleration to
reduce autocorrelations. Its main idea is to increase (reduce)
the step size of the Langevin time of slow (fast) phonon modes
by using an adequate choice of the matrix M in the Langevin
equation (19) [51].

As a foundation for the choice of M we consider the nonin-
teracting case (g = 0). We carry out a Fourier transformation
of the force in imaginary time,

F̂
[

dS

dqb,τ

]
= [

�τk + 2m
�τ

(1 − cos (2πνn))
]
qb,νn . (31)

To this end, we defined the Fourier transformation for a func-
tion f as

F̂[ f (τ )] = 1
LTrot

∑LTrot
τ=1 ei2πνnτ f (τ ) (32)
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FIG. 4. (a) Equal-time spin correlation function SS (q, 0) and
(b) corresponding autocorrelation function CS (tl ) at wave vector Q
as a function of Langevin time tl with and without the use of Fourier
acceleration (FA). The parameter sets for both runs are exactly the
same (including number of sweeps/bins): ω0 = 0.4, L = 6, β = 7.0,
and δtl = 0.001.

with νn = n
LTrot

with n = − LTrot
2 + 1,− LTrot

2 + 2, ..., LTrot
2 . The

ratio of the slowest and fastest modes is [16]

(�τ )2k

(�τ )2k + 4m
� 1. (33)

Especially for ω0 � 1, it is close to zero. We choose the
factor M̃(νn) in Fourier space such that the prefactor of qb,νn

in Eq. (31) becomes independent of νn,

M̃(νn) = �τk + 4m
�τ

�τk + m
�τ

(2 − 2 cos (2πνn))
. (34)

Although this choice is guided by the noninteracting case
g = 0, we also use it for g > 0 [16]. The modified Langevin
equation reads

q(tl + δtl ) = q(tl ) − F̂
−1

[
δtl M̃(νn)F̂

[
− dS

dq(tl )

]

−
√

2δtl

√
M̃(νn)F̂[η(tl )]

]
. (35)

To see the effect of Fourier acceleration on autocorrela-
tions, we measured the equal-time spin correlator

SS (q, 0) = 1

L2

∑
i, j

e−iq(i− j)(〈Ŝi,zŜ j,z〉 − 〈Ŝi,z〉〈Ŝ j,z〉) (36)

with [using Eq. (35) to update the fields] and without (by
setting M = 1) Fourier acceleration. Results at wave vector
Q are shown in Fig. 4(a) as a function of the inverse Langevin
time. The equilibration time is obviously reduced by Fourier
acceleration, and the results of both methods agree at suffi-
ciently long times.

We also consider the autocorrelation function [18]

CÔ(tl ) =
Tl −tl∑
t ′
l =0

(O(t ′
l ) − 〈Ô〉)(O(t ′

l + tl ) − 〈Ô〉)

(O(t ′
l ) − 〈Ô〉)2

. (37)

O(tl ) is the observable evaluated at time tl and Tl is the
maximal time at which measurements were taken. Shorter
autocorrelation times imply a faster decay of the autocor-
relation function. A decrease of autocorrelations by Fourier
acceleration is clearly visible in Fig. 4(b).

FIG. 5. (a) Unit cell used in mean-field theory, indicated by the
colored sites and bonds. (b) Resulting minimal-energy (π, π ) VBS
pattern. Strong bonds are colored while weak bonds are represented
by black lines.

IV. RESULTS

The key questions to be addressed are as follows. Start-
ing from the exact mean-field VBS ground state at ω0 = 0
(established in Sec. IV A), what is the impact of thermal
fluctuations? What happens upon enhancing quantum lattice
fluctuations by increasing ω0 at fixed electron-phonon cou-
pling? Does the AFM order suggested by the interaction (12),
derived for ω0 = ∞, emerge at finite and potentially experi-
mentally relevant phonon frequencies? Are the VBS and AFM
phases connected by a single phase transition or via an inter-
mediate metallic phase? Finally, how does the evolution from
VBS to AFM order manifest itself in the spectral properties?

Simulations were done for spin-1/2 fermions (N = 2) on
L × L square lattices with mixed boundary conditions, see
Sec. II. We set k = 2, t = 1, g = 1.5, and �τ = 0.1. The
Langevin time step was δtl = 0.01 for ω0 = 0 and δtl =
0.0005 otherwise.

All simulations were carried out using the ALF package
[18], which provides a generic, high-performance implemen-
tation of the AFQMC method as well as tools for stochastic
analytic continuation and error analysis. Error bars were ob-
tained using binning analysis [18,42,52] and the delete-1
jackknife scheme [18,52,53], respectively.

A. Adiabatic limit

For completeness, we use a mean-field approach to find
the minimal energy configuration of the classical fields qb and
hence the ground state of Eq. (7). The nested Fermi surface
of the noninteracting problem gives rise to a log divergence of
the q = Q bond susceptibility at low temperatures and hence
to a gapped VBS ground state. In contrast to one dimen-
sion, where the ordering pattern is unique, possible 2D VBS
patterns include staircase, columnar, staggered, and plaque-
tte arrangements [19,30]. We use a 2 × 2 unit cell and vary
the bond variables independently according to the aforemen-
tioned symmetry [see Fig. 5(a)], thereby allowing all (π, π )
and (0, π ) patterns. Energy minimization yields the (π, π )
staggered VBS state illustrated in Fig. 5(b). The same pattern
was observed numerically in Ref. [15].

The phonons enhance the hopping amplitude on all bonds
and effectively renormalize the electronic bandwidth. Further-
more, they modulate the hopping in a (π, π ) pattern [see
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FIG. 6. (a) Bond susceptibility as a function of temperature for
different system sizes. (b) Energy as a function of temperature for
L = 12. Simulations were done using δtl = 0.01 and starting from
the mean-field configuration.

Fig. 5(b)] that leads to a finite gap at the Fermi surface. Since
the VBS ordering breaks the discrete C4 symmetry of the
lattice, it can survive at finite temperatures.

To study the thermal melting of the VBS state, we consider
the partition function of Hamiltonian (7),

Z =
∫ ∏

b

dqb e−S,

S = β
∑

b

k

2
q2

b − Nσ ln det
[
1 + e−β

∑
b(−t+gqb)Kb

]
. (38)

The determinant is strictly positive since its argument is a
symmetric matrix. Therefore, we can use Langevin dynamics
without divergences in the forces to update the phonon fields
via

∂S

∂qb
= βkqb + βgN Tr {Kb(1 − G)},

Gi, j = Tr
[
e−β

∑
b(−t+gqb)K̂b ĉi ĉ†

j

]
Tr

[
e−β

∑
b(−t+gqb)K̂b

] . (39)

The onset of VBS order can be captured by the bond-kinetic
susceptibility

χδ,δ′
K (q) =

∫ β

0
dτ Sδ,δ′

K (q, τ ) (40)

with the imaginary-time-displaced correlation function

Sδ,δ′
K (q, τ ) = 〈K̂δ (q, τ )K̂δ′

(−q)〉 − 〈K̂δ (q)〉〈K̂δ′
(−q)〉 (41)

and

K̂δ (q) = 1√
N

∑
i,σ

eiq·i(ĉ†
i,σ ĉi+aδ ,σ

+ H.c.). (42)

Figure 6 shows results as a function of temperature at
the ordering wave vector Q. Simulations were started in the
mean-field configuration to reduce warm-up times. At low
temperatures, the susceptibility grows with increasing L, sig-
naling long-range VBS order. On our largest lattice size (L =
12), we observe a sudden drop of the signal at T ≈ 0.06 [see
Fig. 6(a)]. The energy 〈Ĥ〉 shows a kink at the same tem-
perature [Fig. 6(b)]. Above this critical temperature, thermal
fluctuations destroy the long-range order.

FIG. 7. (a) Finite-size scaling of the bond-kinetic susceptibility
at T = 1/40. (b) Temperature dependence of the bond-kinetic struc-
ture factor and (c) of the bond-kinetic susceptibility for L = 12.

B. Finite phonon frequencies

1. Equal-time and static quantities

To map out the phases as a function of phonon frequency,
we computed the spin-spin correlations

SS (q, τ ) = 〈Ŝz(q, τ )Ŝz(−q)〉 − 〈Ŝz(q, τ )〉〈Ŝz(−q)〉, (43)

as well as the imaginary-time-displaced correlations of the
bond-kinetic energy defined in Eq. (41). Here,

Ŝz(q) = 1√
N

∑
i

eiq·i(n̂i,↑ − n̂i,↓). (44)

We also considered the bond-kinetic susceptibility of Eq. (40)
and the equivalent form of the spin susceptibility, χS (q). Be-
cause of the O(4) symmetry of Eq. (1), see Sec. II, the three
components of the spin-spin correlations are degenerate with
CDW and s-wave SC correlations. Here, we will discuss the
results from the point of view of spin-spin correlations.

In Fig. 7, we present the dependence of the bond-kinetic
susceptibility and structure factor on lattice size, temperature,
and phonon frequency. At the lowest frequency considered
(ω0 = 0.4), Tr χK (Q) grows as a function of size and inverse
temperature, suggesting the same (π, π ) VBS order as in the
adiabatic limit. Note that the lowest temperature, T = 1/40,
was not sufficient to achieve convergence of Tr χK (Q) for
L = 12. Contrary to theoretical expectations based on the log
divergence caused by Fermi surface nesting, a nonzero critical
value for VBS order was reported in Ref. [15] for ω0 = 1.
While the limitations regarding system size do not allow us to
address this contradiction, our observation of VBS order at the
dimensional coupling λ = g2/8kt = 0.141 and for ω0 = 0.4
is compatible with VBS order for λ � 0.112 and ω0 = 1 in
Ref. [15]. As ω0 is increased, we observe a rapid drop in
TrχK (Q) that indicates that the VBS state gives way to another
phase.

In Fig. 8(a), we show results for the spin degrees of free-
dom. At low temperatures, the size dependence of the AFM
spin susceptibility shows a marked increase at high phonon
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FIG. 8. (a) Finite-size scaling of the spin susceptibility at T =
1/40. (b) Temperature dependence of the spin structure factor for
L = 10. (c) Temperature dependence of the spin susceptibility for
L = 10.

frequencies. In Figs. 8(b) and 8(c), the temperature depen-
dence at fixed lattice size shows that we are able to achieve
convergence with respect to temperature. This allows us to
compute the correlation ratio

Rχ,S = 1 − χS (Q + �q)

χS (Q),
(45)

where |�q| = 2π/L. This renormalization group invariant
quantity takes the value of unity (zero) in the ordered (dis-
ordered) phase. At T = 0 and for a continuous transition, it
scales as

Rχ,S = f
([

ω0 − ωc
0

]
L1/ν

)
. (46)

Figure 9 shows Rχ,S as a function of system size for the
lowest temperature available (representative of the ground
state). Although corrections to scaling, not included in
Eq. (46), lead to a drift of the crossing points, the data suggest

FIG. 9. Correlation ratio based on the spin susceptibility as de-
fined in Eq. (45). Here, T = 1/40, which is representative of the
ground state for this quantity.

FIG. 10. Parity susceptibility [Eq. (47)] at T = 0.1.

a critical phonon frequency ωc
0 � 0.6 for the onset of long-

range AFM order.
Being a modulation of the bond-kinetic energy, the VBS

state does not break the underlying O(4) symmetry of the
lattice. However, it does break translation and rotation sym-
metries. On the other hand, the AFM phase does break the
O(4) symmetry, as can be demonstrated by computing the
susceptibility of the parity operator defined in Eq. (3),

χp(q) =
∫ β

0
dτ

∑
r

eiq·r〈p̂r(τ ) p̂0〉. (47)

Since p̂i is an Ising variable that changes sign under an O(4)
transformation M with det M = −1, we expect χp(0) to
diverge at a critical temperature associated with a phase tran-
sition in the 2D Ising universality class. Being an eight-point
correlation function, χp(q) becomes very noisy at low tem-
peratures and we are restricted to T = 0.1. Figure 10 shows
results as a function of system size and phonon frequency.
For ω0 = 2, χp(0) grows with increasing L, suggesting that
for this frequency the Ising temperature is below T = 0.1.
On the other hand, for ω0 = 1 (still in the AFM phase) our
temperature is too high to capture the Ising transition. We
conclude that the AFM phase breaks the O(4) symmetry down
to SO(4) at a finite-temperature Ising transition occurring at
T I

c . A natural conjecture is that T I
c vanishes at ωc

0.

2. Dynamical quantities

To extract spectral functions from QMC data for
imaginary-time correlators via analytic continuation, we used
the ALF implementation [18] of the stochastic maximum en-
tropy algorithm [54,55]. The single-particle spectral function
A(k, ω), accessible in ARPES experiments, is related to the
imaginary-time Green function via

〈ĉk.σ
(τ )ĉ†

k,σ
(0)〉 = 1

π

∫
dω

e−τω

1 + e−βω
A(k, ω). (48)

Figure 11(a) shows A(k, ω) for β = 40 and L = 12. The
coupling of the Einstein phonon mode to the electrons breaks
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FIG. 11. Single-particle spectral function A(k, ω) for different
phonon frequencies. Here, L = 12, β = 40.

the Q̂b → −Q̂b symmetry. Consequently, 1
2N

∑
b 〈Q̂b〉 ac-

quires a nonzero expectation value that renormalizes the elec-
tronic bandwidth. For ω0 = 0.4, 1

2N

∑
b 〈Q̂b〉 = −0.56510(7),

yielding an effective hopping teff = 1.85. This explains the
observed range of the band from −4teff at k = (0, 0) to 4teff at
k = (π, π ). For ω0 = 0.4, inside the VBS phase, the (π, π )
modulation of the hopping opens a gap at the noninteracting
Fermi surface, as visible for k = (0, π ) and k = (π/2, π/2)
in Fig. 11(a). Both the gap and the cosine band of width
8teff are features that can be qualitatively accounted for at
the mean-field level. However, the spectral function exhibits
low-lying spectral weight that extends over the considered
path in the Brillouin zone. In analogy with the 1D Holstein
model [56], and guided by the results of a self-consistent Born
approximation shown below, we attribute this low-energy fea-
ture to polaron formation. The O(4) symmetry of the model
implies A(k, ω) = A(k + Q,−ω). Hence, in the absence of
symmetry breaking, the polaron band is nested and should
exhibit instabilities to AFM or VBS order.

Figure 12 shows the single-particle spectral function from
a self-consistent Born approximation (see Appendix). In the
latter, we neglect phonon renormalization and instead use an
effective hopping t = 1.85 derived from the QMC data. Fig-
ure 12(a) reveals a cosine band with a gap of the order of the
bare phonon frequency ω0 that is crossed by a narrow polaron
band. A full gap—as in the QMC data—is achieved within
this approximation by an additional single-particle term

Ĥλ = λ
∑

i

eiQi(n̂i,↑ − n̂i,↓) (49)

FIG. 12. (a) Single-particle spectral function A(k, ω) from a
self-consistent Born approximation for β = 40, t = 1.85, g = 1.5,
ω0 = 1.0. (b) As in (a) but with broken O(4) symmetry via addition
of Ĥλ [Eq. (49)] with λ = 0.5.

FIG. 13. VBS dynamical structure factor SK (q, ω) for different
phonon frequencies. Here, L = 12, β = 40.

that explicitly breaks the O(4) symmetry by enforcing AFM
order, see Fig. 12(b). The Born approximation provides a
qualitative interpretation of the features observed numerically
but—as expected—does not capture quantitative aspects such
as the true size of the gaps.

Upon increasing the phonon frequency to ω0 = 2,
Figs. 11(b)–11(d), 1

2N

∑
b 〈Q̂b〉 remains almost constant and,

consequently, the width of the cosine band does not change
substantially. However, we observe a transfer of spectral
weight to the polaron band. The origin of the gap at ω0 > ωc

0
is to be found in AFM ordering. Our QMC data suggest that
the single-particle gap remains open across the VBS-AFM
transition.

Figure 13 shows the VBS dynamical structure factor
SK (q, ω) at four different phonon frequencies. We com-
puted the imaginary part of the dynamical VBS susceptibility
Trχ ′′

K (q, ω) by using the maximum entropy method [18] to
invert

TrSK (q, τ ) = 1

π

∫
dω

e−τω

1 − e−βω
Trχ ′′

K (q, ω). (50)

The dynamical VBS structure factor then follows from

SK (q, ω) = Trχ ′′
K (q, ω)

(1 − e−βω )
. (51)

Since the phonons couple to the bond-kinetic energy, SK (q, ω)
should reveal both the phonon dynamics and the particle-hole
continuum. At ω0 = 0.4 [Fig. 13(a)], we see substantial, very
low-lying weight as well as high-energy features that reflect
the particle-hole continuum. The low-lying excitation corre-
sponds to the phonon mode. The fact that it is soft at q = Q
is a signature of long-range VBS order. In Fig. 14 we show
SK (q, ω) at wave vector Q and also at q = (0, π ) for compar-
ison. However, we cannot resolve the dispersion relation. In
comparison to the bandwidth, the renormalized phonon modes
are very slow and are at the origin of long autocorrelation
times. In the AFM phase, Figs. 13(c) and 13(d), the phonon
mode acquires a gap.

Finally, we show the dynamical spin structure factor

SS (q, ω) = Trχ ′′
S (q, ω)

(1 − e−βω )
(52)
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FIG. 14. VBS dynamical structure factor for (a) q = Q and
(b) q = (0, π ) for different ω0. Here, L = 12, β = 40.

in Fig. 15. Because phonons do not carry spin, they are not vis-
ible in spin-flip scattering processes. According to Fig. 15(a),
in the VBS phase, SS (q, ω) is dominated by the particle-hole
continuum. For ω0 � 1.0, low-energy spectral weight at q =
Q reflects long-range AFM order, see Figs. 15(b) and 15(c).

V. DISCUSSION AND CONCLUSIONS

Our results provide both algorithmic and physical insights
into the fundamental 2D SSH model.

A. Langevin dynamics

We used a Langevin dynamics updating scheme with
Fourier acceleration [16] in the framework of the auxiliary-
field quantum Monte Carlo method.

In contrast to the HMC approach in Ref. [26], we computed
forces exactly for a given field configuration. A comparison
between stochastic and deterministic calculations of forces
can be found in Ref. [57]. Although the CPU time per sweep
is longer and scales as L6β, fluctuations, especially for time-
displaced correlation functions, are smaller.

One of the key difficulties encountered in Langevin dy-
namics is zeros of the determinant, which lead to logarithmic
singularities of the action. Exploiting the O(4) symmetry of
the SSH model, the determinant can be written as the square of
a Pfaffian, whose average sign provides a measure for the den-
sity of zeros of the determinant. We demonstrated that for low
phonon frequencies the density is small, so that Langevin sim-
ulations can be stabilized using an adaptive time step scheme.
Nevertheless, simulations occasionally suffer from spikes in
observables when the stochastic walk approaches a zero. Ob-
viously, such configurations have very small weight and a
hybrid molecular dynamics update may be more efficient. In

FIG. 15. Spin dynamical structure factor SS (q, ω) for (a) ω0 =
0.4, (b) ω0 = 2.0, (c) fixed q = Q and different ω0. Here, L = 12,
β = 40.

principle, the resulting ergodicity issues can be overcome by
a complexification of the fields [26]. For the Hubbard model,
this is possible since the decoupling of the interaction can be
done in various channels. For the SSH model, we do not have
such liberty.

We find that global Langevin updates are a good choice in
the adiabatic regime where local moves fail. As the phonon
frequency grows, Langevin dynamics becomes increasingly
challenging. At the same time, local updates become favor-
able, as discussed, e.g., in Ref. [58].

B. Physics of the 2D SSH model

Despite its apparent simplicity and fundamental nature,
remarkably little was known about the 2D SSH model. The
existence and type of long-range VBS order was settled only
recently [15]. Our results elucidate the physics of the SSH
model at a fixed electron-phonon coupling and as a function
of the phonon frequency. In addition to static observables,
we specifically also presented excitation spectra from QMC
and analytical methods. The numerical results were further
complemented with a mean-field approach to the VBS phase
and simulations showing the temperature-driven destruction
of VBS order in the adiabatic limit.

The features of the phase diagram in Fig. 1 are tied to the
O(4) symmetry of the model. In particular, the single-particle
spectral function satisfies A(k, ω) = A(k + Q,−ω). Hence,
any Fermi liquid state that does not break this symmetry will
ultimately be unstable to orders that can open up a gap. This
includes the Q = (π, π ) VBS phase as well as AFM order. In
the adiabatic limit, the problem simplifies since the phonons
become classical and mean-field theory gives a (π, π ) VBS
phase as the exact ground state. For ω0 > 0, the phonons can
be integrated out in favor of a retarded interaction. The latter
reduces to Eq. (12) in the antiadiabatic limit ω0 → ∞, where
it triggers an AFM state that is degenerate with CDW and
SC states. Two key results are the existence of AFM order
down to the experimentally relevant adiabatic regime ω0 < t
and a direct transition from VBS to AFM order. The single-
particle spectral function supports the picture of a narrow
polaronic band undergoing a transition from a (π, π ) VBS to
AFM/CDW/SC. In the particle-hole channel, the dynamical
VBS correlation function reveals the phonon dynamics as a
function of decreasing phonon frequency, including a soften-
ing at (π, π ). On the other hand, as ω0 grows, we observe
enhanced spectral weight at low energies and at q = Q in the
spin channel.

The VBS phase breaks lattice symmetries but not the above
O(4) symmetry. On the other hand, AFM or SC/CDW phases
break the O(4) symmetry down to SU(2) but leave lattice sym-
metries in tact. Starting at high temperatures, the symmetry
reduction to SU(2) occurs in two steps. At a critical tempera-
ture, spontaneous ordering of the parity operator takes place at
an Ising transition. Even parity corresponds to the SC/CDW
phase, odd parity to the AFM phase. Then, at T = 0, the
SU(2) spin (pseudospin) symmetry is spontaneously broken,
leaving the SU(2) pseudospin (spin) symmetry unbroken.

Generically, the O(4) symmetry will be broken down
to SU(2) by, for example, adding a next-nearest-neighbor
hopping. In this case, we expect the phase diagram to be
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FIG. 16. A vortex of the (π, π ) VBS state. Arrows represent
the four degenerate VBS patterns that break the C4 symmetry. By
crossing a domain wall (orange lines), the angle changes by π/2.
A full circle around the core yields 2π . This trivial vortex does not
carry a spin-1/2 degree of freedom, in contrast to the case of (0, π )
or (π, 0) VBS orders [59].

dominated by superconductivity, as the Cooper instability is
insensitive to the shape of the Fermi surface. The stability of
the VBS phase as a function of an O(4) symmetry-breaking
interaction such as a chemical potential or a next-nearest-
neighbor hopping deserves a detailed investigation.

The nature of the VBS-AFM transition remains elusive.
Because it occurs between states with different broken sym-
metries, Ginzburg-Landau order parameter theory generically
predicts either a first-order transition or a region of coexis-
tence. Within the ω0 resolution of our results, this was not
observed. Instead, the transition appears continuous. The the-
ory of deconfined quantum critical points (DQCPs) [60,61]
does not apply. To see this, we can adopt the DQCP picture
of an eight-component Dirac metal with five anticommuting
AFM and VBS mass terms [62–64]. The algebra of the mass
terms guarantees that the core of a vortex in the VBS order
parameter carries a spin-1/2 excitation. However, this requires
an ordering wave vector (0, π ) or (π, 0). In contrast, the
(π, π ) VBS observed here does not correspond to a Dirac
mass term. This point of view is substantiated by noticing that
a C4 vortex of the (π, π ) VBS can be trivial, as explained in
Fig. 16. Finally, a deconfined VBS-CDW phase transition as
a function of phonon frequency exists in the spinless 1D SSH
model [36], whereas long-range AFM order is ruled out in 1D
models by the Mermin-Wagner theorem.

In summary, we have established the existence of a (π, π )-
ordered VBS phase and an AFM phase in the 2D SSH model
with quantum phonons by means of QMC simulations. No-
tably, the AFM phase exists even at finite phonon frequencies.
We observed an apparently direct transition between these
phases with no signatures of an intermediate metallic region.
Finally, we provided an interpretation of the numerical results
for the single-particle spectral function in terms of gap forma-
tion in a narrow polaronic band.

Note added. Recently, we became aware of Ref. [65], the
results of which appear to be fully consistent with ours. While
the authors do not present excitation spectra, they provide
a phase diagram with critical values for multiple parame-
ter sets based on larger lattice sizes than the present work.
Nevertheless, our critical value ωc

0 ≈ 0.6 for the dimension-
less coupling constant λ = g2/8kt ≈ 0.141 is in satisfactory
agreement with their phase boundary. Moreover, Ref. [65]
also points out that the critical coupling for VBS order is
expected to vanish in the 2D SSH model, in contrast to the
findings of Ref. [15]. Finally, the authors of Ref. [65] pro-
vide similar arguments regarding the properties of vortices of
the VBS pattern and its implications for the interpretation of
the VBS-AFM transition.
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APPENDIX: SELF-CONSISTENT BORN APPROXIMATION

The Dyson equation for the full Green function is

G(k, iωm) = [
G−1

0 (k, iωm) − �(k, iωm)
]−1

(A1)

with the noninteracting Green function G0 and fermionic
Matsubara frequencies ωm. Here, we only consider the Fock
contribution to the electron self energy,

Σ = + . . . ,

where the wavy line represents the noninteracting phonon
propagator D0 and the double line the full Green function G.
The contribution of this Feynman diagram is given by [68,69]

�(k, iωm) = − 1

β

∑
iωn

∑
q,δ

∣∣gq,δ

k+ q,k

∣∣2

× G(k+q, iωn)D0(iωn− iωm), (A2)

to be solved self-consistently together with Eq. (A1).
The matrix elements gq,δ

k+q,k are defined by the electron-
phonon interaction in Hamiltonian (1), which can be ex-
pressed after Fourier transformation as

Ĥep =
∑
k,q,σ

∑
δ

gq,δ

k+q,kĉ†
k+q,σ

ĉk,σ

(
d̂†

−q,δ
+ d̂q,δ

)
,

gq,δ

k+q,k = g√
2mω0N

(
e−i(k+q/2)δ + ei(k+q/2)δ

)
. (A3)

Here, we have rewritten the position operator of the phonons
in terms of bosonic creation and annihilation operators,
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Q̂b = 1√
2mω0

(d̂†
b + d̂b ). The vector δ connects two nearest-

neighbor sites, b = 〈i, i + δ〉. The noninteracting phonon
propagator can be written as

D0(i�m) = 1

i�m − ω0
− 1

i�m + ω0
, (A4)

where �m is a bosonic Matsubara frequency. To carry out
the summation wover the Matsubara frequencies in Eq. (A.2),
we rewrite the Green function with the spectral function
A(k, ω) = −(1/π )Im GR(k, ω),

G(k, iωm) =
∫

dω
A(k, ω)

iωm − ω
, (A5)

where the retarded Green function GR(k, ω) = G(k, iωm →
ω + iε) is obtained by analytical continuation with an in-
finitesimal ε. We obtain for the self-energy [56]

�(k, ω + iε) =
∫

dω
∑
q,δ

∣∣gq,δ

k+q,k

∣∣2
A(k + q, ω)

×
[

nB(ω0) + nF (ω)

ω + iε + ω0 − ω

+ nB(ω0) + 1 − nF (ω)

ω + iε − ω0 − ω

]
. (A6)

Here, nB(ω0) = 1
eβω0 −1 and nF (ω) = 1

eβω+1 are the Bose-
Einstein and Fermi-Dirac distributions, respectively. Our
approximation neglects the renormalization of the phonons
due to the electrons and vertex corrections.
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